
CS–172 Computability & Complexity, Spring 2021

Homework 10 Solutions

Note: These solutions are not necessarily model answers. Rather, they are designed to be tutorial in nature,
and sometimes contain more explanation than is required for full points. Also, bear in mind that there may
be more than one correct solution. The maximum total number of points available is 37.

1. (a) Our NL machine to decide 2-UNSAT runs as follows. Given as input a formula φ in 2CNF, it non- 7pts
deterministically guesses an “offending” variable, say x, and a clause that contains it, say (¬x ∨ y).
Note that this clause expresses the Boolean implication x → y, so we nondeterministically guess a
clause containing ¬y, say (¬y ∨¬z), which exprsses the implication y → ¬z. We repeat this process,
following that clause to one containing z, and so on. By guessing a sequence of such clauses we build
up a chain of logical implications. We accept if the chain of implications starts and ends with x, and
has passed through ¬x. We reject if the chain has run for more steps than there are clauses in the
formula (since by that point we must be looping), or if there are no more clauses to follow.
The machine runs in log space because it only needs to keep track of the current clause, the initial
offending variable x, a flag recording whether or not it has visited the negated variable ¬x, and a step
counter. Each of these items requires space log n, where n is the number of variables in the formula.
Note that this algorithm is nondeterministically searching a directed graph defined from the input
formula as follows: there are 2n vertices, one for each variable and for its negation, and there is an
edge from a to b iff the clause (¬a∨ b) occurs in the formula. (Note that a, b here are arbitrary literals,
so if we have, say, the clause (x ∨ y) then we include the edges (¬x, y) and (¬y, x).) To show the
correctness of the algorithm, we prove the following claim: φ is unsatisfiable iff for some variable x
there is a path in this graph from x to ¬x and back to x.
Proof of ⇐=: Proof by contradiction. Assume there is some truth assignment that satisfies φ, and that
we have found such a cycle including both x and ¬x. Suppose that in this assignment x is set to true.
Since there is a path from x (true) to ¬x (false), there must be some edge (u, v) along the way such
that the literal u is assigned true and the literal v is assigned false. But such an edge can only occur if
the clause (¬u ∨ v) is in the original formula, and clearly the assignment does not satisfy this clause.
If x is set to false, we can apply exactly the same reasoning to the fact that there is a path from ¬x to
x. In both cases we get a contradiction, thus completing the proof.
Proof of =⇒: We prove the contrapositive. If there is no cycle of the above kind, then we can construct
a satisfying assignment for φ as follows. Repeat the following process until all variables are assigned:
select an unassigned variable (say, x). Then there must be either no path from x to ¬x, or no path from
¬x to x. Suppose the first possibility holds. Then assign x and all nodes reachable from it true. Also
assign false to the negations of these nodes. This step will never result in a conflicting assignment; for
there to be one, there must be a path from the initial node x to both y and ¬y for some y. However, by
the symmetry of the graph (since (a ∨ b) induces both the edges (¬a, b) and (¬b, a)), there must also
be paths from y and ¬y to ¬x. Hence there would be a directed path from x to ¬x, a contradiction. If
on the other hand the second possibility holds (i.e., there is no path from ¬x to x), then we perform the
same procedure setting x to false, and by the same argument there will be no conflicts. Thus all nodes
can be assigned a truth value respecting the constraints of all clauses and we are done.
[There were many issues with solutions to this part. Some students claimed that φ is unsatisfiable if
there’s a path from x to ¬x for some x. This isn’t enough, because it only gives us a contradiction from

1

setting x true, not from setting x false: you need a path from x to ¬x and back to x (i.e., a cycle that
includes both x and ¬x) in order to ensure that φ is unsatisfiable. Some students failed to handle the
case where such a cycle is not detected, i.e., they didn’t specify when the algorithm should stop in that
case. A serious error made by some students was to construct and store the implication graph derived
from the clauses: this is not OK because it requires O(n log n) space to write down, where n is the
number of clauses. Note that the above algorithm doesn’t write down the entire graph! Some students
gave a log-space reduction from 2-UNSAT to PATH and argued that this implies 2-UNSAT is in NL
because PATH is in NL. This is correct, except that you need to explain how to combine the reduction
and the algorithm for PATH into a logspace algorithm for 2-UNSAT (without writing out the output
of the reduction, as we discussed in class). Finally, points were also deducted for failing to justify the
algorithm or for failing to analyze its space complexity.]

(b) Given an input 〈G, s, t〉 for PATH, we construct an input φ for 2-UNSAT as follows: label s with x, t 6pts
with ¬x, and every other vertex with a unique identifier (such as its identifier in G itself). For each
edge (u, v) in G, output the clause (¬u ∨ v). Finally, output the clause (x ∨ x).
This reduction can be done in log space, as identifiers need only log n bits and we process each edge
separately. No other information needs to be stored. We now show that the reduction is correct.
Firstly, if there is a path from s to t in G, then there is a sequence of implications in the formula
x ⇒ ... ⇒ ¬x in the form of the clauses (¬x ∨ y), (¬y ∨ z), ..., (¬q ∨ ¬x). This means that, in any
satisfying assignment for φ, x must be false. But this in turn means that the clause (x ∨ x) cannot be
satisfied. Hence φ is unsatisfiable.
Conversely, suppose there is no path from s to t in G. We will show that φ is satisfiable. If φ is
unsatisfiable then, as proved in part (a), there must exist a cycle of implications that includes both a
variable and its negation. But since there is no path from s to t, this cycle cannot include the variable x
and its negation, so the contradiction must come from some other variable. However, every other
variable occurs only in its positive, non-negated form in the graph, and so can never imply its own
negation. (In fact, a valid assignment for this formula is to set all the variables to true.) Therefore φ is
satisfiable.

[Some students did not include the extra clause (x∨x) to force x to be true. In this case, the CNF may
still be satisfiable despite the existence of a path from s to t (similar to the issue with paths from x to
x̄ and from x̄ to x in part (a)).]

(c) Note first that 2-SAT = 2-UNSAT (modulo mal-formed inputs which we call “Junk” and can be 1pt
detected in logarithmic space). Thus, since NL = CO-NL and 2-UNSAT ∈ NL by part (a), we know
that 2-SAT ∈ NL. Also, by part (b) above we know that any language A ∈ NL is log-space reducible
to 2-UNSAT; but this immediately implies that A is log-space reducible to 2-UNSAT = 2-SAT. Hence
2-SAT is NL-complete.

[Some students only argued that 2-SAT is in NL but omitted to argue that 2-SAT is NL-hard.]

2. To show that STRONG-CON is NL-complete, we must show that it belongs to NL and that it is NL-hard. 10pts

To show that STRONG-CON ∈ NL, we use two counters on the worktape to run through all (ordered) pairs
of vertices u, v of G and, for each such pair, we nondeterministically guess a path from u to v (in the same
way we did when we showed in class that PATH ∈ NL). We accept only if we successfully guess a path for
all pairs u, v. Here is the corresponding pseudocode (where n denotes the number of vertices in G):

for u := 1 to n do

2

for v := 1 to n do
w := u; t := 0
while t < n and w 6= v do

guess an edge (w,w′) and set w := w′

t := t + 1
if w 6= v then halt and reject

halt and accept

This algorithm clearly runs in space O(log n) as it only needs to store the labels of three vertices and one
additional counter up to n, each of which uses space O(log n).

To show that STRONG-CON is NL-hard, we give a reduction from PATH, which we already know from class
is NL-hard. Given an input 〈G, s, t〉 for PATH, we construct an input 〈G′〉 for STRONG-CON as follows.
The directed graph G′ is the same as G, except that for every vertex u /∈ {s, t} we add a directed edge (u, s)
from u to s, and a directed edge (t, u) from t to u. We also add the edge (t, s). (If any of these edges exist
already, we just keep them.) This reduction can clearly be carried out in logarithmic space: first we just
copy G to the output, and then we add the additional edges as needed, storing only two vertex labels at a
time on the worktape. To verify that the reduction is correct, we need to prove that

G′ is strongly connected ⇐⇒ ∃ an s t path in G.

Proof of ⇐=: Suppose that there exists an s t path in G. Then for any two vertices u, v we can build a
path u v in G′, by first following the edge (u, s) (unless u = s), then the given s t path, and finally
the edge (t, v) (unless t = v). Hence G′ is strongly connected.

Proof of =⇒: Suppose that G′ is strongly connected. Then in particular there exists an s t path in G′

(which we may assume is a simple path since we can always remove loops). Note that such a path cannot
make use of the extra edges added to G, since all these edges either point into s or out of t. Hence indeed
there must exist an s t path in G itself.

[Students generally did pretty well on Question 2.]

3. (a) First, we show ALLDFA ∈ NL. Since NL = CO-NL, we instead show that ALLDFA ∈ NL. Ignor- 6pts
ing malformed inputs, ALLDFA = {〈D〉 : D is a DFA and ∃ an input string w that is rejected by D}.
Suppose D has n states. If 〈D〉 ∈ ALLDFA, then there must exist some w of length no more than n
such that D rejects w (and if 〈D〉 /∈ ALLDFA, no such w exists). We can decide ALLDFA in nonde-
terministic logarithmic space by guessing w one character at a time and simulating D on w. At each
step we must remember the current state of D, a single character of our guessed w, and a counter for
the length of the portion of w we have already guessed, all of which can be stored in space O(log n).
We repeat until either we reach a rejecting state of D (in which case we accept) or we have already
guessed n symbols of w (in which case we must have repeated a state, so we reject).
To show ALLDFA is NL-hard, we give a log space reduction from PATH (which we know is NL-
complete, because PATH is NL-complete and NL = CO-NL). Given a graph G with source and target
vertices s and t (an instance of PATH), we construct a DFA D whose states correspond to vertices in G
and whose transitions correspond to directed edges in G. The start state of D is the state corresponding
to vertex s. All states in D are accepting, except for the one corresponding to vertex t, which is
rejecting. It should be clear from this construction that D accepts all input strings iff G has no path

3

from s to t. What remains is to finish our construction of D to ensure it is a proper DFA, with exactly
one outgoing transition from each state on each possible alphabet symbol. Let d be the maximum
out-degree of any vertex in G; then we define the alphabet of D to be {1, 2, ..., d}. For each state
in D, we label each outgoing transition with a unique alphabet symbol, and if there are fewer than d
outgoing transitions then we add self-loops with all remaining alphabet symbols. We can construct
D using logarithmic work space by, at each step, remembering the current vertex v in G, the current
outgoing edge from v, and the number of outgoing edges from v already processed.

[An alternative approach to showing that ALLDFA ∈ NL is to nondeterministically traverse the states
of the DFA, starting at q0 and accept if a non-accepting state is ever reached. The search rejects if
no such state is found after |Q| steps. This solution received full credit. Some students simulated the
DFA without putting any restriction on the length of the input strings; the resulting TM may therefore
never halt. In the reduction part, points were deducted for failing to fully specify or justify the DFA
constructed.]

(b) First, we show ALLNFA ∈ PSPACE. Rather, we show ALLNFA ∈ NPSPACE, which suffices thanks 6pts
to Savitch’s theorem. Let N be an NFA with n states, input to ALLNFA. If 〈N〉 ∈ ALLNFA, then ∃w
such that N rejects w. We guess w one symbol at a time, and maintain a list of which states N could
be in after processing each symbol of w. We also maintain a counter for how many symbols of w have
been guessed so far, and halt if either the current set of states is all rejecting (in which case we accept
N , having found an input it rejects) or if we have already guessed 2n symbols of w (in which case we
reject N , having repeated a set of states without finding a rejecting set of states). We can maintain a
subset of states with n bits, and a counter up to 2n with another n bits, so the entire algorithm uses
polynomial space.
To show ALLNFA is PSPACE-hard (and thus PSPACE-complete), we reduce any language A ∈ PSPACE

to ALLNFA. Since A ∈ PSPACE, there exists a TM M that decides A in polynomial space. Our
reduction takes an input w for problem A, and must construct in polynomial time an NFA N such that
N does not accept all input strings iff M accepts w.
We construct N to accept precisely those input strings that are not encodings of valid accepting com-
putation histories of M on w. Then if M accepts w (i.e., if w ∈ A), the corresponding accepting
computation history will be rejected by N (i.e. 〈N〉 ∈ ALLNFA). If N rejects some string v (i.e.,
〈N〉 ∈ ALLNFA), then v must be a valid accepting computation history of M on w (so w ∈ A).
We now show how to construct N with the desired behavior in polynomial time. Recall that a computa-
tion history of M on w takes the form #C0#C1#C2# . . .#Ct#, where C0 is the initial configuration
and each Ci+1 follows from Ci via a valid move of M . Since the space used by M is f(n) = O(nk)
for some k, we may assume that t ≤ 2O(f(n)). Also, we may assume that all configurations Ci have
the same length f(n) (by padding with blanks as needed). N works by nondeterministically guessing
a portion of its input string v that violates the requirement that v be an accepting computation of M
on w. This guess may take one of several forms:

– Bad start: N reads the initial portion of its input v and accepts if any symbol fails to match the
correct initial segment #C0. Clearly this requires only f(n) states.

– Bad end: N reads its entire input and accepts if the symbol qaccept is not present. This trivial
check can be done with a constant number of states.

– Bad computation: N guesses a pair of adjacent configurations Ci, Ci+1 (delimited by the #
markers) that do not follow from one another by a valid move of M . The (in)consistency check
between Ci and Ci+1 is handled using the 2x3 window idea from the proof of Cook’s Theorem:
i.e., N will guess a 2x3 window that is incorrect. To do this, N must first guess Ci by choosing

4

its beginning # delimiter, and then guess a position within Ci, which it can do using f(n) states
(one corresponding to each position in the configuration). It then remembers in its state the three
symbols of Ci starting at this chosen position, and uses a further f(n) states to skip over input
characters until it reaches the corresponding position in Ci+1. Then it accepts if the three follow-
ing symbols are not consistent with the three remembered symbols from Ci. This entire procedure
requires O(f(n)2) states (since there is a separate set of skipping states for each position in Ci

and each set of three remembered symbols), which is still polynomial.

Since the size of N is polynomial in the length of w, and its construction is mechanical given the
(fixed) TM M and input w, the entire reduction can be carried out in polynomial time.

[Some students used the exact same argument as in part (a) to prove that ALLNFA ∈ PSPACE. As a
result, they missed several details. For instance, they didnt realize they need to keep track of a subset
of states instead of just one state. They also didnt realize it might take up to 2n steps to exhaust all
possible computations of the NFA. The proof that ALLNFA is PSPACE-hard was quite involved and
was graded rather leniently (and with relatively few points). However, this is really just a modification
of the proof in class for EGREX↑. Students are encouraged to review the above solution for details of
this part.]

(c) DFAs and NFAs are equivalent in terms of the languages they can represent, but not equivalent in the 1pt
efficiency of their representation. In general, given an NFA with n states, an equivalent DFA may
require a number of states that is exponential in n (recall that in the NFA to DFA conversion, each
DFA state corresponds to a subset of NFA states). Given that an NFA can encode a regular languages
exponentially more efficiently (in the length of the representation) than a DFA can, it is not surprising
that the complexity of answering some questions about NFAs should be exponentially larger than
answering the same questions about DFAs.

5

