
CS–174 Combinatorics & Discrete Probability, Spring 2023

Homework 8
Out: 7 Apr. Due: 14 Apr.

Submit your solutions in pdf format on Gradescope by 5pm on Friday, April 14. Solutions may be written
either in LATEX (with either machine-drawn or hand-drawn diagrams) or legibly by hand. (The LATEX source
for this homework is provided in case you want to use it as a template.) Please be sure to begin the solution
for each problem on a new page, and to tag each of your solutions to the correct problem! Per course policy,
no late solutions will be accepted. Take time to write clear and concise answers; confused and long-winded
solutions may be penalized. You are encouraged to form small groups (two to four people) to work through
the homework, but you must write up all your solutions on your own. Depending on grading resources,
we reserve the right to grade a random subset of the problems and check off the rest; so you are advised to
attempt all the problems.

1. [Variant of MU, Exercise 7.1] Consider the Markov chain with four states {1, 2, 3, 4} and transition matrix

P =


0 3/10 1/10 3/5

1/10 1/10 7/10 1/10
1/10 7/10 1/10 1/10
9/10 1/10 0 0


Thus P1,4 = 3/5 is the probability of moving from state 1 to state 4.

(a) Find the probability of being in state 4 after 3 steps if the chain begins in state 1. [HINT: Do this by
hand; you can do it without multiplying matrices!]

(b) Find the probability of being in state 4 after 3 steps if the chain begins at a state chosen u.a.r. from all
four states. [HINT: Again, do this by hand.]

(c) Find the stationary distribution π of this chain. [NOTE: You will probably need to use a linear algebra
package for this.]

(d) Suppose the chain begins in state 1. What is the smallest value of t for which the variation distance
‖pt

1 − π‖ is less than 0.001? [NOTE: Recall that pt
x denotes the distribution of the chain after t steps

starting from state x. Again, use the package.]

2. This question concerns the “lollipop” graph Ln, which consists of a clique on n
2 vertices with a “tail” of

length n
2 (edges) attached (so the total number of vertices is n). The tail is attached to the clique at vertex a,

and the end of the tail is vertex b (see Figure). We assume that n is even and n ≥ 6.

a b
Kn/2

line with n/2 edges

We also use the following notation for random walk on any undirected graph G = (V,E):

• For any two vertices u, v ∈ V , Huv denotes the expected hitting time from u to v (i.e., the expected
number of steps until the walk, starting at u, reaches v).

• For any vertex v ∈ V , Cv(G) denotes the cover time from v (i.e., the expected time for the walk,
starting at v, to visit all vertices of G).

• C(G) = maxv Cv(G) denotes the cover time of G.
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In the following questions, you may assume without proof any results we have derived in class provided you
state them clearly. Also, remember that a Θ( · ) expression is both an upper and a lower bound.

(a) Let Kn be the complete graph on n vertices. Show that Cv(Kn) = Θ(n log n) for all vertices v of Kn.

(b) For the lollipop graph Ln, show that C(Ln) = O(n3). [NOTE: You are only asked to show an upper
bound in this part.]

(c) Show that Cb(Ln) = Θ(n2). [NOTE: This is both an upper and a lower bound.]

(d) For the lollipop graph Ln, show that Ha,b satisfies

Ha,b ≥
1

n/2

(
1− 2

n

)
Ha,b +

n/2− 1
n/2

(
Ha,b + Ω(n)

)
.

[HINT: What does Gambler’s Ruin say about the probability that random walk on the line {0, . . . , n/2},
starting from 1, hits 0 before hitting n/2?] Deduce that Ha,b = Ω(n3).

(e) Deduce from parts (b) and (d) that C(Ln) = Θ(n3). [NOTE: Again, both an upper and a lower bound.]

(f) Prove or disprove the following statement: “If G is a connected graph and G′ is obtained from G by
adding edges to G, then C(G) ≤ C(G′).”

(g) Prove or disprove the following statement: “If G is a connected graph and G′ is obtained from G by
adding edges to G, then C(G) ≥ C(G′).”

3. The exclusion process on the directed cycle is a Markov chain defined as follows. There are n sites corre-
sponding to the vertices of the cycle Cn, and 1 < k < n indistinguishable particles which may occupy the
sites, with at most one particle per site. Thus there are

(
n
k

)
allowed configurations of particles. Transitions

from any configuration are specified as follows:

• pick a particle u.a.r.

• move the particle one position clockwise round the cycle, provided that site is not occupied; else do
nothing

(a) Explain briefly why the process is irreducible.

(b) Explain briefly why the process is aperiodic.

(c) What is the stationary distribution? Justify your answer.

4. Recall the “random transpositions” card shuffle that we defined in class. Here the states, as usual, are all n!
permutations of an n-card deck, and at each step the shuffle proceeds as follows:

• pick two positions, i, j ∈ {1, . . . , n} independently and u.a.r. (note that i = j is possible)

• swap the cards at positions i and j

As we saw in class, this shuffle converges to the uniform distribution. (It is irreducible because any permu-
tation can be written as the product of transpositions; it is aperiodic because there is a self-loop probability
of 1/n at each state; and the stationary distribution is uniform because the transition probabilities are sym-
metric.)

In this problem you will show that O(n2) shuffles are enough to mix up the deck.

Here is a coupling (Xt, Yt) for this process. At each step, we choose a position i ∈ {1, . . . , n} and a card c
u.a.r. Then in both copies Xt, Yt we swap card c with the card in position i. (Note that this is a valid
coupling, because both copies, viewed separately, are in fact swapping the cards in two randomly chosen
positions, as specified in the original process.)

[continued on next page]



To analyze this coupling, let dt = d(Xt, Yt) be the distance between the two copies after t steps, i.e., the
number of cards whose positions differ in Xt and Yt.

(a) Explain carefully why dt never increases with t.

(b) Show that dt decreases by at least 1 with probability
(

dt
n

)2
.

(c) Deduce that, for any choice of initial states X0, Y0, the expected number of steps T until XT = YT is
at most cn2 for some constant c. [HINT: Recall the expected value of a geometric r.v. Recall also that∑∞

i=1
1
i2

= π2

6 .]

(d) Finally, deduce that the mixing time satisfies τ(ε) ≤ cn2

ε . [HINT: Use Markov’s inequality and the
coupling lemma. In fact, the mixing time for this process satisfies τ(ε) ≤ cn2 log(1

ε ), but you are not
required to prove this.]

5. [Optional extra: No credit] Here is an unusual card trick. I take a shuffled deck and turn up the cards one
by one. I ask you to select one of the first ten cards, without telling me which one; let c1 ∈ {1, 2, . . . , 13}
be the numerical value of your card. You then count c1 cards from the one you selected, and note that card;
call its value c2. You then count a further c2 cards and note that card, and so on until the deck is exhausted.
At that point, I am able to identify the last card you noted (at least most of the time).

Describe how I perform this amazing feat, and give a qualitative explanation for why it works. [HINT: think
about coupling. You are not expected to perform any calculations to justify why the method works. You
are encouraged to try it on a friend a few times and estimate the success probability—it should certainly be
enough to win comfortably in a gambling situation. Or if you are really interested you could simulate the
trick with a program and get a much better estimate of the success probability.]


