
CS–172 Computability & Complexity, Spring 2021

Homework 9 Solutions

Note: These solutions are not necessarily model answers. Rather, they are designed to be tutorial in nature,
and sometimes contain more explanation than is required for full points. Also, bear in mind that there may
be more than one correct solution. The maximum total number of points available is 34.

1. (a) Assuming such a function f exists, we will show that the languageL = {(x, y) : f−1(x) < y} given in 8pts
the hint is in NP but not in P. First note that L is in NP, because given (x, y) a nondeterministic TM can
simply guess an n-bit integer z (where n is the number of bits in x) and check that f(z) = x and z < y.
Since f is computable in polynomial time, both the guessing and the checking take polynomial time.
[Equivalently we can express L as L = {(x, y) : ∃zW ((x, y), z)}, where the certificate W ((x, y), z)
is true iff z is an integer with the same number of bits as x, y, and also f(z) = x and z < y. ClearlyW
can be tested in polynomial time, so L is in NP.]
To see that L is not in P, we show that if it were then we could compute f−1 in polynomial time, a
contradiction to the given properties of f . Given an n-bit integer x, we can compute f−1(x) by binary
search over n-bit integers y using queries of the form (x, y) ∈ L. The number of queries required is at
most n, and each query takes polynomial time assuming L ∈ P. Hence we have our contradiction, so
L /∈ P.

Some students did not use binary search to compute f−1; this leads to an exponential running time
because there are exponentially many n-bit integers to try. Another common mistake was to make
unjustified assumptions about the behavior of the TM that computes L. Finally, some students who
used the “certificate” approach above were not able to phrase their argument precisely: please review
the above version (and also the analogous one in part (b) below.

(b) We show in addition that L ∈ co-NP, which together with part (a) implies that NP ∩ co-NP 6= P. 4pts
Showing that L ∈ co-NP is equivalent to showing that L ∈ NP. Now we may write L = {(x, y) :
f−1(x) ≥ y} ∪ Ljunk, where Ljunk denotes all strings that are not of the form (x, y). But the first
of these languages is in NP by the same argument as we used for L in part (a), and Ljunk is clearly
in P. Hence L is in NP. [Equivalently we can express L as L = {(x, y) : ∀zW ′((x, y), z)}, where
the certificate W ′((x, y), z) is true iff z is an integer with the same number of bits as x, y, and also
f(z) 6= x or z < y. Clearly W ′ can be tested in polynomial time, so we are in the same situation as in
part (a) but with ∃ replaced by ∀. We saw in class that this is an alternative characterization of co-NP,
so L ∈ co-NP.]

2. We first show that the problem is in PSPACE. Without loss of generality, assume that player 2 plays both the 4pts
first and the last puzzle cards. (If this is not the case, add additional dummy cards with all holes punched.)
Let the players’ stacks be 〈c11, c12, . . . , c1k〉 and 〈c21, c22, . . . , c2k+1〉. Let H be the set of all currently open hole
positions.

The following algorithm decides whether player j has a winning strategy, where j = 1 or 2.
M= “On input H , 〈c11, c12, . . . , c1k1

〉 and 〈c21, c22, . . . , c2k2
〉 (where k2 = k1 or k1 + 1) and player j:

1. If the stacks of cards 〈c11, c12, . . . , c1k1
〉 and 〈c21, c22, . . . , c2k2

〉 are both empty, then accept if H is empty
and j = 1, or if H is non-empty and j = 2. Reject otherwise.

1

2. Let Hj
i be the set of holes in H not covered when cj1 is placed in its ith orientation for i = 1, 2. Call

M with Hj
i , the remaining cards, and the other player. If either of the calls rejects, then for that move,

the other player does not have a winning strategy, so player j has a winning strategy, and hence accept.
Otherwise, reject.

To decide whether player 2 has a winning strategy, we callM withH , 〈c11, c12, . . . , c1k〉 and 〈c21, c22, . . . , c2k+1〉,
and player 2. Since this algorithm basically searches the game tree, it decides the puzzle game. Also, note
that the number of levels of recursion is 2k + 1, and at each level we only need to store some subset of H
and the orientation of one card. Thus the algorithm above is a PSPACE algorithm.

To show that the game is PSPACE-hard, we show that FORMULA-GAME is polynomial time reducible to 8pts
PUZZLE. Let φ be an instance of FORMULA-GAME. We assume that the quantifiers in φ begin with a ∃,
end in a ∀, and that they strictly alternate between ∃ and ∀. (If this is not originally the case, we can modify
the instance by adding extra quantifiers that bind fresh new “dummy” variables). Thus φ is of the form:

φ = ∃x1∀x2∃x3 . . .∀x2k[ψ]

We assume also that ψ is in CNF.

Box Card c’ Card for x

One way Other way

(Assume clauses 1 and 2 contain x and clause 4 contains x)1

1

1

Figure 1: Reduction to PUZZLE. The leftmost picture shows the shape of the box (slightly different from
Sipser, but achieves the same effect that each card fits in one of two ways); the second picture shows card c′;
the third and fourth show the two sides of the card cx1 for variable x1, assuming that x1 occurs in the first
two clauses and x1 occurs in the fourth clause.

Now create a card for each quantifier/variable, and for each clause in the formula ψ create a pair of hole
positions, one in each of the two columns. We punch holes in the left column of the card in every position
which corresponds to a clause that does not contain that card’s variable, and in the right column for every
clause which does not contain the complement of that card’s variable (see figure). The first player gets all
the odd numbered cards (in the order cx1 , cx3 , . . .) and the second player gets all the even numbered cards
cx2 , cx4 , . . . , cx2k

. In addition, player 2’s first card is a special card c′ which has all the holes in the left
column punched out, and the holes in the right column not punched out. It is easy to see that this reduction
can be done in polynomial time.

Now we need to show that the reduction is correct. Because of symmetry, there is no loss of generality in
assuming that in her first move, player 2 puts the card c′ face up. Thus all the right column holes are covered.
Now player 1 puts card cx1 in one of its two possible configurations. The two configurations correspond
to player E’s two possible choices in the formula game: putting cx1 face up corresponds to setting x1 to
TRUE, and putting it face down corresponds to setting x1 to FALSE. Note that for any clause that contains
x1 (and is thus satisfied by setting x1 to TRUE), the left column hole corresponding to it is blocked when
card cx1 is put face up. Similarly any clause containing x1 has its left hole covered if cx1 is put face down.

2

It is thus clear that a player’s placing a card cxi in one of its two configurations corresponds exactly to her
selecting the value of variable xi. After all the cards have been placed, the players have effectively chosen
an assignment to variables x1, x2, . . . x2k. A hole in the left column is blocked only if the corresponding
clause is satisfied by this assignment. Now player 1 wins if all the holes are blocked, i.e., if all the clauses
are satisfied by the corresponding assignment, i.e., if the assignment satisfies ψ. Thus player 1 has a winning
strategy if and only if player E has a winning strategy for φ.

When showing membership in PSPACE, some students gave the correct recursion above, but didn’t specify
when to accept or reject. Points were deducted for this. For hardness, there were a number of incorrect
reductions; if this applied to you, please review the comments on your submission and the correct reduction
above.

3. (a) To show that IPATM is PSPACE-complete, we need to show that it is in PSPACE and is PSPACE-hard. 7pts
We construct a machine to decide IPATM as follows: on input 〈M,w〉 it places a marker at the (|w| +
2)th tape square and proceeds to simulate M on w. It also keeps a counter of the number of steps
simulated so far. If M ever rejects or strays past the marker, it rejects. Otherwise, if M accepts, it
accepts. Finally, since there are only 2O(|w|) distinct configurations that M could be in while staying
in the first |w| + 1 tape squares, if M has neither accepted not rejected after that many steps, then the
IPATM machine rejects, since by the pigeonhole principleM must have reached the same configuration
twice and hence will loop forever.
The above machine requires O(|w|) space to simulate M , and an additional log 2O(|w|) = O(|w|)
space to keep the step counter; hence it is in PSPACE.

Some students forgot the step counter, and/or didn’t specify or justify what the TM should do if looping
is detected.

To show that IPATM is PSPACE-hard, we provide a method for reducing an arbitrary PSPACE problem
to it. Let L ∈ PSPACE. Then there is a machine M that decides L and is cnk space-bounded for some
fixed c and k. The reduction from L to IPATM takes an input w for L of length n, and constructs a
“padded” string w′ of total length cnk, consisting of w followed by cnk − n special characters (say
‘#’). The output from the reduction consists of the pair 〈M ′, w′〉, where M ′ is the TM M modified
slightly so that it treats ‘#’ characters as blanks. (We cannot use actual blank characters since they
are not allowed to be part of the input.) This reduction takes polynomial time, since outputting cnk −
n “blanks” is clearly polynomial, and outputting the description of M ′ takes constant time as it is
independent of the input w. (Note that we regard M as fixed in this reduction.)
IfM accepts w, then it does so using at most cnk tape squares; by our construction, this is is the length
of the new input, and so 〈M ′, w′〉 ∈ IPATM. Conversely, if 〈M ′, w′〉 ∈ IPATM then certainly M must
accept w.
Therefore this reduction is correct. Since any PSPACE problem can be reduced to IPATM, it is
PSPACE-hard and hence PSPACE-complete.
[Note: this is in some sense an existential proof: for any given PSPACE machine and input, there is
some space bound cnk; you may not happen to know what it is. For a more concrete proof, you can
reduce directly from a PSPACE-complete problem that you know, such as TQBF. In that case you can
output a description of a specific machine that decides TQBF, such as the one on Sipser p. 340, and
from that compute the exact amount of padding you need – the size of a stack frame times the number
of variables in the input – and pad the input accordingly.]

3

(b) We are asked to show that the language 3pts

ALBA = {〈M,w〉 : the LBA M accepts w}

is PSPACE-complete. Again, this means we have to show that it is both in PSPACE and PSPACE-hard.
The fact that it is PSPACE-hard follows immediately from the same reduction as in part (a), since an
in-place TM is a special case of an LBA.
To show thatALBA is in PSPACE, we simply note that it is clearly in NSPACE(n) as a nondeterministic
TM can simply simulate the LBA directly in the same amount of space. [Note that we are assuming
here that there is some mechanism in the description of an LBA that explicitly prevents it from using
more than its allowed amount of space. If we simply coded an LBA in the same way as a general TM,
we would have to check that M is in fact an LBA, which is easily seen to be an undecidable problem!]
Now by Savitch’s theorem we conclude that ALBA ∈ SPACE(n2), and hence clearly in PSPACE.

Some students didn’t use Savitch’s Theorem to convert from nondeterministic to deterministic space;
those students seemed to overlook the fact that the LBA is nondeterministic.

4

