
CS–174 Combinatorics & Discrete Probability, Spring 2023

Final Exam Solutions
11:30am–2:30pm, 10 May

Read these instructions carefully

1. Write your name and SID number on the front page, and your SID number on every page!

2. This is a closed book exam, but you are allowed one two-sided cheat sheet and blank scratch paper.
No phones, calculators or other electronic equipment.

3. The exam consists of 14 questions. The first 9 questions are multiple choice; the remaining 5 require
written answers.

4. Approximate point totals for each question part are indicated in the margin. The maximum total
number of points is 100.

5. Multiple choice questions 1–6: Answer these by filling in the single circle adjacent to the correct
answer; there is no penalty for incorrect answers (unless you select more than one answer).

6. Multiple choice questions 7–9: Answer these by filling in the squares adjacent to all the answers
that apply. Points will be allocated both for selecting correct answers and for not selecting incorrect
answers, so you should select only those that apply.

7. Other questions 10–14: Write your answers to these in the spaces provided below them. None
of these questions requires a very long answer, so you should have enough space—if not you are
probably writing too much. Always show your working for these questions!

8. The questions vary in difficulty: if you get stuck on some part of a question, leave it and go on to the
next one. Point totals and space provided are not necessarily an indication of difficulty.
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[exam starts on next page]



Your SID Number: Page 2

1. Consider random walk on the following undirected graph, with vertices {a, b, c, d, e, f}.

b

d

c

a

e

f

(a) In equilibrium, the average proportion of time spent at vertex d is 3pts

© 0; © 1
6
; y 1

4
; © 1

3
; © 1

2

The stationary distribution π is proportional to the degrees of the vertices, so π(d) = deg(d)
2|E| = 4

16 .

(b) If the walk starts at vertex d, the expected time until it is next at d is 3pts

© 1; © 2; y 4; © 8; © 16

The expected return time to state d is 1
π(d) .

(c) The expected hitting time from vertex e to vertex d is 3pts

© 1
2
; © 1; © 3

2
; y 2; © 3

hed = 1 + 1
2hfd and hfd = 1 + 1

2hed. Solving gives hed = hfd = 2.

2. We are given a biased coin that comes up heads with probability p and tails with probability 1− p.

(a) We flip the coin until we get a heads. The expected number of flips, including the flip that comes up
heads, is: 3pts

© 1
p2

; y 1
p
; © 2; © 1

(1− p)2
; © 1

1− p

This is just the expectation of a geometric r.v. with parameter p.

(b) We flip the coin until we get three heads in a row. The expected number of tails that we flip is: 3pts

© 1
(1− p)3

; y 1
p3
− 1; © 1

(1− p)3
− 1; © 1

p3(1− p)
− 1; © 1

p(1− p)3

Think of a “trial” as an attempt to get 3 Heads. Thus a successful trial is a sequence of 3 Heads, and an
unsuccessful trial is a sequence of 0, 1 or 2 Heads followed by a Tail. The number of trials until we get
a success is geometric with parameter p3. The number of Tails is equal to the number of unsuccessful
trials, which has expectation 1

p3 − 1.

[continued overleaf]
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3. Consider the balls-and-bins model, in which n balls are thrown independently and u.a.r. into n bins.

(a) The probability that bin 1 is empty conditioned on bins 2, 3, . . . , k + 1 being empty is 3pts

© exp(−1); ©
(
1− 1

n

)n; ©
(
1− k

n

)n; y (
1− 1

n−k

)n; ©
(
1− 1

n

)k

Conditioning effectively reduces the number of bins to n− k. All n balls must avoid bin 1.
(b) Under the Poisson approximation, the probability of the event in part (a) is 3pts

y exp(−1); ©
(
1− 1

n

)n; ©
(
1− k

n

)n; ©
(
1− 1

n−k

)n; ©
(
1− 1

n

)k

Under Poisson, the number of balls in bin 1 is Poisson with parameter λ = 1 and bin loads are
independent; thus the conditioning has no effect, and the probability of bin 1 being empty is exp(−λ).

4. Consider the following two-round experiment. In round one, we flip n independent fair coins and count the
number of heads X . In round two, we draw a sample Z that is Poisson with parameter X/n.

(a) The expected value of Z is 3pts

© n

2
; © 1; y 1

2
; © exp(−1

2
); © exp(−1)

E[Z] = E[E[Z | X]] = E[X]/n = (n/2)/n = 1/2.
(b) The probability that Z = 0 is 3pts

© exp(−1
2
); ©

n/2∑
m=0

(
n/2
m

)
exp(−m/n)
2n/2

; ©

(
n

n/2

)
exp(−1

2)

2n
; y;

n∑
m=0

(
n
m

)
exp(−m/n)

2n

Pr[Z = 0] =
∑n

m=0 Pr[Z = 0 | X = m] Pr[X = m].

5. Let G ∈ Gn,p be a random graph with edge probability p.

(a) The expected number of edges in G is 3pts

© np; y (
n

2

)
p; © p(n

2); ©
(n
2)∑

k=0

pk(1− p)(
n
2)−k; ©

(
n

2

)
p(1− p)

By linearity of expectation: there are
(
n
2

)
possible edges, each present with probability p.

(b) The expected number of vertices of degree exactly d in G is 3pts

© npd; © npd(1− p)n−1−d; y n

(
n− 1

d

)
pd(1− p)n−1−d; © n(1− p)n−1−d

Each of the n vertices has degree d with probability
(
n−1

d

)
pd(1− p)n−1−d.

6. Let X1, X2, . . . be a sequence of non-negative integer-valued random variables, such that E[Xn] → ∞ as 3pts
n → ∞. Which one of the following additional facts is sufficient to guarantee that Pr[Xn ≥ 1] → 1 as
n →∞?

© Var[Xn]
E[Xn]2

→∞; © E[X2
n]

E[Xn]2
→∞; © Var[Xn]

E[Xn]2
→ 1; y E[X2

n]
E[Xn]2

→ 1; © none of these

By Chebyshev, Pr[Xn < 1] = Pr[Xn = 0] ≤ Pr[|Xn − E[Xn]| ≥ E[Xn]] ≤ Var[Xn]
E[Xn]2

= E[X2
n]−E[Xn]2

E[Xn]2
=

E[X2
n]

E[Xn]2
− 1.

[continued overleaf]
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Note: In Questions 7–9, shade the squares adjacent to all solutions that apply. Points will be awarded
both for selecting the correct solutions and for not selecting the incorrect ones.

7. Let X1, ..., Xn be independent (not necessarily identically distributed) discrete random variables and let 3pts
Y =

∑n
i=1 Xi. Suppose E[Xi] = 1 and Var[Xi] = 2 for all i. Which of the following statements must be

true, where a is an arbitrary positive number? [Choose all that apply.]

� Pr[Y ≥ (1 + a)n] ≤ e−na2/3; � Var[Y ] = 2n; � Pr[X1 = a] = Pr[X2 = a];

� Pr[|X1 − 1| ≥ a] ≤ 2
a2

; � Cov(Y, X1) = 2; � Pr[X1 ≥ a] ≤ 1
a

Var[Y ] =
∑

i Var[Xi] = 2n because the Xi are independent. Pr[|X1 − 1| ≥ a] ≤ 2
a2 is Chebyshev.

Cov(Y, X1) =
∑

i Cov(Xi, X1) = Cov(X1, X1) = Var[X1] = 2.

The Chernoff bound Pr[Y ≥ (1+a)n] ≤ e−na2/3 assumes the Xi are 0-1 r.v.’s. Pr[X1 = a] = Pr[X2 = a]
assumes the Xi have the same distribution. Pr[X1 ≥ a] ≤ 1

a is Markov’s inequality, which assumes X1 is
non-negative.

8. Let X0, X1, . . . be a sequence of non-negative iid random variables with mean µ > 0 and variance σ2. 3pts
Which of the following sequences Z0, Z1, . . . is a martingale with respect to (Xt)? [Choose all that apply.]

� Zt :=
∑t

i=0 Xi − µt

� Zt := tX0 − µt

� Z0 := 1; Zt := µ−t
∏t

i=1 Xi for t ≥ 1

� Zt := (
∑t

i=0 X2
i )− (σ2 + µ2)t

These can all be checked by straightforward calculations.

9. Bella visits a casino and repeatedly places $1 bets on a fair game, winning or losing $1 independently with 3pts
probability 1

2 each time. Let (Xt) denote her capital at time t, with X0 = $1000. Under which of the
following stopping rules does the optional stopping theorem apply? [Choose all that apply.]

� Bella stops when she has won $200

� Bella stops when she has either won $200 or lost $500

� Bella stops when she has spent all her money

� Bella stops the last time her capital reaches $200

� Bella stops after making 200 bets

In the first and third rules, E[T ] is unbounded: in the first rule this is because Bella’s capital hits 0 with some
probability, after which she will never win $200; in the third rule she is doing symmetric random walk on
an unbounded interval. The fourth rule is not a valid stopping time. The second rule works because E[T ] is
finite (random walk on a bounded interval) and the jumps are bounded, while the fifth rule works because T
itself is bounded.

[continued overleaf]
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10. Strings and Codes [9pts total]

An (m, `, ε)-code is a set of m strings of length ` over a large alphabet {1, 2, . . . , a} such that no pair
of strings have the same symbols in more than ε` positions. Codes of this kind have been useful in the
theoretical study of the protein-folding problem. In this question we see how to construct an (m, `, ε)-code
using random strings.

(a) Suppose we pick two strings of length ` independently and u.a.r. from the set {1, 2, . . . , a}`. Use a 4pts
Chernoff bound to give an upper bound in terms of a, ε, ` on the probability that the two strings agree
at more than ε` positions. You may assume that ε > 1

a . [HINT: Recall the Chernoff bound of the form
Pr[

∑
i Xi ≥ µ + λ] ≤ exp{−2λ2

n }, where X1, . . . , Xn are independent 0-1 r.v.’s and µ =
∑

i E[Xi].]

Let the r.v. X denote the number of positions where the two strings agree. Then X =
∑`

i=1 Xi for
independent indicator r.v.’s Xi with Pr[Xi = 1] = 1

a , and the expectation of X is µ = `
a . Using the

Chernoff bound in the form given in the hint, with µ + λ = ε` and therefore λ = `(ε− 1
a), we get

Pr[X ≥ ε`] ≤ exp{−2λ2

` } = exp{−2`(ε− 1
a)2}.

(Note that the assumption ε > 1
a implies that λ > 0, which is required for the bound to hold.)

(b) Now suppose we choose m independent strings u.a.r. as in part (a), and let the length of the strings be 4pts
` = C lnm. Show how to choose the constant C (in terms of ε and a only) so that the probability that
any pair of the strings agree at more than ε` positions tends to zero as m →∞.

We take a union bound over all
(
m
2

)
pairs of strings, and use the upper bound of part (a) for each

pair. This gives us the following upper bound on the probability that any pair agrees at more than ε`
positions: (

m
2

)
exp{−2`(ε− 1

a)2} ≤ m2 exp{−2C(ε− 1
a)2 lnm},

where we have set ` = C lnm. Now we just need to choose C large enough so that the exponential
kills the m2 factor. Specifically, if we choose C = (1 + δ)(ε − 1

a)−2 for some δ > 0, the above
expression becomes m2 exp{−2(1 + δ) ln m}, which tends to 0 as m →∞.

(c) Why does part (b) guarantee the existence of (m, `, ε)-codes with strings of length ` = O(log m)? 1pt

Part (b) tells us that if we pick m random strings of length ` = C lnm (for a specific C that depends on
ε and a), then these strings will form a (m, `, ε)-code with non-zero (actually, with high) probability.
Thus, by the probabilistic method, there must exist (m, `, ε)-codes with ` = C lnm.

[continued overleaf]
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11. Unfair Games [12pts total]

Consider random walk on the integers with a drift downwards; i.e., if the process is currently at position z,
it moves to z + 1 with probability p < 1

2 and to z − 1 with probability q = 1− p. This process models the
capital of a gambler repeatedly playing an unfair game, where she is more likely to lose than win, with a
fixed stake of $1 each time. We suppose that the process starts at 0 and ends at either of the endpoints ±m
(i.e., when the gambler has either won or lost $m in total).

(a) Let Xt denote the position of the process at time t (so that X0 = 0). Show that the process Zt := 3pts
(q/p)Xt is a martingale w.r.t. (Xt).

Clearly Zt is a function of Xt and E[|Zt|] is finite for all t. Thus we just need to check that E[Zt |
X0, . . . , Xt−1] = Zt−1. We compute:

E[Zt | X0, . . . , Xt−1] = p× (q/p)(Xt−1+1) + q × (q/p)(Xt−1−1)

= p× (q/p)× Zt−1 + q × (p/q)× Zt−1

= (q + p)Zt−1

= Zt−1.

[A common error here was to write E[Zt | X0, . . . , Xt−1] = (q/p)E[Xt|X0,...,Xt−1], which of course is
just wrong and makes it impossible to obtain the desired property.]

(b) Use the Optional Stopping Theorem to show that the probability that the process ends at −m (i.e., the 3pts
gambler goes bankrupt) is given by

pbank =
ρm − 1

ρm − ρ−m
,

where ρ > 1 denotes the ratio q
p .

We use the OST with the stopping time T = first time at which the process hits ±m. The conditions
for the OST are satisfied since |Zt| ≤ ρm is bounded for all t, so we get E[ZT ] = Z0 = 1. Writing out
E[ZT ] explicitly we therefore have

1 = E[ZT ] = pbank × ρ−m + (1− pbank)× ρm,

and rearranging this gives us the desired expression for pbank.
[Both here and in part (d), some people forgot to verify one of the conditions for the OST.]

[continued overleaf]
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(c) Now show that the process Yt := Xt + (q − p)t is a martingale w.r.t. (Xt). 2pts

Clearly Yt is a function of Xt and E[|Yt|] is finite for all t. We compute

E[Yt | X0, . . . , Xt−1] = p× (Xt−1 + 1) + q × (Xt−1 − 1) + (q − p)t
= (p + q)Xt−1 + (p− q) + (q − p)t
= Yt−1.

(d) Use the Optional Stopping Theorem again, along with part (b), to show that the expected number of 3pts
steps until the process ends is given by

E[T ] =
m

q − p
(2pbank − 1).

We use the OST with the same stopping time as in part (b). Here the conditions of the OST are satisfied
because E[T ] is finite (as we have seen several times in class: T is the escape time of random walk on
a bounded interval) and the expected jumps E[|Yt−Yt−1| | X0, . . . , Xt−1] ≤ 1 + (q− p) are bounded
for all t. The OST tells us that E[YT ] = Y0 = 0, so writing out E[YT ] gives

0 = E[YT ] = pbank × (−m + (q − p)E[T ]) + (1− pbank)× (m + (q − p)E[T ])
= (q − p)E[T ]−m(2pbank − 1).

Rearranging gives us the claimed expression for E[T ].

(e) Discuss briefly what the results of parts (b) and (d) tell you about unfair games. 1pt

Fix the odds p, q (and therefore ρ = q
p ). Then assuming m is reasonably large, the probability pbank of

going bankrupt in part (b) is close to 1−ρ−m, so you will go bankrupt with all but exponentially small
probability (as a function of your capital m). Part (d) tells us that the expected length of the game
(the amount of time you have to enjoy the casino!) scales approximately linearly with your capital m.
(Recall that this scaling is quadratic in the case of a fair game p = q = 1

2 ; but in that case the above
analysis fails and we instead use the analysis we did in class.)
[We gave 1 point for any reasonable quantitative observation here.]

[continued overleaf]
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12. Shortest Paths with Random Shortcuts [12 pts total]

Consider the n× n square grid whose points are {0, 1, . . . , n}2 and where there is an edge from each point
to its (at most) four neighbors (N,S,E,W) in the grid. In addition, within each of the n2 “squares” of the
lattice, we add the SW-NE diagonal independently with probability p. We are interested in the length of
a shortest path from the point (0, 0) to the point (n, n). In the absence of the diagonals, this is of course
exactly 2n, but with the diagonals its expectation will be αn for some α in the range [

√
2, 2] that depends

on p (and which we will not calculate here).

Here is an example with n = 9; the unique shortest path is shown with bold lines.

(a) For 1 ≤ i, j ≤ n, let Xij be the Bernoulli r.v. for the event that the diagonal in the square with 2pts
NE corner (i, j) is present. Denote by f(X11, . . . , Xnn) the shortest path from (0, 0) to (n, n) for a
particular setting of these r.v.’s. Show that f is (2−

√
2)-Lipschitz.

Toggling the value of Xij between 0 and 1 just corresponds to removing or adding the diagonal in the
corresponding square. Any path that uses a given diagonal can be modified by replacing the diagonal
by two sides of the square, thus increasing the distance by 2−

√
2). Symmetrically, adding any diagonal

can reduce the length of a path by at most the same amount. Hence f is (2−
√

2)-Lipschitz.

(b) Prove that 3pts

Pr[|f − E[f ]| ≥ λ] ≤ 2 exp
(
− λ2

2(2−
√

2)2n2

)
.

[NOTE: You should use Azuma’s inequality in the form Pr[|Zt − Z0| ≥ λ] ≤ 2 exp(−λ2/2
∑

i c
2
i ).

Specify a martingale and justify your reasoning!]

We use the Doob martingale of f . Order the indices (i, j) in some arbitrary fashion, say left-to-
right, top-to-bottom, starting with (1, 1) and ending with (n, n). The Doob martingale of f is then
Zij := E[f(X11, . . . , Xnn) | X11, . . . , Xij ], and Z0 := E[f ]. Note that Znn = f . Since the Xij are
independent, and f is (2−

√
2)-Lipschitz by part (a), we may apply Azuma’s inequality with bounded

differences ci = 2 −
√

2 for all i to get exactly the claimed bound on Pr[|f − E[f ]| ≥ λ]. (Note that
the length of the martingale is n2.)
[Many people forgot to mention the crucial fact that the Xij are independent; as we saw in class and
on HW, without this fact the Lipschitz condition cannot be used in Azuma’s inequality.]

[continued overleaf]
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(c) Now let Yi := (X1i, . . . , Xni) denote the collection of the above Bernoulli random variables in the ith 3pts
column of the grid, and define the function g(Y1, . . . , Yn) to be the length of the shortest path from
(0, 0) to (n, n). (Thus g has the same value as f for any given realization of the diagonal edges, but is
viewed as a function of a different set of variables.) Show that g is also (2−

√
2)-Lipschitz.

The key observation here is that any shortest path from (0, 0) to (n, n) can make use of at most one
diagonal in any column (since once the path has crossed the column from left to right, it will never
cross it again). Thus changing the value of any vector of values Yi (which corresponds to toggling
the presence/absence of any of the diagonals in the ith column) can increase/decrease the length of a
shortest path by at most 2−

√
2, by the same reasoning as in part (a). Hence g is (2−

√
2)-Lipschitz.

(d) Show how to improve the bound of part (b) to the following: 2pts

Pr[|g − E[g]| ≥ λ] ≤ 2 exp
(
− λ2

2(2−
√

2)2n

)
.

Again, as in part (b), the Yi are independent and (2 −
√

2)-Lipschitz. However, the length of the
martingale is now only n (since there are n columns). Thus Azuma’s inequality gives us the claimed
bound, which is the same as in part (b) with n2 replaced by n in the denominator of the exponent.

(e) Why is the bound in part (d) much more useful than the one in part (b)? 2pts

The bound in part (b) implies that f is concentrated in an interval of width O(n) around its expectation,
while the bound in part (d) reduces this width to O(

√
n). Since the mean shortest path length µ =

E[f ] = E[g] = αn, the bound in part (b) is essentially useless (the concentration width is of the same
order as the mean itself), while the bound in part (d) implies good concentration within an interval of
width o(µ).
[Many people failed to note the key point that the concentration interval in part (b) is of the same order
as the mean itself, and therefore useless.]

[continued overleaf]
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13. Another Construction of 2-Universal Hash Functions [10pts total]

Suppose we want to construct a family of 2-universal hash functions from the set U = {0, 1}k to the set
T = {0, 1}`, where k > `.

(a) Let M denote the set of all k × ` 0,1 matrices. For A ∈ M, define the function hA : U → T 5pts
by hA(u) = uA mod 2, and define H = {hA : A ∈ M}. Prove that H is a 2-universal family of
hash functions from U to T . [NOTE: You do not need to show that the functions hA map points in U
uniformly into T , only that they are 2-universal.]

First recall the definition of 2-universal hash families. To show that the family H is 2-universal, we
need to prove that, for any u, v ∈ {0, 1}k with u 6= v, Pr[hA(u) = hA(v)] ≤ 1

2` , where the probability
is taken over the choice of the hash function hA ∈ H. Using the definition of hA, this translates to the
condition that uA = vA mod 2, where the probability is over the choice of a random matrix A ∈M.
Now note that uA = vA mod 2 is equivalent to [(u − v)A]i mod 2 = 0 for 1 ≤ i ≤ `. Now fix i,
and note that [(u − v)A]i is the dot product of (u − v) with the ith column of A. Since u 6= v, there
is at least one coordinate, say j, for which (u − v)j 6= 0. We can now use the Principle of Deferred
Decisions to first randomly choose all elements of the ith column of A except for the jth element;
given these choices, there is then a unique choice (0 or 1) for the remaining element Aji that makes
(u − v)A mod 2 = 0. And since Aji is independent of the other entries in the column, this implies
that Pr[[(u− v)A]i mod 2 = 0] = 1

2 .
Finally, we note that the events [(u − v)A]i mod 2 = 0 for 1 ≤ i ≤ ` are independent, so Pr[uA =
vA mod 2] = 1

2` , as desired.
[In both this part and part (b), many people either didn’t mention the role of independence at all, or
were not careful about it. This is particularly important in part (b), where the matrix entries are not all
mutually independent.]

(b) Now consider the following alternative construction. Choose a random k × ` 0,1 matrix by picking 4pts
its first row and column independently and uniformly at random. Then, copy each of these elements
along its corresponding diagonal. For example, if k = 5 and ` = 4 and the first row and column are as
shown in bold, then the resulting matrix is

A =


0 1 1 0
1 0 1 1
1 1 0 1
0 1 1 0
1 0 1 1


Prove that this family of matrices also defines a 2-universal family of hash functions from U to T .

The argument here is essentially the same as in part (a), except that we have to be more careful about
independence. Note that, with this new construction, it is still the case that the entries of each column
of A are mutually independent, since each of them is derived from a different random “seed” bit
inserted into the first row or column. Thus the argument in part (a) that Pr[[(u−v)A]i mod 2 = 0] = 1

2
still holds, since the element Aji on which the argument hinges is chosen independently of all the other
elements in the ith column.
The second place in part (a) where we used independence was in the final step, where we argued that
the events [(u − v)A]i mod 2 = 0 for 1 ≤ i ≤ ` are independent. But we can see that this also still
holds with the new construction, since each of these events is determined by the entry Aji for some
fixed j as i varies, i.e., by the entries of the jth row of A. But, for the same reason as in the previous
paragraph, the entries of each row of A are also mutually independent.
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(c) Why is the family in part (b) preferable to the family in part (a)? 1pt

Both families achieve pairwise independence. However, the construction in part (a) requires k` random
bits, while that in part (b) requires only k + `− 1 random bits.

[continued overleaf]



Your SID Number: Page 11

14. The Inverse Riffle Shuffle [12pts total]

Consider the following rather strange way of shuffling a deck of n cards. Write an independent, uniformly
random binary digit (0 or 1) on the back of each card. Then pull out all the cards with a 0 and place them on
top of all the cards with a 1, keeping the relative orderings of both sets of cards fixed. Repeat this process,
each time appending a new random binary digit to the sequence of digits on the back of each card and
pulling out the cards whose latest digit is 0. You may assume without proof that this process converges to
the uniform distribution over all permutations of the deck. In this problem we analyze its mixing time.

(a) Let (Xt) and (Yt) denote separate copies of the above process, starting from arbitrary initial permuta- 4pts
tions X0 and Y0. Propose a coupling between (Xt) and (Yt) that attempts to minimize the time T until
XT = YT .

Consider the following coupling: in both (Xt) and (Yt), we give the same random digit to each card
(regardless of its positions in the two copies of the deck). More specifically, we can let (Xt) choose
independent random digits for each card, and then let (Yt) simply copy the choices of (Xt) for each
card. Clearly this is a valid coupling, since when we view each of (Xt) and (Yt) separately, each card
receives digit 0 or 1 independently and u.a.r.
[Some people designed a “coupling” in which the evolution of Yt (and sometimes even of Xy) was not
equivalent to the original shuffling process. This is of course not a valid coupling.]

(b) Let T be the first time at which the sequences of digits on the backs of the cards in (XT ) (interpreted as 3pts
binary numbers with most significant digit written last) are all distinct. Show that XT = YT . [NOTE:
If the coupling you proposed in part (a) does not have this property, you should go back and revise
your coupling.]

The key observation here is that the shuffle performs a sorting operation on the binary numbers on the
backs of the cards: specifically, if one card has a smaller binary number than another card, then the first
card will be placed above the other in the deck. (Cards with the same number will remain in the same
relative order as they started.) Thus, if we wait until the numbers on the backs of all cards are distinct,
there is a unique ordering of the cards given by the ordering of those numbers. Since our coupling in
part (a) ensures that each card has the same number in both (Xt) and (Yt), the ordering of both decks
must be the same, so XT = YT .

[continued overleaf]
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(c) Show that the random time in part (b) satisfies Pr[T ≥ 2 log2 n + log2(1/2ε)] ≤ ε. [HINT: You may 3pts
use the fact from class that, in the birthday problem with n people and m ≥ c

2n2 possible birthdays,
the probability that any two people have the same birthday is at most 1

c .]

Suppose we have run the process for t steps. The event that the numbers on the backs of the cards are
all distinct is equivalent to the event that there are no common birthdays in a birthday problem with n
people and m = 2t birthdays. Following the hint, if we want this probability to be at most 1

c = ε, we
need m ≥ c

2n2, or equivalently, 2t ≥ 1
2εn

2. Taking logs gives us exactly the claimed condition for T .

(d) Deduce that the mixing time of this shuffle satisfies τ(ε) ≤ 2 log2 n + log2(1/2ε). 1pt

This follows immediately from part (c) once we recall from the Coupling Lemma that the mixing time
τ(ε) satisfies τ(ε) = minT {Pr[XT 6= YT ] ≤ ε}, for any coupling.

(e) How does this mixing time bound compare with those that we derived in class for other shuffles (such 1pt
as random-to-top and random transpositions)? Is this surprising?

In class and homeworks we also discussed the random-to-top shuffle, whose mixing time is Θ(n log n),
and the random transposition shuffle, whose mixing time is Θ(n2). The shuffle analyzed here has an
exponentially smaller mixing time of O(log n). Intuitively, this is explained by the fact that this shuffle
moves the entire deck of cards at each step, rather than just one or two cards as in the other shuffles.
NOTE: It turns out that the inverse riffle shuffle analyzed here has exactly the same mixing time as the
riffle shuffle itself that we defined (but didn’t analyze) in class! Indeed, this inverse version is by far
the cleanest way to analyze the original riffle shuffle. The fact that they are equivalent follows from the
fact that both are random walks on the group of permutations, and one is (in a group-theoretic sense)
the inverse of the other. (This latter fact should be at least intuitively clear from the definitions of the
two shuffles.)

[The End]


