
CS–174 Combinatorics & Discrete Probability, Spring 2023

Homework 2
Out: 27 Jan. Due: 3 Feb.

Submit your solutions in pdf format on Gradescope by 5pm on Friday, February 3. Solutions may be
written either in LATEX (with either machine-drawn or hand-drawn diagrams) or legibly by hand. (The LATEX
source for this homework is provided in case you want to use it as a template.) Please be sure to begin the
solution for each problem on a new page, and to tag each of your solutions to the correct problem! Per
course policy, no late solutions will be accepted. Take time to write clear and concise answers; confused
and long-winded solutions may be penalized. You are encouraged to form small groups (two to four people)
to work through the homework, but you must write up all your solutions on your own. Depending on grading
resources, we reserve the right to grade a random subset of the problems and check off the rest; so you are
advised to attempt all the problems.

1. A monkey types on a 26-letter keyboard. At each keystroke, each of the 26 letters is equally likely to be
hit. The monkey types 220 letters. What is the expected number of times the sequence “ape” appears in this
text? [HINT: Let X be the number of occurrences. Write X as the sum of indicator random variables and
use linearity of expectation. This should be a very simple calculation!]

2. Suppose we toss a coin with Heads probability p until we observe the kth Heads. Let the random variable X
denote the number of tosses.

(a) Show that the distribution of X is

Pr[X = t] =
(

t− 1
k − 1

)
pk(1− p)t−k.

[NOTE: This is known as the negative binomial distribution.]

(b) What is the expectation of X? [HINT: Use linearity of expectation and the formula for the expectation
of a geometric r.v. Again this should be a very simple calculation.]

3. Andrew and Betty have a fair coin. They want to use it to generate a random sequence of 1000 coin tosses
containing exactly 500 heads and 500 tails. Each such sequence should be equally likely.

(a) Andrew suggests the following scheme: flip the coin 1000 times; if you get exactly 500 heads, output
the sequence; otherwise, try again. How many tosses do you expect to have to make under this scheme?
[NOTE: you may assume that n = 1000 is large enough that asymptotic results hold; so, for example,
instead of computing large factorials you should use Stirling’s approximation: n! ∼ (n

e )n
√

2πn.]

(b) Betty claims that the following scheme is much more efficient: flip the coin until you have either 500
heads or 500 tails (one of these must happen before 1000 tosses); output this sequence, padded at the
end with tails or heads respectively to make the total length 1000. Obviously this scheme requires
at most 1000 tosses. Is this a good scheme? Justify your answer with a precise calculation. (Vague
reasoning will not receive much credit.)

(c) Suggest a simple scheme for solving this problem that is better than both Andrew’s and Betty’s. What is
the expected number of tosses required by your scheme? [NOTE: There is a scheme with an expected
number of tosses as low as 2000. However, you will get credit for any scheme that is correct and
substantially better than part (a).]

[Turn over for problem 4!]



4. Generating random factored integers
In cryptographic applications we often need to generate a random integer r ∈ {1, . . . , n} together with
the factorization of r. Note that the obvious method of just generating r uniformly at random and then
factoring r is not useful because we do not know how to factor integers (even with the aid of randomization)
in polynomial time1. Here is a mysterious and remarkably simple algorithm for this problem:

1. generate a sequence of integers n ≥ s1 ≥ s2 ≥ · · · ≥ s` = 1 by choosing
s1 ∈ {1, . . . , n} u.a.r. and si+1 ∈ {1, . . . , si} u.a.r. until 1 is reached

2. let r be the product of the si that are prime

3. if r ≤ n then output r with probability r/n else fail

(a) In preparation for analyzing the algorithm, consider the following scheme for generating a random r ∈
{1, . . . , n} using coins c1, c2, . . . , cn, where Pr[ci comes up Heads] = 1/i. Flip coins cn, cn−1, cn−2, . . .
in sequence until the first Heads appears; if this happens on coin ci then output r = i. Show that this
scheme generates r ∈ {1, . . . , n} u.a.r.

(b) Now suppose we represent the sequence (si) generated by the algorithm as a vector (m1, . . . ,mn),
where mj is the number of times the number j occurs in the sequence. (For example, if n = 10 and
the sequence is s1 = 8, s2 = 5, s3 = 5, s4 = 1 then the vector would be (1, 0, 0, 0, 2, 0, 0, 1, 0, 0).)
Show that the probability of generating the sequence (si) is given by

n∏
j=2

(
1
j

)mj
(

1− 1
j

)
.

[HINT: Imagine implementing the picking of each si using the method of part (a). Then the entire
process can be thought of as tossing a sequence of coins as in part (a).]

(c) Deduce from part (b) that the algorithm outputs each r ∈ {1, . . . , n} with equal probability αn/n,
where αn =

∏
p(1 − 1/p) and the product is over all primes p ≤ n. [NOTE: Avoid handwaving

arguments and heavy calculations! Think carefully about part (b).]

(d) A standard theorem from number theory says that α−1
n ∼ 1.8 ln n. Suppose we repeat the algorithm

until it outputs some r. What is the expected number of trials needed?

(e) The running time of each trial of the algorithm is dominated by the time to test the sequence (si) for
primality. Show that the expected number of primality tests performed in one trial is the harmonic
number Hn = 1 + 1/2 + . . . + 1/n ∼ lnn + Θ(1).

(f) Deduce from parts (d) and (e) that the expected number of primality tests performed before an output
is obtained is O(log2 n). [NOTE: You may use Wald’s equation, which says that, if the Xi are inde-
pendent, identically distributed (iid) random variables, and the random variable T is a stopping time
for the Xi (i.e., the event T = t depends only on the values of X1, . . . , Xt, and not on future values Xi

for i > t), then E[
∑T

i=1 Xi] = E[T ]E[X1], assuming these expectations are both finite. We will prove
Wald’s equation later in the course.]

1Note that by “polynomial time” here we mean polynomial in log n, which is the number of bits in the representation of n. In
practice n may be as large as 2512 for 512-bit security, so being polynomial in n is not very useful!


