
CS–172 Computability & Complexity, Spring 2021

Homework 3 Solutions

Note: These solutions are not necessarily model answers. Rather, they are designed to be tutorial in nature,
and sometimes contain more explanation than is required for full points. Also, bear in mind that there may
be more than one correct solution. The maximum total number of points available is 32.

1. (a) An NFA for Lk is as shown. At each step, if it sees a 0 it “guesses” if this is in fact the kth last symbol 2pts
by going into state q1; from there, it verifies its guess by moving in exactly k − 1 more steps to the
final state. This NFA has k + 1 states.

0

0,1

0,1q0 q1 q2 qk
0,1 0,1

(b) We construct a DFA such that each of the states represents one of the 2k possible length-k suffixes. 2pts
Exactly half of these states, those representing suffixes that start with 0, are accepting states. (If a
string ends up in one of the other states, the string must have had a 1 in the kth position from the end,
and therefore must be rejected.) We transition from state to state by simply lopping off the first digit
of the suffix and appending the next character to be read. (For instance, if k = 4 then one transition is
(s1001, 0) → s0010.)

Q = {sz : z ∈ {0, 1}k}
Σ = {0, 1}
δ = {(saw, b) → swb : a, b ∈ {0, 1}, w ∈ {0, 1}k−1}

q0 = s1k

F = {sz : z starts with 0}

Note the choice of initial state q0 = s1k . This is in line with the fact that no zero has been seen when
the computation begins.

(c) It suffices to identify a set of 2k distinguishable strings w.r.t. Lk. The set we choose will be the set 3pts
of all length-k strings over {0, 1}, which obviously has the right cardinality. To see that these are all
pairwise distinguishable, consider any two length-k strings x, y with x 6= y. Since x 6= y, they differ
in at least one position: so suppose without loss of generality that xi = 0, yi = 1. Let w = 1i−1. Then
xw ∈ Lk and yw 6∈ Lk. (This is because in xw the kth letter from the end is xi, and similarly for yw.)
Thus x and y are distinguishable and we are done.

2. (a) Three distinguishable strings are ε, 1 and 11. (Other choices are possible, but this is the simplest and 2pts
most natural.) To see that they are distinguishable, note that only 1 is in L, so it is distinguishable from
both of the others (by taking z = ε). And ε is distinguishable from 11 via the distinguishing string
z = 1 (because ε1 = 1 ∈ L while 111 /∈ L).

1

(b) Following the proof of the Myhill-Nerode theorem, and assuming for the moment that the maximal 2pts
size of a set of distinguishable strings in L is 3, we construct a DFA with three states, one for each
of the above equivalence classes in the relation ∼L. The transitions between equivalence classes are
determined by the transitions between their representative elements, namely ε, 1 and 11. This gives us
the machine below. We can immediately see that this machine does indeed recognize the language L,
and hence must indeed be the minimal DFA for L (since any DFA for L must have at least three states).

1

00 0,1

1[ε] [1] [11]

3. (a) Not regular. To prove this, it suffices to find an infinite set of pairwise distinguishable strings w.r.t. this 2pts
language L. We claim that the set S = {(i: i ≥ 1} is such a set. To see that any two strings, x = (i

and y = (j for i 6= j, are distinguishable, we can use the distinguishing string z =)i, for then xz ∈ L
while yz /∈ L.

(b) Not regular. Again it suffices to find an infinite set of distinguishable strings. We can take S = {0i : 2pts
i ≥ 1}. To see that strings x = 0i and y = 0j (with i 6= j) are distinguishable, we can use the
distinguishing string z = 1i, for then xz /∈ L and yz ∈ L.

(c) Regular. The key observation here is that successive occurrences of abb and of bba in any string over 3pts
{a, b} must alternate along the string. To see this, we can show that in any string w, between any two
occurrences of abb there is an occurrence of bba and vice versa. Consider an arbitrary substring of w
delimited by two occurrences of abb. This string has the form abbuabb, where u is a possibly empty
string. If u contains no a symbols, then the string bbua ends in bba. Otherwise, suppose that the first a
in u occurs at position i; then the string bbu1 . . . ui ends in bba. For the other direction, again consider
an arbitrary substring of w delimited by two occurrences of bba. Then the reversal wR of w has the
form abbuabb for some string u. By the above argument, wR must contain bba as a substring, so w
itself contains an occurrence of abb.
For a string w, let D(w) denote the difference between the number of occurrences of abb and of bba
in w. By the above argument, for any w, |D(w)| ≤ 1. At this point it is not too difficult to see what a
DFA for our language should look like. The states should keep track of the last two symbols seen, as
well as the sign of the quantity D(w) (indicated by the superscripts in the figure below). The accepting
states are those whose superscript is neither + nor −.

q0

a

a b

aa0 ab0 ba0

bb+

bb0 aa—

ab— ba—

a

a b

b

a

a

b

b a
b

b

b

a

a a

a

b

b

abb

2

[Note: Many students gave complicated or messy constructions that were not easy to understand or
check, and did not provide a clear explanation for their construction. We graded this part leniently:
if you got full points, this does not necessarily mean that your construction is completely correct! In
future, always give a high-level description of your constructions even if it is not explicitly asked
for.]

(d) Not regular. Again, we need to find an infinite set of distinguishable strings w.r.t. this language. We 2pts
take the set S = {ai : i ≥ 3}. Then to distinguish strings x = ai and y = aj , with i 6= j, we can take
the string z = bi, since xz has i − 2 occurrences of both aaa and bbb, so is in L, while yz has j − 2
occurrences of aaa and i− 2 occurrences of bbb, so is not in L.

4. To show that PRIMES is not regular, as usual it suffices to find an infinite set of pairwise distinguishable 4pts
strings w.r.t. PRIMES. This is a little trickier than our other examples. Following the hint, we will actually
take the set PRIMES itself, and show that the strings 1p, 1q, for any pair of distinct primes p > q, are
distinguishable. Since there are infinitely many primes, we can immediately deduce that PRIMES is not
regular.

To prove that 1p, 1q are distinguishable, we use a proof by contradiction. Suppose not. Then it must be the
case that, for every ` ≥ 0, the strings 1p1` and 1q1` are either both in PRIMES or both not in PRIMES. I.e.,
the integers p + ` and q + ` are either both prime or both composite. We apply this fact for the sequence of
values ` = k(p− q), where 1 ≤ k ≤ p.

In the case k = 1, we get that 2p − q and p are both prime or both composite; since p is prime, this means
that 2p− q is also prime.

In the case k = 2, we get that 3p − 2q and 2p − q are both prime or both composite, which together with
the previous paragraph implies that 3p− 2q is prime.

Proceeding in this way, we deduce that all the numbers p + k(p − q) are prime, and hence in particular,
setting k = p, we get that p + p(p − q) = p(1 + p − q) is prime, which is clearly a contradiction. Hence
1p, 1q are distinguishable, as claimed.

5. [Note: In parts (a), (c), (d) of this problem, you must give a concrete counterexample, for explicit languages
L,L′ etc. It is not enough to talk about abstract languages here.]

(a) False. E.g., L′ = {11} is regular over Σ = {1} but L = {1p : p is a prime} is not. 2pts
Many other counterexamples are possible. Note that it is not a valid counterexample to exhibit a
regular language which contains a non-regular language!

(b) For any such L (in fact, it doesn’t even have to be regular), the language L100 is finite (since it contains 2pts
exactly 100 strings). Therefore, it is certainly regular. (Any finite language can be written as a regular
expression that is just the union over its strings.)
[Note: Some students said that the original DFA or NFA for L could just recognize the first 100 strings
in it. But there is no way to modify the original FA to do this. Note that in fact this proof is non-
constructive, in the sense that if we are given a DFA (or regular expression) for L, we don’t have any
easy way to convert it into an FA (or regular expression) for L100, even though we know that these
objects exist!]

(c) False. E.g., let Σ = {0, 1}, L = {0n1n : n ≥ 0}, and L′ = {0m1n : m 6= n}. Then L and L′ are both 2pts
non-regular. However L1 ∩ L2 = ∅, which is regular.
[Again, many other counterexamples are possible.]

3

(d) False. For a counterexample, let L be any non-regular language (e.g., L = {0i1i : i ≥ 0}). Then 2pts
we can write L =

⋃∞
i=1 Li, where each Li consists just of the ith string in L in lexicographic order.

Clearly each Li is finite and hence regular. However, the union of all of the Li is L, which is not
regular.
[Note that we have seen in class that the union L1 ∪ L2 of two regular languages is regular. By
induction, this implies that any finite union

⋃n
i=1 Li is also regular. However, it says nothing about

countably infinite unions as in this problem.]

6. Call the given DFA M . Following the algorithm in Note 1, we start with the base relation ≡0
M , whose 4pts

equivalence classes correspond to accepting/non-accepting states, i.e., they are {E} and {A,B, C, D, F,G}.

Next we construct the relation ≡1
M . Recall that

p ≡1
M q ⇔ (p ≡0

M q) ∧ (∀a)(δ(p, a) ≡0
M δ(q, a)).

I.e., we need to find those pairs of states p, q that are in the same equivalence class of ≡0
M and for which

δ(p, a), δ(q, a) are also in the same equivalence class for both a = 0 and a = 1.

Checking each pair in the non-trivial class {A,B, C, D, F,G}, we see that the equivalence classes of ≡1
M

are {A,C, G} and {B,D,F} as well as the previous class {E}. (To see this, note that all transitions out
of states A,B, C, D, F,G go to this same set, with the exception of the 1-transitions out of B,D,F , all of
which go to E.)

Next we construct the relation ≡2
M by applying exactly the same rule as above to the three equivalence

classes of ≡1
M . We find that all 0-transitions out of A,C, G go to the class {B,D,F}, and all 1-transitions

out of A,C, G go to the class {A,C, G}. Similarly, all 0-transitions out of B,D,F go to {B,D,F} and all
1-transitions go to {E}. Hence the equivalence classes don’t change (i.e., ≡2

M is the same relation as ≡1
M),

so our algorithm terminates. The resulting minimal DFA for this language has three states (one for each of
the above equivalence classes), and is shown below.

ACG
0

1

BDF

E

0

1

01

4

