
CS–174 Combinatorics & Discrete Probability, Spring 2023

Homework 4
Out: 10 Feb. Due: 17 Feb.

Submit your solutions in pdf format on Gradescope by 5pm on Friday, February 17. Solutions may be
written either in LATEX (with either machine-drawn or hand-drawn diagrams) or legibly by hand. (The LATEX
source for this homework is provided in case you want to use it as a template.) Please be sure to begin the
solution for each problem on a new page, and to tag each of your solutions to the correct problem! Per
course policy, no late solutions will be accepted. Take time to write clear and concise answers; confused
and long-winded solutions may be penalized. You are encouraged to form small groups (two to four people)
to work through the homework, but you must write up all your solutions on your own. Depending on grading
resources, we reserve the right to grade a random subset of the problems and check off the rest; so you are
advised to attempt all the problems.

1. Let X1, . . . , Xn be independent 0-1 valued random variables with Pr[Xi = 1] = 1/i. Define the r.v. X to
be their sum X1 + . . . + Xn.

(a) Write down expressions for E[X] and Var[X].

(b) Let p be the probability of the event X ≥ 4 ln n. Compare the upper bounds you can obtain on p
using (i) Markov’s inequality; (ii) Chebyshev’s inequality; and (iii) Chernoff bounds. [NOTES: In your
comparison, you should concentrate on the asymptotic behavior of the bounds as n →∞. Recall that
the harmonic number Hn ∼ lnn as n →∞. For (iii) you will need the following form of the Chernoff
bound which is an extension of the bound (4.2) in Theorem 4.4 of MU that we saw in class and that is
valid for all δ > 0: with the notation of that theorem, Pr[X ≥ (1 + δ)µ] ≤ e−µδ2/(2+δ).]

2. [MU, Ex. 4.10] A casino is testing a new class of simple slot machines. In each game, the player puts
in $1 and the slot machine is supposed to return either $3 to the player with probability 4/25, $100 with
probability 1/200, or nothing with the remaining probability. Each game is independent of all other games.
The casino has been surprised to find in testing that the machines have lost $10,000 over the first million
games. Your task is to come up with an upper bound on the probability of this event, assuming that their
machines are working as specified.

(a) Let the r.v. X denote the net loss to the casino over the first million games. By writing X = X1 +
. . . X106 , derive an expression for E[etX ], where t is an arbitrary real number.

(b) Derive from first principles a Chernoff bound for the probability Pr[X ≥ 10, 000]. [HINT: You should
follow the proof of the Chernoff bound in class, by applying Markov’s inequality to the r.v. etX . You
should use the value t = 0.0006 in your bound.]

[Turn over for problem 3]



3. A fundamental problem that arises in many applications is to compute the size of the union of a collection
of sets. The setting is the following. We are given m sets S1, . . . , Sm over a very large universe U . The
operations we can perform on the sets are the following:

• size(Si): returns the number of elements in Si;

• select(Si): returns an element of Si chosen u.a.r.;

• lowest(x): for x ∈ U , returns the smallest index i for which x ∈ Si.

Let S =
⋃m

i=1 Si be the union of the sets Si. In this problem we will develop a very efficient (polynomial
in m) algorithm for estimating the size |S|. Note that doing this in some trivial way, such as exhaustively
enumerating the elements of all the Si and eliminating duplicates, will in general take far too long since the
sizes of the Si can be huge.

(a) Let’s first see a natural example where such a set system arises. Suppose φ is a boolean formula in
disjunctive normal form (DNF), i.e., it is the OR of ANDs of literals. Let U be the set of all possible
assignments to the variables of φ (i.e., |U | = 2n where n is the number of variables), and for each
clause 1 ≤ i ≤ m let Si be the set of assignments that satisfy clause i. Then the union S =

⋃m
i=1 Si is

exactly the set of satisfying assignments of φ, and our problem is to count them.1 Argue that all of the
above operations can be efficiently implemented for this set system.

(b) Now let’s consider a naive random sampling algorithm. Assume that we are able to pick an element
of U u.a.r., and that we know the size of U . Consider the algorithm that picks t elements of U inde-
pendently and u.a.r. (with replacement), and outputs the value q|U |, where q is the proportion of the t
sampled elements that belong to S. For the DNF example in part (a), explain as precisely as you can
why this is not a good algorithm.

(c) Consider now the following algorithm, which is again based on random sampling but in a more so-
phisticated way:

• choose a random set Si with probability size(Si)P
j size(Sj)

• x = select(Si)
• if lowest(x) = i then output 1 else output 0

Show that this algorithm outputs 1 with probability exactly p = |S|P
j |Sj | . [HINT: Show that the effect of

the first two lines of the algorithm is to select a random element of the set of pairs {(x, Si) : x ∈ Si}.]

(d) Show that p ≥ 1
m .

(e) Now suppose that we run the above algorithm t times and obtain the sequence of outputs X1, . . . , Xt.
We define X =

∑t
i=1 Xi. Use a Chernoff bound to obtain a value for t (as a function of m, δ and ε)

that ensures that
Pr[|X − tp| ≥ εtp] ≤ δ.

[HINT: You will need to use the bound from part (d) here.]

(f) The final output for our algorithm will be Y = (
∑

j |Sj |) · X
t , where X is as defined in part (e). Using

part (e), show that this final algorithm has the following properties: it runs in time O(mε−2 log(δ−1))
(assuming that each of the set operations listed above can be performed in constant time), and outputs
a value that is in the range [(1− ε)|S|, (1 + ε)|S|] with probability at least 1− δ.

1Note that deciding if φ is satisfiable (i.e., has at least one satisfying assignment) is trivial for a DNF formula, unlike for a CNF
formula where it is NP-complete (see CS170 or CS172). However, when it comes to counting satisfying assignments, it turns out
that the problem is NP-hard even for DNF formulas! Thus we cannot hope to find a polynomial time algorithm that solves this
problem exactly. Thus the approximation algorithm that we develop in this question is essentially the best one can hope for.


