Homework 6

Instructions: Put your solutions in the homework box on Soda level 2 by 5pm on Tuesday. Take time to write clear and concise answers; confused and long-winded solutions will be penalized. You are encouraged to form small groups (two to four people) to work through the homework, but you must write up all your solutions on your own. Depending on grading resources, we reserve the right to grade a random subset of the problems and check off the rest; so you are advised to attempt all problems.

1. Suppose we throw \(n \) balls into \(n \) bins, and we are interested in upper bounds for the probability \(p \) that the first bin receives at least \(k \) balls, where \(\log \log n \leq k \leq n \). In this problem, we will compare the bounds we get for \(p \) using three different techniques that we have seen in the course so far.

 (a) Use the Chernoff bound to show that \(p = 2^{-\Omega(k)} \).

 (b) Apply a union bound to show that \(p \leq \binom{n}{k} \frac{1}{n}^k \). Deduce that \(p \leq \left(\frac{e}{k} \right)^k = 2^{-\Omega(k \log k)} \).

 [HINT: If the first bin receives at least \(k \) balls, then it must be the case that there exists some subset of exactly \(k \) balls all of which land in the first bin. You may find the following bound useful: \(k! \geq (k/e)^k \).] [NOTE: This bound is rather better than that in part (a).]

 (c) Write down the expression for \(p \) under the Poisson approximation (this will involve a sum). Then use the inequality from Q2 of HW5 to show that \(p \leq \frac{2}{e} \sum_{j=k}^{\infty} \frac{1}{j!} \). [NOTE: This expression is bounded by \(\frac{2}{e} \cdot \frac{1}{k^k} \sum_{j=k}^{\infty} \frac{1}{j!} \leq \frac{2}{e} \left(\frac{e}{k} \right)^k \), so this bound is essentially the same as that in part (b).]

 (d) Now suppose we want to achieve \(p = n^{-\log \log n} \). According to each of the bounds in parts (a) and (b) above, how large would \(k \) have to be in order to make \(p \) this small? Repeat this same comparison for the following two values of \(p \): \(p = 1/n^{100} \) and \(p = 2^{-0.001n} \). In all cases, you should just give the asymptotic value of \(k \) as a function of \(n \) (i.e., ignore constants and lower order terms).

2. MU, Exercise 5.16. [NOTE: For each of the three parts, you should start by writing down the expected number of the appropriate objects (cliques, complete bipartite subgraphs, Hamiltonian cycles) as a function of \(n \) and \(p \). Then you should figure out what value of \(p \) (as a function of \(n \)) would make this expectation equal to 1. You should just give the asymptotic value of \(p \) (i.e., ignore constants and lower order terms).]

3. Recall that a graph (undirected, no self-loops) is 2-colorable if we can assign colors red and green to each vertex such that the endpoints of every edge are assigned different colors. Suppose we are told that a graph \(G = (V, E) \) is “locally 2-colorable”, in the sense that the induced subgraph\(^1\) on every subset of \(O(\log n) \) vertices is 2-colorable. Does this imply that \(G \) itself is 2-colorable? In this problem we will see that the answer is spectacularly “no”: namely, we will show that there exists a graph that is locally 2-colorable but is “very far away” from being 2-colorable, in the sense that we would have to remove a constant fraction of its edges in order to make it 2-colorable. We will prove the existence of this graph using the probabilistic method.

 Throughout, set \(p = 16/n \), and let \(G \) be a random graph from the model \(G_{n,p} \). The probabilities and expectations refer to the experiment of picking \(G \) at random.

 (a) Write down the expected number of edges in \(G \).

 (b) Apply the Chernoff bound to show that with probability \(1 - 2^{-\Omega(n)} \), \(G \) has at most \(10(n - 1) \) edges.

\(^1\)The induced subgraph on a subset of vertices \(V' \subseteq V \) is the graph with vertex set \(V' \) and edge set consisting of all the edges of \(G \) both of whose endpoints are in \(V' \).
(c) Now fix an arbitrary assignment of colors to the vertices. Show that the expected number of violated edges (i.e., edges with endpoints of the same color) in G is at least $4(n - 2)$. Deduce by a Chernoff bound that the probability there are more than $n - 2$ violated edges is at least $1 - e^{-9(n-2)/8}$. [HINT: For the first part, think of the assignment of colors as being fixed before we choose the random edges of G. What is the value for the number of red/green vertices that minimizes the expected number of violated edges? You may assume for simplicity that n is even.]

(d) Show that for $n \geq 6$, with probability at least $3/4$, G is not 2-colorable even if we delete any $n - 2$ of its edges. [HINT: Use the previous part and a union bound over colorings.]

(e) Show that the expected number of cycles of length exactly k in G is at most 16^k. Deduce that the expected number of cycles of length at most $\frac{1}{8} \log n$ is at most $16 \sqrt{n}$.

(f) Use the previous part to deduce that, with probability at least $3/4$, by deleting only $O(\sqrt{n})$ (suitably chosen) edges of G we can obtain a graph such that the induced subgraph on any subset of $\frac{1}{8} \log n$ vertices is cycle-free (i.e., a forest – a collection of vertex-disjoint trees). (Note that a forest is always 2-colorable.)

(g) Use parts (b), (d) and (f) together to deduce that, for every sufficiently large n, there exists a graph $G = G_n$ on n vertices such that:

- The induced subgraph on any subset of $\frac{1}{8} \log n$ vertices of G_n is 2-colorable; and
- G_n is not 2-colorable, and remains not 2-colorable even after deleting any 0.05 fraction of its edges.

[HINT: Remember to take into account the fact that, when we modify G to remove cycles, we may also be deleting violated edges!]