
CS–172 Computability & Complexity, Spring 2021

Homework 6 Solutions

Note: These solutions are not necessarily model answers. Rather, they are designed to be tutorial in nature,
and sometimes contain more explanation than is required for full points. Also, bear in mind that there may
be more than one correct solution. The maximum total number of points available is 31.

1. (a) First, assume that L has a Turing enumerator E. We construct a multi-tape TM M for L as follows: 5pts
On input x, M runs a simulation of E, using one of its tapes to represent the output tape of E. As soon
as the special symbol # appears on this tape, it checks whether the string sandwiched between the last
two occurrences of # equals x. If this is the case, M accepts; otherwise, it continues its simulation of
E. Note that M will accept all strings in L and loop on all strings outside L.
Now suppose that we are given a TM M that recognizes L. To construct an enumerator E for L,
we want to run M on all possible inputs and output those that make M accept. However, we must
be careful because there may be inputs on which M never halts, and we do not want E to spend all
its time processing those inputs. One way to achieve this is the following: Let x0, x1, x2, . . . be the
sequence of all strings listed in lexicographic order. The machine E will run in infinitely many stages.
In stage t, E will simulate M on inputs x0, . . . , xt for t steps. For all inputs xi accepted by M within
this time bound, M outputs xi#. Now if a string xi is in L, then M accepts xi in t steps for some t,
so E will output xi by stage i + t at the latest. If xi is not in L, then no simulations on input xi will
ever accept, so E will never output xi.
[For the second implication above, some students simply simulated M on each input x0, x1, x2 . . .
without limiting the number of steps in the simulations. This procedure may get stuck on one simulation
that never halts, and is therefore not guaranteed to try all possible inputs. This is an important point—
please make sure you understand it!!!]

(b) If L has a Turing enumerator E that outputs strings in L in lexicographic order, the following machine 3pts
M will decide L: On input x, M runs a simulation of E until E produces either x or a string that is
lexicographically bigger than x. In the former case, M accepts; in the latter case, it rejects. Conversely,
given a machine M that decides L, we design a Turing enumerator E as follows: At stage t, E runs
M on input xt, where as above xt is the tth string in Σ∗ in lexicographic order, and outputs xt# on its
output tape only if M accepts xt. Clearly strings in L will be output in lexicographic order.

2. Let us first prove the simpler ⇐ direction. That is, given that L = {x : ∃y with (x, y) ∈ L′} for some 8pts
decidable L′, we must show that L is r.e. To do this, we simply build a recogniser M for L using the given
decider M ′ for L′. On input x, this recogniser runs through all possible y’s in lexicographic order, and for
each y it runs the decider M ′ to check if (x, y) is accepted by it: if so, it halts and accepts. (Note that the
decider always halts, so there is no danger of running forever on any y.) Now, if x ∈ L then there exists
some y such that (x, y) ∈ L′, and so our recogniser will eventually find this y and hence accept x. On the
other hand, if x /∈ L no such y exists, so the recogniser will in fact run forever.

To prove the ⇒ direction, we assume that L is r.e. and have to construct an L′ with the stated properties,
namely: (1) L′ is decidable; and (2) L′ contains at least one pair (x, y) for each x ∈ L, and no such pair
for any x /∈ L. The idea is to make y a witness or certificate of the fact that x ∈ L; the language L′ is
then simply pairs of x and valid certificates for x. There are many ways to design certificates; perhaps the

1



simplest is the following: let M be a recogniser for L (which we know exists since L is r.e.), and define y to
be a certificate for x ∈ L if y is (an encoding of) an accepting computation of M on x. I.e., we define L′ by:

L′ = {(x, y) : y encodes an accepting computation of M on x}.

Then clearly L′ has property (2) above. To check property (1), we must show that L′ is decidable. But
this is easy: we can build a decider for L′ that, on input (x, y), verifies that y is indeed an encoding of a
valid accepting computation of M on x (using information about the transition function of M , which is
hard-wired into the decider).

Another possible certificate is to make y encode (e.g., in binary, or in unary just by its length) the number
of steps in an accepting computation of M on x. Then the corresponding L′ can also be decided, simply by
simulating M on x for the number of steps specified by y.

[Most students who attempted this question did quite well on it. However, some students didn’t submit a
solution to it. Please work through the above solution carefully!]

3. (a) To see that Lint is r.e., we build a machine Mint that takes as input a pair 〈M1,M2〉 and proceeds 3pts
in rounds. In round i, Mint simulates both M1 and M2 on the first i input strings (in lexicographic
order) for i steps. If during some round both the machines end up accepting the same string, then Mint

accepts. To see that Mint is a recogniser for Lint, note that if 〈M1,M2〉 ∈ Lint then there is some
string x that both accept: suppose they accept x after t1, t2 steps respectively. Moreover, suppose that
x is the jth input string (in lexicographic order). Then our machine Mint will certainly terminate after
max j, t1, t2 rounds and accept (though it may accept sooner than that). Clearly Mint never accepts
pairs 〈M1,M2〉 /∈ Lint. Hence Mint is a recogniser for Lint and so Lint is r.e. as claimed.
[As in Q1(a), many students did the simulations of M1,M2 without bounding the number of steps. This
leads to the same problem as in the note following Q1(a) above. This is an important point that you
should be aware of!]

(b) To show Lint is undecidable we shall give a mapping reduction f from ATM as follows. The function 4pts
f on input 〈M,w〉 will return 〈M1,M2〉, an encoding of a pair of TMs M1 and M2 defined as follows.
M1 is a TM that first tests if its input is w, and if not immediately rejects; otherwise, it behaves like M
on w and accepts if M accepts. Note that the only string that M1 might accept is w; more precisely,
we have that

L(M1) =

{
{w} if M accepts w;
∅ otherwise.

The second TM, M2, is just a trivial machine that accepts all inputs. Clearly the function f is com-
putable: if we are given 〈M,w〉 we can easily construct 〈M1,M2〉. To see that this is a valid reduction,
we have to check that M accepts w if and only if L(M1) ∩ L(M2) 6= ∅. First, suppose M accepts w;
then L(M1) = {w}, so L(M1) ∩ L(M2) = {w} 6= ∅, as required. For the other direction, suppose
L(M1) ∩ L(M2) 6= ∅; this means that L(M1) 6= ∅ and hence that M accepts w. This completes the
verification of the reduction.
Since ATM is undecidable and ATM ≤m Lint, we can conclude that Lint is undecidable.

(c) To show that Lnint is not r.e., note that Lnint is essentially Lint. From parts (a) and (b), we know that 2pts
Lint is r.e., so Lint is not r.e. (else both Lint and Lint would be decidable).
There is the following familiar detail here: the above argument actually proves that Lint, the com-
plement of Lint, is not r.e. But Lnint is not exactly Lint; rather, Lint = Lnint ∪ Ljunk, where Ljunk

2



denotes all strings that are not valid encodings 〈M1,M2〉 of pairs of Turing machines. However, Ljunk

is clearly decidable, so if Lnint were r.e. then Lint would be r.e. also. Hence Lnint is not r.e.
[We did not deduct points for failing to mention Ljunk (but you should be aware of this detail).]

4. Here is one reason to be skeptical about the POC: it could be used to check if an arbitrary Java program P 6pts
halts when fed an arbitrary input x (as explained below). But the undecidability of the halting problem
implies that there can be no Turing machine (and hence, by the Church-Turing thesis, no program written in
any language) that decides whether an arbitrary program halts on an arbitrary input.

To see how we can use the POC to solve the halting problem, take the program P and input x that you want
to test and construct a new program Px that ignores its real input and simply proceeds to run P on input x.
Now if P loops forever on x, then Px is just a program that loops forever on all inputs, so the perfectly
optimized version of Px is just a single line looping back on itself. So to check if P halts on x, we just
submit Px to the POC and check if the output is the single looping line. If it is, we can conclude that P does
not halt on x, and otherwise we know that P does halt on x.

An alternative reason you might question the claims on the box is that the POC can be used to check if two
programs are “equivalent”, i.e., compute the same function or have the same behaviour. Given two programs
P1 and P2, if they are exactly the same then the POC will output the same perfectly optimized version for
both. So to check if two programs are equivalent, we can feed each of them to the POC and look to see
if the outputs are identical. But we know that the problem of checking whether two TMs accept the same
language is undecidable, and of course we could translate any TM program into a Java program, so testing
equivalence of two Java programs is also undecidable.

[Many students came up with some version of the following bogus argument: “The POC has to check
whether the original Java code and the minimized Java code have the same input/output behavior. But
checking equivalence is an undecidable problem, so the POC cannot exist.” The argument is bogus for two
reasons: first, it makes an unjustified assumption about how the POC works, as it could be that the inventors
of the POC have come up with a code optimization method that does not require an explicit equivalence
check; and second, even if the POC did check equivalence, then it would not be doing so for two arbitrary
Java programs, but rather for one arbitrary program and a second program (namely, the output from the
POC) that is related to it, so the worst-case undecidability of the equivalence problem does not apply here.]

3


