
CS–174 Combinatorics & Discrete Probability, Spring 2023

Homework 7
Out: 17 Mar. Due: 24 Mar.

Submit your solutions in pdf format on Gradescope by 5pm on Friday, March 24. Solutions may be written
either in LATEX (with either machine-drawn or hand-drawn diagrams) or legibly by hand. (The LATEX source
for this homework is provided in case you want to use it as a template.) Please be sure to begin the solution
for each problem on a new page, and to tag each of your solutions to the correct problem! Per course policy,
no late solutions will be accepted. Take time to write clear and concise answers; confused and long-winded
solutions may be penalized. You are encouraged to form small groups (two to four people) to work through
the homework, but you must write up all your solutions on your own. Depending on grading resources,
we reserve the right to grade a random subset of the problems and check off the rest; so you are advised to
attempt all the problems.

1. In this question we show how to construct a family of d-wise independent random variables over Zp =
{0, 1, . . . , p − 1} for any prime p and any d. This is a generalization of the construction of pairwise inde-
pendent r.v.’s discussed in Lecture 16 and in MU Lemma 15.2.

Define a random polynomial of degree d − 1 over Zp by picking the d coefficients a0, a1, . . . , ad−1 inde-
pendently and u.a.r. from Zp and letting

fa(x) = a0 + a1x + . . . + ad−1x
d−1 mod p.

Here we are using a to denote the set of coefficients a0, a1, . . . , ad−1. We will show that the family of
random variables {fa(x) : x ∈ Zp} is uniform and d-wise independent over Zp. Make sure you understand
this family of r.v.’s before proceeding!

(a) How many random variables are there in this family?

(b) Prove that the family is uniform over Zp. [HINT: This involves showing that Pr[fa(x) = y] = 1
p for

all x, y ∈ Zp. Note that the probability is over the random choice of coefficients a. Use the principle
of deferred decisions.]

(c) Prove that the family is d-wise independent. [HINT: This involves showing that Pr[(fa(x1) = y1) ∩
(fa(x2) = y2) ∩ . . . ∩ (fa(xd) = yd)] = 1

pd for any distinct x1, . . . , xd ∈ Zp and any y1 . . . , yd ∈
Zp, where again the probability is over the choice of a. Recall that any d points uniquely define a
polynomial of degree d− 1 over any field.]

2. In this question we will use the d-wise independent family constructed in the previous question in order
to de-randomize the Ramsey theory construction we discussed in Lecture 12 (see also MU Theorem 6.1).
Recall that, when n ≤ 2k/2, there exists a 2-coloring of the edges of the complete graph Kn in which there is
no monochromatic k-clique; call such a 2-coloring “k-good.” We proved this by showing that, if we 2-color
the edges independently and u.a.r., then the resulting random coloring is k-good with non-zero probability.

(a) Let m =
(
n
2

)
and d =

(
k
2

)
. Let 2m > p ≥ m be prime (such a prime always exists). Suppose

we instead 2-color the edges of Kn with d-wise independent (rather than fully independent) random
variables. (To do this, we can use the construction over Zp from the previous question, and just project
the values onto {red, blue} by taking the result mod 2, ignoring the minor detail that p is odd.) Show
that the resulting coloring is good with non-zero probability.

(b) Why do we need to take p ≥ m?

(c) Show how to use these d-wise independent r.v.’s to obtain a deterministic algorithm that finds a k-good
2-coloring in polynomial (in n) time, for any fixed k. [HINT: What is the size of the sample space in
part (a)?]



(d) Briefly explain how the algorithm of part (c) can be run in parallel on a polynomial number of proces-
sors in O(log n) time. [HINT: You may assume that s processors can combine their results in O(log s)
time.]

3. Consider the problem of deciding whether two integer multisets S1 and S2 are identical (in a multiset, each
element can appear multiple times) in the sense that each integer occurs the same number of times in both
sets. This problem can obviously be solved by sorting in O(n log n) time, where n is the cardinality of the
multisets. In this problem we will consider a more efficient randomized algorithm based on hashing. Here
is the algorithm:

• Hash each element of S1 into a hash table with cn counters (where c > 1 is a constant), using some
2-universal family of hash functions. The counters are initially 0, and the ith counter is incremented
each time the hash value of an element is i. Using another table of the same size and the same hash
function, do the same for S2.

• If the ith counter in the first table matches the ith counter in the second table for all i, output ”yes”;
otherwise, output ”no”.

(a) What is the running time of this algorithm? Assume that hashing and arithmetic operations (for incre-
menting and comparing counters) take constant time.

(b) Verify that if S1 and S2 are identical, the algorithm outputs “yes” with probability 1.

(c) Show that if S1 and S2 are not identical, the algorithm outputs “no” with probability at least 1 − 1/c.
You may assume for simplicity that S1 and S2 are disjoint (indeed, this is WLOG because we can
remove elements common to S1 and S2 in the analysis). [HINT: suppose S1 and S2 are disjoint. Fix
some element x ∈ S1. Now show that with probability 1− 1/c over h, the h(x)th counter for S2 is 0.]

4. Let L be a language (which we can think of as a decision problem, where “yes” instances correspond to
strings x ∈ L and “no” instances to strings x /∈ L). Suppose we have a randomized algorithm A for L with
one-sided error; i.e., on any input x,

(i) if x ∈ L then A(x) outputs “yes” with probability at least 1
2 ;

(ii) if x /∈ L then A(x) outputs “no” with probability 1.

As we know very well, we can reduce the error probability by performing repeated independent trials of A;
to get the error probability down to δ, we need dlog2(δ−1)e trials, which requires O(t log(δ−1)) random
bits. In this problem we will see how to use pairwise independence to achieve error probability δ using only
O(t) random bits (for any δ ≥ 2−t).

To do this, it is helpful to think of A as taking two inputs, namely x and a string r of random bits of length t,
where t is the running time of A on x. Then the above properties translate to the following:

(i) if x ∈ L then A(x, r) outputs “yes” for at least half of the strings r;

(ii) if x /∈ L then A outputs “no” for all strings r.

(a) Suppose now that we pick s pairwise independent uniform random strings r1, . . . , rs ∈ {0, 1}t, and
output “yes” if at least one of the trials A(x, ri) outputs “yes”. Show that the error probability for this
algorithm is 1

s . [HINT: Let Y =
∑s

i=1 Yi, where Yi is the indicator r.v. for the event that A(x, ri)
outputs “yes”. Show that Var[Y ] ≤ s

4 , and use Chebyshev’s inequality.]

(b) Explain briefly why only O(t) random bits are needed to implement the scheme in part (a). Note that
the number of random bits needed is independent of δ.

(c) What is the running time of this scheme (as a function of t and δ), and how does it compare to the
standard approach based on independent trials? Ignore the time taken to generate pairwise independent
random strings.


