
CS–172 Computability & Complexity, Spring 2021

Homework 8 Solutions

Note: These solutions are not necessarily model answers. Rather, they are designed to be tutorial in nature,
and sometimes contain more explanation than is required for full points. Also, bear in mind that there may
be more than one correct solution. The maximum total number of points available is 36.

1. (a)(i) The graph is as follows: 2pts

3 x3 x3 c3

x2 x2 c2

x1 x1 c1

v0

v1

v2

v

(ii) We need to show that 6pts

φ is satisfiable ⇐⇒ G can be colored with k = (n + 1) colors. (∗)

Suppose first that φ is satisfiable. We demonstrate how to color the vertices of G with n + 1 colors,
which for convenience we refer to as 0, 1, 2, . . . , n. Consider a particular assignment of truth values to
the variables xi which satisfies φ. Then the following is a valid (n + 1)-coloring of G:

• Each vertex vi receives color i.
• For each variable xi which is true under the assignment, vertex xi receives color i and vertex xi

receives color 0.
• For each variable xi which is false under the assignment, vertex xi receives color 0 and vertex xi

receives color i.
• From each clause Ck, select a literal, say xi or ¬xi, which is true under the assignment; then

vertex Ck receives color i.

[You should check that the above is indeed a valid (n+1)-coloring, i.e., that no pair of adjacent vertices
receives the same color.] This deals with the forward implication in (∗).
For the reverse implication, suppose that G is (n + 1)-colorable. Consider any valid (n + 1)-coloring
of the vertices of G. The vertices v0, v1, . . . , vn form a clique, and so must acquire n + 1 distinct

1

colors; let these colors be referred to as 0, 1, . . . , n respectively. In each pair of vertices {xi, xi}, one
of the vertices must have color i and the other vertex color 0. [Why?] The coloring of G defines an
assignment of truth values to the variables of φ in the following way: for each variable xi, set xi to be
true if vertex xi has color i, and false if vertex xi has color 0. We complete the analysis by showing
that this truth assignment makes each clause of φ true (and hence φ itself true). Consider any vertex Ck

in G. Since vertex Ck is adjacent to vertex v0, it must receive a color, i, other than 0. Thus, by the
construction of the edge set of G, the clause Ck must contain a literal, either xi or ¬xi, which is true
under the proposed assignment.
Note that (∗) asserts that the function that maps the formula φ to the pair (G, n+1) is a reduction from
SAT to COLORABILITY. It is easy to see that the reduction can be computed in polynomial time, since
the number of vertices in the graph is equal to 3n + 1 + r, which is linear in the size of the formula φ,
and the graph can be simply written down in simple fashion from the structure of φ.

(iii) From part (ii) we see that COLORABILITY is NP-hard. We can also easily see that COLORABILITY 2pts
belongs to NP: given a graph G and an integer k, we simply non-deterministically guess a possible
assignment of k colors to the vertices of G, and then check (in linear time) that no two adjacent
vertices have received the same color. Hence COLORABILITY is NP-complete.

Some students seemed to think that the reduction from the NP-complete problem SAT already implies
that COLORABILITY is itself NP-complete. In fact this only shows that COLORABILITY is NP-hard.
To prove NP-completeness, you also have to show that COLORABILITY belongs to NP. This is easy,
but it has to be done.

(b) It should be clear that TIMETABLE is in NP: guess a possible assignment of papers to slots and check 10pts
it. We therefore just need to show that TIMETABLE is NP-hard. Since COLORABILITY is NP-hard by
part (a), it suffices to reduce COLORABILITY to TIMETABLE.
Let G = (V,E) be an undirected graph, and k a positive integer. Taken together, G and k form an
instance of COLORABILITY. We construct an instance of TIMETABLE as follows. Let e1, . . . , em be
the edge set of G. Then define

P = V ;
C = {c1, . . . , cm};
S = {1, 2, . . . , k};
Pi = ei, for 1 ≤ i ≤ m;

where edges are regarded as unordered pairs of vertices. Thus each candidate sits precisely two papers.
(It is in this respect that we are using a very restricted special case of the target problem.)
We claim that the function that maps (G, k) to (P,C, S, {Pi}) is a reduction from COLORABILITY

to TIMETABLE. To see this, suppose first that there is a way to color G with k colors. Then we
can schedule the papers by placing in timetable slot i all papers whose vertices receive color i in the
coloring. Since no two adjacent vertices receive the same color, no candidate will have a clash of
papers. Conversely, suppose that there is a way to schedule the papers with no clashes. Then we can
color G with k colors by assigning color i to all vertices whose corresponding paper is scheduled in
slot i. Now the fact that no candidate has a clash of papers ensures that no two adjacent vertices receive
the same color. Thus we have shown that G is colorable with k colors if and only if the corresponding
timetable instance can be scheduled, so we do indeed have a reduction. Finally, it is clear that the
reduction is polynomial time since the size of the timetable instance is linear in the size of the graph
and it can be generated from the graph in simple fashion.

2

As in Q1(a)(iii) above, some students failed to show that TIMETABLE is in NP.

2. Suppose P = NP and L is any NP-language other than ∅ or Σ∗. Thus there are strings w1 and w2 such that 6pts
w1 ∈ L and w2 /∈ L. We show that L is NP-complete. To see this, let L′ be any other NP-language. Since
P = NP, we know that L′ can be decided in polynomial time. On input w to L′, our reduction f works as
follows: Decide in polynomial time if w ∈ L. If yes, set f(w) = w1; otherwise set f(w) = w2. This is
clearly a valid reduction, and runs in polynomial time.

Another way to say the same thing is to show that every non-trivial L ∈ P, is P-complete – i.e., every other
language L′ ∈ P is such that L′ ≤P L. The proof is exactly the same as above – namely, as L is non-trivial,
there exist w1 ∈ L,w2 6∈ L, and the reduction simply takes the input x, decides in polytime whether x ∈ L′

(can be done as L′ ∈ P), and if so sets f(x) = w1 else sets f(x) = w2. From this fact, and that P = NP
we can deduce that every language in NP (which is then the same as P) is NP-complete.

Note that we required that L 6= ∅ and L 6= Σ∗ since we need the existence of at least one string in L and
another string not in L. If, for example, L = ∅, then we would have no possible value f(w) for strings
w ∈ L′. Similarly, if L = Σ∗ then we would have no possible value f(w) for strings w /∈ L′.

3. (a) Let (G, k) be an arbitrary instance of VERTEXCOVER. We will construct a set of linear inequalities that 8pts
has a solution in the integers if and only if G contains a vertex cover of size k. Since VERTEXCOVER

is NP-complete (as we saw in class), this will imply that INTEGER PROGRAMMING is NP-hard.
For each vertex i of G, we introduce a variable xi. We also introduce the inequalities xi ≤ 1 and
−xi ≤ 0 for each i. We shall call these the 0-1 inequalities for xi. (Note that these two constraints
force all the variables xi to take on either the value 0 or the value 1; informally, our interpretation is
that xi = 1 corresponds to vertex i belonging to our vertex cover, and xi = 0 corresponds to i not
belonging to it.) Next we introduce inequalities that ensure that at least one endpoint of every edge
belongs to the vertex cover: thus, for each edge (i, j) of G, we introduce the inequality−xi−xj ≤ −1,
which forces at least one of xi and xj to be 1 (since the above is equivalent to requiring xi + xj ≥ 1).
Finally, we express the fact that the vertex cover contains (at most) k vertices by including the linear
inequality x1 + x2 + · · ·+ xn ≤ k, where n is the number of vertices in G.
To check that the above is indeed a reduction, suppose first that G contains a vertex cover U of size k.
Then the following is a solution to the above set of inequalities: xi = 1 for i ∈ U , and xi = 0
for i /∈ U . This is easily seen: the 0-1 inequalities are satisfied as all xi are either 0 or 1; the edge
inequalities are satisfied because U is a vertex cover, so contains at least one endpoint of every edge;
and the last inequality is satisfied because U contains k vertices. Conversely, suppose that the above
inequalities have an integer solution. Because of the 0-1 inequalities, this solution must have xi = 0 or
xi = 1 for each i. Then we claim that the set U = {i : xi = 1} is a vertex cover of size at most k in G.
This is because the edge inequalities ensure that U is indeed a vertex cover, and the final inequality
ensures that U has size at most k.
Thus we have a valid reduction. Clearly the reduction can be implemented in polynomial time, given
G and k: we just need to write out a pair of inequalities for each vertex of G, one inequality for each
edge, and one final inequality.

Some students omitted the parameter k in VERTEXCOVER, which means they also omitted the corre-
sponding constraint in INTEGER PROGRAMMING.

3

(b) To show that IP belongs to NP, we need to find a certificate for a set of inequalities that can be checked 2pts
in polynomial time. In particular, the size of the certificate must be only polynomial in the input
size. The obvious choice for a certificate for IP is a set of integer values of the variables that satisfies
the inequalities. However, for all we know, it could be that a given set of inequalities has an integer
solution, but that any such solution has extremely large values. Then we couldn’t use the solution as a
certificate.
However it turns out that, with some linear algebra, one can show that if the inequalities have a solution
then they must have a solution whose values are not too large: specifically, in which for every i,
|xi| ≤ M where M = n(am)2m+3(1 + b) where n is the number of variables, m the number of
constraints, and a and b are the largest (in absolute value) of the coefficients on the left and right
respectively. Thus, the total number of bits needed to represent the satisfying xi’s is n log2 M , which
is polynomial in n, m and log2 a, log2 b, and hence polynomial in the size of the input. For details,
you may look at: Hopcroft and Ullman pp. 337–338, or the book “Combinatorial Optimization” by
Papadimitriou and Steiglitz, from which the above fact is taken.

4

