
1. (16pts) Consider a sequence of n independent coin tosses where Pr[Heads] = 1/4 and Pr[Tails] =
3/4. Let X be the number of heads.

(a) What is the probability of getting X = k.
Solution:

Pr[X = k] =

(
n

k

)(
1

4

)k (3

4

)n−k
.

(b) Apply Markov’s bound to Pr[X ≥ n/2].
Solution:

Pr[X ≥ n/2] ≤ E[X]

n/2
=
n/4

n/2
= 1/2.

(c) Apply Chebyshev’s bound to Pr[X ≥ n/2].
Solution:

Pr[X ≥ n/2] ≤ Pr[|X − E[X]| ≥ n/4] ≤ Var[X]

(n/4)2
=

3n/16

n2/16
= 3/n.

(d) Compute the moment generating function for X .
Solution: Let Xi be the i-th coin toss.

E[eX ] =

n∏
i=1

E[eXi ] =
(e+ 3)n

4n
.
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2. (15pts) Suppose you throw n/2 balls into n bins, where n is even. What is the probability that exactly
n/2 bins are empty?

(a) Compute this exactly.
Solution:
( n
n/2)(n/2)!

nn/2 =
(n)n/2

nn/2 .

(b) Use the Poisson approximation to give an upper bound on this value.
Solution: Let Yi ∼ Poisson(1/2) for the i-th bin.

Pr[exactly n/2 bins are empty] ≤ e
√
n/2 Pr[exactly n/2 of the Yi is 0 ]

= e
√
n/2

(
n

n/2

)
e−n/4(1− e−1/2)n/2.

Note that the event is monotone in the number of balls, hence one could get a marginally better
bound.

(c) Show that your bounds in part (a) is exponentially tighter than the bound in part (b) for large n.
Solution: Recall that n! < e

√
n
(
n
e

)n, now let us consider the ratio of the two bounds:(
n

n/2

)
(n/2)!

nn/2e
√
n/2

(
n

n/2

)
e−n/4(1− e−1/2)n/2

<
1

(2(
√
e− 1))

n/2
.

Since 2(
√
e− 1) > 1, this is an exponentially small number.
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3. (15pts) Consider the number of 3-cliques in a Gn,p random graph, denoted by X .

(a) What is the expected number of 3-cliques in a Gn,p random graph?
Solution: E[X] =

(
n
3

)
p3.

(b) Show that if p = f(n) = o(1/n) then for any ε > 0 there exists some n su�ciently large such
that the probability a clique will exist is less than ε.
Solution: By Markov’s inequality, Pr[X ≥ 1] ≤ E[X] =

(
n
3

)
p3 = on(1). Recall that for any

ε > 0, there exists n large enough such that on(1) < ε, which is exactly what we want to show.
(c) Show that p = f(n) = ω(1/n) then for any ε > 0 there exists some n su�ciently large such

that the probability a clique will not exist is less than ε.
Solution: Let Xi be the indicator of whether the i-th clique is present. Recall that

Pr[X > 0] ≥
(n3)∑
i=1

Pr[Xi = 1]

E[X | Xi = 1]
,

where

E[X | Xi = 1] =

(n3)∑
j=1

Pr[Xj = 1 | Xi = 1] = 1 +

(
n− 3

3

)
p3 + 3

(
n− 3

2

)
p3 + 3

(
n− 3

1

)
p2.

Thus we have,

Pr[X > 0] ≥
(
n
3

)
p3

1 +
(
n−3
3

)
p3 + 3

(
n−3
2

)
p3 + 3

(
n−3
1

)
p2

= 1− on(1),

where the last equality follows from the fact that
(
n
3

)
= (1 + on(1))

(
n−3
3

)
.

Alternative second moment method is as follows:

Pr[X = 0] ≤ Var[X]

(E[X])2
≤ 1

E[X]
+

∑
i 6=j(E[XiXj ]− E[Xi]E[Xj ])

E[X]2
,

where the covariance E[XiXj ] − E[Xi]E[Xj ] 6= 0 only if |Ci ∩ Cj | = 2. If |Ci ∩ Cj | = 2,
E[XiXj ]− E[Xi]E[Xj ] ≤ E[XiXj ] = p5, and there are 12

(
n
4

)
such pairs.

So overall we have Pr[X = 0] ≤ Θ(1/p3n3) + Θ(n
4p5

n6p6
) = on(1).
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4. (12pts) Consider a k-SAT formula with n literals and m clauses, where each literal is contained in at
most 3 consecutive clauses, i.e. the clauses are ordered 1 to m and a speci�c literal can only be in 3
in a row, such as clauses i, i+ 1, i+ 2. In this problem you will apply the Lovasz local lemma.

(a) De�ne the probability space and the set of bad events.
Solution: The probability space will be the uniform distribution over {T, F}n assignments. For
each clause of the form (l1 ∨ l2 ∨ · · · ∨ lk), we de�ne a bad event: “this clause is violated” (i.e.
l1 = l2 = · · · = lk = F ).

(b) Describe the dependency graph (construct the vertex set and edge set).
Solution: The vertex set will be the set of bad events, i.e. the clauses. If two clause share a
variable, then we add an edge to connect the two corresponding vertices. The maximum degree
will be min {4, 2k}, as a clause can only be connected to the previous two clauses, and the
following two clauses, and every literal can connect at most two other clauses.

(c) For what values of k must there exist a solution to the formula according to the Lovasz local
lemma?
Solution: We apply the symmetric Lovasz local lemma. The maximum degree of the dependency
graph is min {4, 2k}, the probability of a bad event is 2−k, so setting 4 min {4, 2k} /2k ≤ 1 we
get k ≥ 4.
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5. (12pts) Consider a fair lazy random walk on {0, · · · , n} with re�ecting boundaries, i.e. at every state
i except 0 and n, the next step is chosen from {i, i+ 1, i− 1} with equal probability; while at state 0
it is 1 or 0 (unchanged) and at state n it is n− 1 or n, both with equal probabilities.

(a) For n = 3, draw the graph of this Markov Chain, including the transition probabilities.
Solution: TBA.

(b) For n = 3, explicitly write out the transition matrix of this Markov Chain.

Solution: P =


1/2 1/2 0 0
1/3 1/3 1/3 0
0 1/3 1/3 1/3
0 0 1/2 1/2


(c) For arbitrary n compute the stationary distribution of this Markov Chain.

Solution: Note: the best way is to use the detailed balance equation, see Theorem 7.10.
Letπ =

(
2/(3n− 2) 3/(3n− 2) 3/(3n− 2) · · · 3/(3n− 2) 2/(3n− 2)

)
. In other words,

only the �rst and last entry is 2/(3n− 2), and every other entry is 3/(3n− 2). It is easy to verify
that πP = π.

(d) If the Markov chain starts at state 0, show that the probability of not returning to state 0 within
3
2n

2 steps is less than 1/n.
Solution: Note that the chain is ergodic. Let T be the random variable for the time to start from
0 and return to 0, then ET = 1/π(0) = (3n− 2)/2. Thus by Markov’s inequality,

Pr[T > 3n2/2] <
ET

3n2/2
< 1/n.
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6. (12pts) Consider a d-regular graphGwith n vertices (d-regular means that every vertex has degree d).
A dominating set S is a subset of the vertices such that every vertex in G is either in S or a neighbor
of a vertex in S.

(a) Show that |S| ≥ n
1+d .

Solution: Each vertex in S covers at most d+ 1 vertices, so in total S covers at most (d+ 1)|S|
vertices. Since S is a dominating set, it covers all the n vertices, thus (d+ 1)|S| ≥ n.

(b) Suppose d ≥ 4 lnn, and we choose a set S of vertices at random, where each vertex is chosen
with probability p = 2 lnn

d+1 . Show that the probability that S is a dominating set is at least 1−1/n.
(Hint: if x > 0, (1− 1/x)x < 1/e.)
Solution: For each vertex, there is a constraint that says “at least one of its neighbors or itself
has to be chosen”. Let NG[v] = {v} ∪NG(v) be the closed neighborhood of v, and Bv be such a
event that NG[v] ∩ S 6= ∅.

Pr

[⋂
v∈V

Bv

]
= 1− Pr

[⋃
v∈V

Bv

]
≥ 1−

∑
v∈V

Pr[Bv]

= 1− n(1− p)d+1

≥ 1− ne−2 lnn

≥ 1− 1/n.

(c) Construct an algorithm which improves on the approach in part (b) and produces a dominating
set with E[|S|] ≤ n1+ln(d+1)

d+1 . (Hint: sample and modify.)
Solution: Recall that for every vertex, there’s a constraint that says "at least one of its neighbors
or itself has to be chosen". We will �rst run part (b) with p = ln(d+1)

d+1 . Let Cv be the indicator
that NG[v] ∩ S 6= ∅, the expected number of violated constraints will be

E

[∑
v∈V

(1− Cv)

]
= n(1− p)d+1 ≤ n/(d+ 1).

At this pointE|S| = np = n ln(d+1)
d+1 , but it may not be a dominating set yet. Then in order to �x the

violations, for every violated constraint, we only need to add one vertex from the (d+ 1) vertices
to �x it. Since there are n/(d + 1) violated constraints in expectation, we are adding at most
n/(d+1) vertices to S in expectation. So overall we can �nd a set E|S| ≤ n(1+ln(d+1))/(d+1).
Note: the greedy algorithm can also achieve the same approximation ratio, and the analysis is
similar to that of the greedy algorithm for set cover (see CS170) but slightly more involved.
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7. (12pts) Suppose that S and T are stopping times for the sequence {Zn : n ≥ 0}. Which of the following
are necessarily stopping times for the sequence {Zn : n ≥ 0}? Justify your answers.

(a) S + T .
Solution: S + T is a stopping time. Indeed,

1S+T=n =

n∑
i=1

1S=i1T=n−1 =

n∑
i=0

fi(Z0, . . . , Zi)gn−1(Z0, . . . , Zn−1),

which is a function of Z1, . . . , Zn.

(b) max(S, T )−min(S, T ).
Solution: max(S, T )−min(S, T ) = |S − T | is not a stopping time. Here’s a counterexample.
Suppose that Z0, Z1, . . . is a simple random walk on the integers (that is, Zn =

∑n
i=1Xi where

Xi = 1,−1 with probability 1
2 .) Let S be the k such that Zk = 1. Let T = 1 be constant. In

the sequence Z0 = 0, Z1 = 1, we have S − T = 0. In the sequence Z0 = 0, Z1 = −1, we
have |S − T | 6= 0. Since the term Z0 is the same for these two sequences, this shows that the
random variable 1|S−T |=n is not determined by Z0, . . . , Zn.

(c) S2.
Solution: S2 is a stopping time. Note that

1S2=n = 1S=
√
n

which is a function of Z0, . . . , Zn.
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