
CS–172 Computability & Complexity, Spring 2021

Homework 11 Solutions

Note: These solutions are not necessarily model answers. Rather, they are designed to be tutorial in nature,
and sometimes contain more explanation than is required for full points. Also, bear in mind that there may
be more than one correct solution. The maximum total number of points available is 33.

1. (a) Let f(n) and g(n) be any two functions such that f(n) ≥ (log n)2 and g(n) = o(
√

f(n)). Then we 5pts
have the following chain of inclusions:

NSPACE(g(n)) ⊆ SPACE(g(n)2) ⊂ SPACE(f(n)) ⊆ NSPACE(f(n)).

Here the symbol ⊂ denotes strict inclusion, i.e., A ⊂ B means that B is strictly larger than A. Thus we
see that NSPACE(f(n)) contains a language that is not in NSPACE(g(n)), which is what we wanted.
We can justify the above chain of inclusions as follows. The first inclusion is by Savitch’s Theorem.
The second (strict) inclusion is by the Space Hierarchy Theorem. And the third inclusion is trivial.

[Some students missed the (obvious) fact that SPACE(f(n)) ⊆ NSPACE(f(n)). Instead, they used Sav-
itch’s theorem to deduce that NSPACE(g(n)) ⊆ SPACE(g(n)2) and NSPACE(f(n)) ⊆ SPACE(f2(n)),
and the Space Hierarchy Theorem to deduce that SPACE(g(n)2) ⊂ SPACE(f(n)2). But this doesn’t im-
ply anything about the relationship between NSPACE(g(n)) and NSPACE(f(n)): for sets A,B, C, D
with A ⊆ B and C ⊆ D, it is not the case that B ⊂ D implies A ⊂ C.]

(b) The key point you must identify is that at the heart of the Space Heirarchy theorem is a space efficient 3pts
diagonalization where we build a language different from anything a machine with g(n) space can
recognize, by ensuring that for every such machine M , there is some string (namely 〈M〉10k, for some
k) which is in the language iff it is not in the language of M . This is done by essentially watching
how that machine behaves on the string and then doing the opposite of what the machine does. This
“complementation” is possible so long as the machine being simulated is deterministic, because then
its fine to just do the opposite of what the machine does. If however the machine is nondeterministic,
then we can’t just “flip” the output – as to know if the machine rejects we must simulate it along all
possible paths and its not clear how to do that within the given space bound (f(n)). Note though, that
it is possible to know when the machine accepts because the simulator itself is nondeterministic – so
if the machine its simulating has an accepting path, then the simulator can guess that path as well.

(c) The way to adapt the proof is to first build a language that agrees with every g(n) space machine on 5pts
some particular input, namely the string representation of the g(n) space machine. This is done by
simulating that machine using the extra f(n) space (mimicking its nondeterminism) – and then doing
exactly what that machine did – if the machine accepts along its guessed path, then the simulator also
accepts – and if along the guessed path the machine rejects then reject. This way, we build a nonde-
terministic machine B using f(n) space whose language L(B) is such that for every machine M in
NSPACE(g(n)) we have some string (namely 〈M〉10k, for some k) on which B and M agree. Now we
can appeal to the Immerman-Szelepcsényi theorem which tells us that L(B) is also in NSPACE(f(n)).
However, this language L(B) is such that for every machine M in NSPACE(g(n)) there is a string
(namely the same 〈M〉10k) that is in L(B) iff the string is not in L(M). Thus for every nondetermin-
istic g(n) space bounded machine M , we have that L(M) 6= L(B). Hence L(B) is a language that’s
in NSPACE(f(n)) but not in NSPACE(g(n)).

1

2. (a) Following the hint, we consider any language L ∈ PSPACE. By definition, there exists a TM M that 6pts
decides L in nk space.1 Now consider the language Lpad as defined. We can build a TM M ′ for Lpad

that runs in linear space as follows: M ′ first verifies that the input is in the correct format x$|x|k . If so,
then M ′ runs M on x (else M rejects). M will take space |x|k, but this is linear in the length of the
input to M ′ and hence Lpad ∈ SPACE(n).
Now suppose SPACE(n) ⊆ P. We show that L is in P and hence P = PSPACE. Since Lpad ∈
SPACE(n), by hypothesis we have a polynomial time algorithm for Lpad. From this we can build a
polynomial time algorithm for L as follows: On input x, construct the string x$|x|k (taking time nk),
and feed this into the polynomial time algorithm for Lpad. This gives us what we need.

(b) Suppose P = SPACE(n). Then in particular SPACE(n) ⊆ P, and from part (a), P = PSPACE. But 4pts
since we’ve assumed that SPACE(n) = P, we get that SPACE(n) = PSPACE. But the space hierarchy
theorem tells us this is false (SPACE(n) is strictly contained in (say) SPACE(n2), which is within
PSPACE) so we have a contradiction and thus P 6= SPACE(n).

3. (a) The fallacious line in this “proof” is the following: “Because every language in NP is poly time 5pts
reducible to SAT, this implies that NP ⊆ TIME(nk)”. The fly in the ointment is the fact that there
could be languages in NP where the reduction itself takes time greater than O(nk) and so the time
taken to decide that language would be greater than O(nk) (since it’s the sum of the time for the
reduction and the time to solve the resulting SAT instance), so we can’t conclude that NP is contained
in TIME(nk), which breaks the proof.

(b) The problem with this “proof” is the second part of the statement “. . . any language L in PSPACE 5pts
can be reduced in polynomial time to TQBF, and hence to TQBFk for some k”. Although it is true
that any language in PSPACE can be reduced to TQBF, it is not true that the number of alternating
quantifiers in this reduction can be bounded by any fixed k: indeed, you can check that the boolean
formula produced in the reduction proving that TQBF is PSPACE-complete has a number of quantifier
alternations that is polynomial in the input size for the language L, and hence unbounded.

[Other than the error pointed out in the solution to Q1(a) above, there were no other common errors in this
HW. Please consult comments on your individual solutions for explanations of specific errors you may have
made.]

1Strictly speaking M requires O(nk) space; but by compressing multiple tape squares into one, we can assume that the leading
constant in the big-O expression is 1.

2

