CS-172 Computability & Complexity, Spring 2021
Homework S Solutions

Note: These solutions are not necessarily model answers. Rather, they are designed to be tutorial in nature,
and sometimes contain more explanation than is required for full points. Also, bear in mind that there may
be more than one correct solution. The maximum total number of points available is 31.

. The following state diagram describes a TM that accepts this language. The TM has twelve states (plus
accept and reject states), the input alphabet 3 = {0, 1, #} and tape alphabet I" = {0, 1, #, z, s, d, _}, where
_denotes the blank symbol. The start state is 1. It follows some Sipser-induced state diagram conventions:

e Any transition not explicitly specified on the diagram is assumed to go to the reject state.

e Any transition of the form o : ¢/, L means “if the read head is over character o, write ¢’ to the tape
and move left”.

e Any transition of the form o1, 09, ... : L means “if the read head is over any of the characters o1, o2, ...
write that character back to the tape and move left”.

The basic idea behind the TM is to subtract 1 from the second number in the input, and then compare the
resulting numbers for equality. (Obviously other designs are possible, such as comparing the two numbers
directly without first doing the subtraction.)

0,1.R 0,1#x:R
O O OSSO
— -
#R L 0_L 0:x,R

X,#0:R

@Q Q@ Lot 4L ¢R

1sR 1L 1IxR L

0,1#x:R

O

States 1-4 make sure the input is well-formed. State 1 ensures that the most significant bit of the first number
is a 1, and replaces it with an s to indicate the beginning of the tape. State 2 verifies that there is one hash
mark. State 3 ensures that the first digit of the second number is a 1. State 4 moves the head to the end of
the tape, implicitly verifying that there aren’t any additional hash marks.

State 5 performs the subtraction, flipping all the least significant bits of the second number up to the first 1,
which is then flipped to 0. So 1010 becomes 1001, and 10000 becomes 01111 (this special case is handled
in state 12 below).

The rest of the machine simply compares the resulting numbers by zig-zagging back and forth, starting with

the least significant bits. States 6 and 7 move the head left, finding the least significant bit of the first number
that hasn’t yet been crossed off. If that bit is a 0, we travel to states 8 and 9, which cross it off, find the LSB

Spts

2.

of the second number, make sure it is a 0 as well, and erase it before returing to state 6. If the bitis a 1, we
go to states 10 and 11, which do the equivalent thing for 1.

This process is repeated until either (a) the digits don’t match at some point, in which case the TM (im-
plicitly) rejects; or (b) we reach the most significant bit of the first number, denoted by s. In this case, we
replace it with a d, verify that it matches the final bit of the second number and, upon going back to the d
again, we proceed to state 12, which travels along the entire input from left to right one last time, making
sure that there aren’t any stray 1s left over. It allows for extra Os to account for the 10 — 01" case, but note
that this is the only case in which a stray 0 could occur without any stray 1s occuring as well.

If we find nothing out of the ordinary (that is, a bunch of xs, a #, and perhaps a 0 left over), we accept.

[For full credit on this problem, you need to provide a clear description of your machine, and give evidence
that you have tested it on the sample inputs. Turing machine diagrams with no description of how the
machine operates received no credit. (This is analogous to submitting undocumented code in a programming
class.) The most common omission was forgetting to check that the input is well-formed.)

(a) We claim that a TM with arbitrary jumps is equivalent to the standard TM. It is immediate that the

TM with arbitrary jumps is at least as powerful as the standard model. We only need to show how
a TM with arbitrary jumps can be simulated by a standard TM. The basic idea is the following. A
jump of size k can be simulated on a standard TM by going through a sequence of k£ simple moves
(where we use (k — 1) new states to implement such a jump). Since the TM to be simulated contains
only a finite number of jump sizes, we need only add a fixed number of new states to our control.
More formally, the new TM replaces each transition of the form d(q,a) = (¢, b, (D, k)) by adding
k — 1 new states ¢f ...qj_, and adding transitions d(q,a) = (qf,b,D),d(qf,?) = (¢},,7, D) and
5(q¢_4,7?) = (¢, 7, D). This completes the proof that the two models are equivalent.
[Some students used a standard TM to simulate a jump of size k by self-looping on a single state k — 1
times. This is not valid since the state itself cannot memorize how many times it has self-looped. Some
students only stated that intermediate states are added but they did not specify the transitions of these
intermediate states.]

(b) We claim that a TM with left reset is equivalent to a standard TM. To simulate a given TM M with left

reset, we first shift the entire input one square to the right, place a special new symbol, say $, at the left
end of the tape, and position the head on the first symbol of the input. This concludes the preprocessing
phase, and we now proceed to simulate M. Right moves are simulated directly. A left reset move is
simulated by going into an intermediate state, which moves the head left until it hits the $ sign, and
then moving to the appropriate state of M. More formally, for each left reset move §(q,a) = (¢, b, L)
in the transition function of M, we introduce the transitions (¢, a) = (¢',b, L), 6(¢',?) = (¢',?, L)
and 6(¢',$) = (¢, $, R).
The other direction is slightly more involved. Let M be a standard TM that we wish to simulate by a
TM with left reset. A first thought would be to simulate a left move of M by marking the current cell,
resetting, and then moving right until we reach the marked cell. However, at the end of this sequence
we would be at the original cell, not the one to the left as desired!

One solution, then, is to copy the entire contents of the tape on every left move. We assume that
the simulating TM keeps track of the non-blank portion of M’s tape, and that this portion is always
bounded on the left by a marker $ and on the right by a marker &. We call this part of the simulating
tape the valid part. The valid part is the rightmost non-blank portion of the tape. To the left of the
valid part there may be other (invalid) symbols; we can always tell whether a symbol is valid or invalid
because the invalid symbols have been “crossed.” To simulate a left move, we first mark the cell we

Spts

Spts

(©)

(a)

are at and then reset to the left. We then search right until we find the first valid symbol (which must
in fact be $), cross it, and copy it to the position immediately to the right of the &. We proceed in the
same fashion with all the valid symbols, copying each one to the right-hand end of the tape using a
left-reset followed by a right search. As we do this, we check to see if the right neighbor of the cell
currently being copied is marked; if so, we know that the current cell should be the new head position,
so when we copy it we mark it. This copying process continues until we encounter the right marker &,
which we change to a $ (it becomes the new left marker) and copy to the right-hand end. Finally, we
reset once more and move the head right until we encounter the marked square, which is the new head
position. This completes the simulation of one left move! Right moves are simulated directly, with the
minor detail that we may have to move the right end marker & one space to the right.

[When simulating a standard TM by a left-reset TM, some students used left-reset then scrolled right
directly; this leads to the original tape cell instead of the one to the left. Some students did not properly
Jjustify how to simulate a left-reset TM with a standard TM.]

We show that this restricted one-way TM is less powerful than the standard TM. We will do this by
showing that a one-way TM can be simulated by a DFA. The first step is to show that a one-way TM
as defined in the question can be simulated by a right-only TM, that moves right on every transition.
To see this, consider the one-way TM’s behavior at a given cell of the tape. Suppose that on state gg
and tape symbol ag, it writes aj, transitions to state ¢;, and does not move the head. Consider the
sequence of configurations ugpagv,uqiaiv,.... The head either (i) eventually moves right after k
steps (for some k) and enters configuration uayqrv; or (ii) loops at this cell forever (after making at
most |Q| x |X] transitions, as this is the maximum possible number of state-symbol pairs, after which
time looping must occur); or (iii) eventually goes into a halting state at this cell. In case (i), we can just
simulate this entire sequence of transitions with a single right move by setting §(qo, @) = (qx, ax, R).
In case (ii) we can go directly to the reject state. And in case (iii) we can just go directly to the
appropriate halting state. Moreover, this case analysis can be hard-wired into the transition function of
the right-only TM.

Now note that a right-only TM can never read any symbol it writes itself, and hence its tape is effec-
tively read-only. Thus it can be simulated by a DFA. Since we know that DFAs are less powerful than
TMs, we can conclude that one-way TMs cannot simulate standard TMs.

[1t’s not enough to just say that a one-way TM is “clearly less powerful” than a standard TM for the
simple reason that it cannot move its head left on its tape. This is just not enough of a reason. (For
example, other restrictions to the standard model, such as limiting the number of states or the tape
alphabet, do not result in a less powerful model.) To show that the one-way TM is less powerful, you
actually have to give an example of a language it cannot recognize (but the standard model can). The
easiest way to do this is to show that it’s actually equivalent in power to a DFA. Finally, some students
simply claimed that the one-way TM can be simulated by a DFA (or a PDA) without showing how the
transitions of the TM can actually be simulated by a DFA (or PDA).]

No. Such a RAM, together with its program, is actually a finite automaton. To see this, note that the
set of possible configurations of the RAM is finite. (Recall that a configuration of a RAM consists of
its state — i.e., the contents of all the registers — and its program counter.) Specifically, if m is the
number of instructions in the program, and n is the number of registers, then the number of distinct
configurations is m(2N + 1), since there are m possible values for the program counter and 2N + 1
values for each of the n registers. We can think of these configurations as the states of the FA; in each
configuration, a transition to another configuration is made according to the action of the program
instruction pointed to by the program counter. (If the instruction is not a read instruction, this will

Spts

4pts

(b)

actually be an e-transition.) Hence such a RAM is in fact only a FA, so can only accept a regular
language. [NOTE: It is not enough here to simply say that the technique we used in class to simulate
a TM on a RAM no longer works: this only shows that a particular method can’t be used. The above
argument rules out any possible simulation.]

[Quite a lot of students argued that the limited RAM can’t accept certain recognizable languages
because it doesn’t have enough space to store the whole of its input in memory. But this argument
isn’t valid because the RAM model treats its input as a stream, and there is no requirement that it all
be stored in memory at the same time. Make sure you read the definition of the RAM model! Another
common mistake in this problem was essentially the same as in 2(c) above: it is not enough to just say
that the RAM with finitely many registers is “obviously” less powerful than the RAM with infinitely
many.]

No. The argument is essentially the same as in part (a). The key additional observation is that, if the
registers are bounded, then it is only possible to access a finite number of them, so really this RAM
model is the same as that in part (a). To justify this claim, as in part (a) let m be the number of
instructions in the RAM’s program. Then the RAM can write to at most m different registers by direct
addressing (one for each program instruction), and at most 2N + 1 registers by indirect addressing
(because of the bound on the size of registers). Hence the total number of registers that can ever
contain a non-zero value is at most m + 2N — 1. This means that the RAM is again a FA, with at most
m(2N + 1)™+2N+1 gtates. [Note the contrast between restricting the number of registers (even when
there are only two, the model can still simulate any TM) and restricting their size (which allows us to
only accept regular languages).]

[Quite a few people incorrectly answered ‘yes’ to this part. The most common misconception was to
forget the fact that, whenever a RAM wants to use a register, the index of that register must first be
explicitly written down somewhere (either in a program instruction, or as the result of an arithmetic
operation which must then be written to a register).]

4pts

