
CS–172 Computability & Complexity, Spring 2021 Prof. Alistair Sinclair

Note 5: Random Access Machines

Over the years, many different formulations of the notion of effective computability have been proposed.
These formulations differ widely in appearance; nevertheless, whenever a new formulation has been pro-
posed, it has always turned out to be equivalent to all previous ones. The failure of anybody to find a
reasonable model of computation which properly extends the notion of effective computability provides
what is perhaps the most convincing empirical evidence in support of the Church-Turing thesis.

In this note, we consider a model of computation very different from the Turing machine, namely the Ran-
dom Access Machine, or RAM. The significance of the RAM is that it provides a relatively simple basis for
computation which is not far removed from real computers. Thus, in introducing the RAM, we bring into
play all the intuition about computation that we have gained from our experience.

As its name suggests, the main feature of the RAM is its ability to access data by address, rather than
merely sequentially as in a Turing machine. (The relationship between the two models can be likened to
the relationship between the array and the doubly-linked list as data-structuring techniques.) Despite the
apparently less restricted nature of computation on a RAM, we shall see that the RAM and Turing machine
are of equivalent power.

1 Syntax of RAM programs

The syntax of a RAM program is presented below, in Backus-Naur form.

program = instruction program | instruction
instruction = [label :]

(
accept

| reject
| read l value
| l value := r value arithmetic op r value
| if r value relational op r value goto label

)
l value = 'integer | " integer
r value = integer | 'integer | " integer

arithmetic op = + | - | * | div
relational op = = | <> | <= | <

label = alphanumeric sequence.

The non-terminal integer is intended to stand for an arbitrary signed decimal number. Naturally enough,
we insist that no two instructions are assigned the same label, and that every conditional jump refers to an
existent label.

We shall assign a precise meaning to RAM programs in the following section. Roughly speaking, however,
an unquoted integer denotes a constant, an integer prefixed by a single quote is to be interpreted as a direct
address, and an integer prefixed by a double quote is to be interpreted as an indirect address. Armed with
this clue, you should already be able to guess the meaning of many, if not all the instruction types.

1

2 Semantics of RAM programs

We assign meaning to a RAM program by introducing the notion of a state of a random access machine.
Informally, a RAM has an infinite number of registers, each containing an arbitrary integer. The registers
are indexed by the integers; the index of a register is sometimes called its address. Before execution of
a program, all registers contain zero. The instructions of a program are thought of as being numbered in
sequence, starting at zero. A particular instruction of the program is picked out by an instruction counter,
which is a natural number; this instruction counter is initialized to zero. Execution of the program proceeds
in a sequence of steps. In a single step, the instruction indicated by the instruction counter is executed, as a
result of which the state of the machine and the instruction counter are updated. The state and instruction
counter together play the role of configuration in the Turing machine model.

Formally, the state of a RAM is a function s : Z → Z, which defines the content s(i) of each register i.
The function s has a finite description, being zero on all but a finite subset of Z. The initial state of a RAM
(before the program executes) is the zero function. Before describing the effect of executing each instruction
type, it is convenient to introduce some terminology and notation. If R is an r value and s a state, then the
result of evaluating R in context s is an integer value v given by

v =

k, if R = k;
s(k), if R = 'k;
s(s(k)), if R = "k.

If L is an l value and s a state, then the result of evaluating L in context s is an integer address a given by

a =

{
k, if L = 'k;
s(k), if L = "k.

Finally, if s is a state, v an integer value, and a an integer address, then update(s, v, a) denotes the new
state s′ : Z → Z given by

s′(i) =

{
v, if i = a;
s(i), otherwise.

Informally, the new state s′ agrees with the old state s at all points except a, where s′(a) = v independent
of the value of s(a).

We are now in a position to assign a meaning to each instruction by specifying how that instruction modifies
the state and instruction counter. Let s denote the state before execution of the instruction in question, and
s′ denote the state afterwards.

(a) accept: The RAM halts, and accepts its input.

(b) reject: The RAM halts, and rejects its input.

(c) read L: The input to a RAM is a stream of integers. The next value, say v, is removed from the
stream. Let a be the result of evaluating L in context s. Then s′ becomes update(s, v, a), and the
instruction counter is incremented by one.

(d) L := R1 ◦ R2: Let a, v1, and v2 be the results of evaluating L, R1, and R2 in context s, and let
v = v1 ◦ v2.1 Then s′ becomes update(s, v, a), and the instruction counter is incremented by one.

1The operator * denotes integer multiplication and div denotes integer division. Thus div takes two integers v1 and v2, with
v2 > 0, and yields the unique integer v satisfying 0 ≤ v1 − vv2 < v2; if v2 ≤ 0 the program halts and rejects.

2

(e) if R1 ◦ R2 goto λ: Let v1 and v2 be the results of evaluating R1 and R2 in context s. If v1 ◦ v2 is
false, the instruction counter is incremented by one. If v1 ◦ v2 is true, the instruction counter is set to
the index of the instruction labelled by λ. In either case the state is unchanged, i.e., s′ = s.

After executing the (syntactically) last instruction of a program, the instruction counter may no longer
contain a meaningful value; in that case the RAM halts and rejects.

A random access machine M of the form described above can be viewed as a language recognizer. Let Σ
be a finite input alphabet, and associate the symbols of Σ with the numbers 1, 2, 3, . . . , |Σ|. Then a word
x ∈ Σn can be presented to the RAM as a sequence of n positive numbers (encoding elements of Σ)
followed by 0 (which can be thought of as an end-of-input marker or blank symbol). The language L(M)
recognized by M is then the set of words x ∈ Σ∗ on which M halts and accepts. It is a straightforward task
to extend the model to encompass transducers by adding a instruction of the form ‘write r value’ to the
repertoire of instructions.

3 Example: recognizing palindromes

'1 := 2
next symbol : read "1

if "1 = 0 goto end of input
'1 := '1 + 1
if 0 = 0 goto next symbol

end of input : '1 := '1 − 1
'0 := 2

loop : if '1 <= '0 goto yes
if "0 <> "1 goto no
'0 := '0 + 1
'1 := '1 − 1
if 0 = 0 goto loop

yes : accept
no : reject

Figure 1: A RAM program for recognizing palindromes

The RAM program in Fig. 1 above recognizes the language of palindromes over {a, b}, where a is encoded
as 1, and b as 2. The n symbols of the input are read into registers 2 to n + 1, which can be thought of
as constituting an n-element array. Registers 0 and 1 are used to implement indices, i and j say, into this
array. Initially, i = 2 and j = n + 1. At each iteration, the array elements indexed by i and j are compared.
If these elements are found to be unequal then the input was not a palindrome and the program halts and
rejects. Otherwise the index i is incremented, and j decremented. If the pointers cross (i.e, j becomes less
than or equal to i) then the input was a palindrome and the program halts and accepts.

3

4 Redundancy

The RAM model described in this note contains a fair number of redundant features. It is not too difficult
to show that the arithmetic operators +, *, and div can be removed without affecting the class of languages
which can be recognized. Likewise, the relational operators =, <>, and < are redundant. More surprisingly,
as we shall see later, it is possible to make do with a fixed, finite set of registers, and dispense with indirect
addressing entirely.

5 Simulation of a RAM by a Turing machine

Nobody has yet conceived of a procedure which could reasonably be described as effective, but which
could not be expressed in a high-level programming language such as Java or C. Our failure to find such an
object can be regarded as empirical evidence that every effective procedure could, in principle, be expressed
in such a high-level language. This claim should accord with your own experience over several years of
programming in different languages and environments.

You will also be aware that any program written in a high-level language can be translated into machine code,
as long as we ignore the limitations inherent in a bounded word-size and bounded address-space. This, of
course, is exactly the job of a compiler, and we have definite evidence that such things exist. Now the RAM
model clearly has at least the power of a conventional machine code, but without the restrictions implied
by bounded word-size or address-space. We thus have convincing empirical evidence that any effective
procedure can be expressed as a RAM program.

Our experience with Turing machines, on the other hand, is much more limited, and we may be less con-
vinced that every effective procedure can be described by a Turing machine. The purpose of this section
is to demonstrate that Turing machines are at least as powerful as RAMs, and hence to provide convincing
empirical evidence in support of the Church-Turing Thesis. The claim is made precise in the following
theorem.

Theorem 1. Let L be a language over some alphabet Σ. If there is a RAM that recognizes L, then there is
a Turing machine that also recognizes L.

Proof. Let P be any RAM program. Our aim is to construct a Turing machine M that correctly simulates
the operation of P on all inputs x ∈ Σ∗. It is convenient to allow M to be a machine with multiple tapes;
we already know that M could, in turn, be simulated by a one-tape machine. We shall not attempt to present
a formal description of M in terms of states, tuples, etc. Instead, the proposed machine M will be divided
into a number of functional components, and the operation of each of these described informally. Each of
these functional components will be sufficiently simple that we shall be left in no doubt that the machine M
could, in principle, be written down quite formally. Our growing experience with Turing machines will
assure us that the details could be supplied on request.

The Turing machine M has an input tape, a storage tape, and a number of work tapes. The input tape
holds the input word x ∈ Σ∗, and simulates the input stream of the RAM in a straightforward manner. The
storage tape of M records the current state of the RAM in a format shortly to be described. The work tapes
provide temporary storage for addresses and operands, and for performing simple arithmetic computations.
The storage tape and work tapes are initially blank, but the first action of the machine M is to write a dollar
symbol, $, onto the leftmost square of the storage tape. It will become apparent that the storage tape now
contains an encoding of the zero function, which is the initial state of the RAM.

4

The storage tape of M , at a typical instant in the simulation, has the following format:

$#a1:v1#a2:v2#a3:v3# · · ·#am:vm b̄ b̄ b̄ · · · , (1)

where ai and vi are integers represented as signed binary numbers. Roughly, each pair ai:vi appearing on
the storage tape can be interpreted as an assertion that the register with address ai has content vi. If the
storage tape contains no assertion about a particular register, then that register is deemed to contain zero. If
there are a number of contradictory assertions about a particular register, then the rightmost assertion takes
priority. More formally, the storage tape (1) specifies a state s : Z → Z of the RAM, the function s being
defined as follows. Let a be any integer. If a 6= ai for all i in the range 1 ≤ i ≤ m, then s(a) = 0.
Otherwise, s(a) = vj , where j is the largest index for which aj = a.

The storage tape of M is required to support two operations:

(E) Given an integer a, evaluate s(a). That is, determine the content of a register given its address.

(U) Given two integers v and a, modify the storage tape so that it becomes a representation of the new
state s′ = update(s, v, a). That is, assign the value v to the register with address a.

Both operations are straightforward to implement as subroutines within M .

First, consider operation (E). Suppose the address a is presented as a signed binary number on a designated
work tape of M , and s(a) is to be returned on another designated work tape. The machine M scans right
along the storage tape until it encounters a blank symbol. It then scans left along the storage tape looking
for the first occurrence of the substring #a: on the tape. If the dollar symbol, $, is encountered before the
substring is found, then 0 is written to the result tape. Otherwise the head is shifted to the square immediately
to the right of the substring just located, and the signed binary number appearing there is copied to the result
tape. We shall refer to this entire procedure as subroutine (E).

Operation (U) is even more straightforward to implement. Suppose the integer address a and integer value v
are presented on designated worktapes of M . The machine M scans right along the storage tape until it
finds the first blank symbol. It then continues scanning to the right, copying the string #a:v to the storage
tape as it proceeds. We shall refer to this procedure as subroutine (U).

Note that subroutine (E) searches the storage tape from right to left, and that subroutine (U) always adds new
pairs to the right of all existing pairs. Thus, when a new pair #a:v is added to the storage tape, all existing
pairs of the form #a:v′ (i.e., referring to the same address a) are rendered inaccessible. Subroutine (U) thus
achieves the effect of overwriting the previous content of the register with address a.

Having described the use made by M of the storage tape, we are now in position to describe how M may
simulate each instruction of the RAM program P , and hence the program itself. We consider each instruction
type in turn.

(a) accept: M immediately halts and accepts.

(b) reject: M immediately halts and rejects.

(c) read L: M reads a symbol from the input tape and converts it to an integer code v, which is written
to a designated work tape. (Recall that the RAM has an internal code in the set {1, 2, . . . , |Σ|} for
each symbol of the input alphabet Σ. The blank symbol has code 0, meaning ‘end-of-input’.) At the
same time the head scanning the input tape is moved right one square in preparation for the next read

5

instruction. The operand L is now evaluated in the context of the current state s of the RAM to yield
an address a; this address also is written to a designated worktape. The evaluation of L, if it is of the
form "k, will employ subroutine (E). Finally, the storage tape is updated using subroutine (U). The
storage tape now contains a representation of the new state s′ = update(s, v, a) of the RAM.

(d) L := R1 ◦ R2: The simulating machine proceeds as follows. First, the operands R1 and R2 are
evaluated in context s, and the results v1 and v2 stored on two of the work tapes. The evaluation
of operand Ri involves zero, one, or two applications of subroutine (E), depending on whether Ri

has the form k, 'k, or "k. The machine M then computes v1 ◦ v2, and stores the result, v, on a
designated work tape. (Note that the four arithmetic operators, +, -, *, and div, can be implemented
as Turing machine subroutines.) Next, L is evaluated in context s to yield an integer address a,
which is stored on a designated work tape. The evaluation of L may involve a further application
of subroutine (E). Finally, the storage tape is updated using subroutine (U). The storage tape now
contains a representation of the new state s′ = update(s, v, a) of the RAM.

(e) if R1 ◦ R2 goto λ: Using subroutine (E), the operands R1 and R2 are evaluated in context s, and
the results v1 and v2 stored on two of the work tapes. M then computes v1 ◦ v2, and exits to different
states according to whether the result is true or false. (Note that the four relational operators, =, <>,
<=, and <, can be implemented as Turing machine subroutines.)

Using the constructions described in paragraphs (a)–(e) above, each instruction in the RAM program P
can be translated into a Turing machine subroutine. Each subroutine can be considered, graphically, as a
collection of states with associated transitions. Each subroutine has one entry point (state), and up to two
exits (transitions from states): (a) and (b) have no exits, (c) and (d) have one, and (e) has two (corresponding
to the branch condition being true or false).

The machine M is now simply obtained by forming the disjoint union of the subroutines corresponding to
all the instructions in the program P , and then gluing together the entry points and exit transitions of the
subroutines so that the instructions of P are simulated in the correct sequence.

6 Simulation of a Turing machine by a RAM

We have seen that any language that is recognized by a RAM is also recognized by a Turing machine. We
now prove that the converse holds: any language that is recognized by a Turing machine is also recognized
by a RAM. In fact we demonstrate rather more. A three-register RAM is a random access machine, as
defined earlier, but having just three registers, with addresses −1, 0, and 1. The state of a three register
RAM is thus a function from {−1, 0, 1} to Z. To avoid referencing non-existent registers we place a severe
restriction on the form of l values and r values that may occur in a program for a three-register RAM: the
only l values allowed are '-1, '0, and '1; and the only r values allowed are '-1, '0, '1, and signed
decimal constants. Note that ‘indirect addressing’ is forbidden.

Theorem 2. Let L be a language over some alphabet Σ. If there is a Turing machine that recognizes L,
then there is a three-register RAM that also recognizes L.

Proof. Let M = (Q,Σ,Γ, δ, q0, qaccept, qreject) be a (standard, one-tape) Turing machine that recognizes
the language L. We shall construct a three-register RAM program P that simulates M .

During its simulation of M , the RAM maintains an encoding of the contents of M ’s tape; the encoding
scheme employed is the following. Let m = |Γ| + 1, and assign to each symbol in Γ a distinct internal

6

code which is an integer in the range 0 to m − 2. We insist that the blank symbol receives code 0, and
that elements of Σ receive codes in the range 1, . . . , |Σ|; otherwise the assignment of codes to symbols is
arbitrary. The number m − 1 is reserved as the code for a special ‘end-of-tape symbol’ whose purpose will
become apparent in due course.

Now fix attention on the tape of M at some instant during a computation. Assume that the tape squares are
numbered in sequence, starting at zero. For each natural number i let ai be the internal code of the symbol
appearing in tape square i, and let a−1 be m−1 (the end-of-tape symbol). Also let k be the sequence number
of the currently scanned tape square. Then the tape contents of M are encoded as three integers which are
stored in the registers of the RAM as indicated below.

content of register −1 : l = ak−1 + ak−2m + ak−3m
2 + · · · + a−1m

k;
content of register 0 : s = ak;
content of register 1 : r = ak+1 + ak+2m + ak+3m

2 + · · · .

Note that r is a well defined integer, despite being specified by a infinite series; to see this, recall that the
internal code of the blank symbol is zero, and that there can be only a finite number of non-blank symbols
on M ’s tape. Note also that the three registers of the RAM between them provide a complete description of
the tape contents: the digits of l and r, when expressed as numbers in base m, yield the internal codes of the
symbols appearing to the left and right of the tape head, while s is the internal code of the scanned symbol.

We now consider the flow of control in the program P that performs the simulation. Let the states of M
be q0, q1, q2, . . . , q|Q|−1, where q0 is the initial state. The top-level structure of P is presented in Figure 2.
Here, the notation 〈n〉 is used to denote the decimal representation of the number n. (Thus, if M were a
186-state machine, state〈|Q| − 1〉 would stand for the string state185.)

[[
code to read the input word and initialize registers

]]
state0 :

[[
code to simulate transitions from state q0

]]
state1 :

[[
code to simulate transitions from state q1

]]
state2 :

[[
code to simulate transitions from state q2

]]
...

state〈|Q| − 1〉 :
[[

code to simulate transitions from state q|Q|−1

]]
Figure 2: Deciding the state

Aside from some preliminary code concerned with initialization, it will be seen that the program P is formed
from a series of blocks, each block dealing with transitions from a single state. We shall consider these blocks
first, returning at the end to deal with the task of initialization. The blocks corresponding to the two halting
states qaccept and qreject of M are special, and consist of a single accept or reject instruction. Each of
the other blocks is constructed according to a fixed template; a typical instance—the block corresponding to
state q0—is shown in Figure 3.

What we see in Figure 3 is a primitive case-statement whose limbs are selected according to the scanned
symbol. The state q and scanned symbol s having been determined, the code within each limb of the case-
statement now has the job of implementing the transition itself. Suppose δ(q, s) = (q′, s′, L). (The case of
a right shifting transition is handled in an analogous manner.) The first action is to simulate the overwriting
of the current symbol of M : this is handled by a single instruction which simply assigns the internal code

7

if '0 = 0goto pair0X0
if '0 = 1goto pair0X1
if '0 = 2goto pair0X2

...
if '0 = 〈m− 2〉 goto pair0X〈m− 2〉

pair0X0 :
[[

scanned symbol has internal code 0 (i.e., is b̄)
]]

pair0X1 :
[[

scanned symbol has internal code 1
]]

pair0X2 :
[[

scanned symbol has internal code 2
]]

...
pair0X〈m− 2〉 :

[[
scanned symbol has internal code m − 2

]]
Figure 3: Deciding the symbol

for s′ to register 0. The next action is to simulate the left shift of the tape head, which is achieved by the
code presented in Figure 4.

You should check that the register contents after execution of this code fragment are

content of register −1 : l′ = ak−2 + ak−3m + ak−4m
2 + · · · + a−1m

k−1;
content of register 0 : s′ = ak−1;
content of register 1 : r′ = ak + ak+1m + ak+2m

2 + · · · ;

as we should expect.

'1 := '1 ∗ 〈m〉
'1 := '1 + '0
'0 := '−1 + 0

'−1 := '−1 div 〈m〉
'−1 := '−1 ∗ 〈m〉
'0 := '0 − '−1

'−1 := '−1 div 〈m〉

Figure 4: Shifting left

At this point the RAM tests whether register 0 contains the special end-of-tape symbol m− 1; if so, the TM
has attempted to move off the end of its tape, so the RAM undoes the above head-shifting sequence (but
not the symbol overwriting). The final action of the RAM in simulating a single transition of M is to jump
unconditionally to the instruction labelled state〈i〉, where i is the index of the next state q′.

It only remains to deal with the code for input and initialization. If the input loop is arranged in the obvious
way, the head of the simulated machine ends up scanning the first blank symbol. However a second loop
incorporating a left shift will return the tape head to the leftmost square in readiness for the simulation
proper. The necessary code is presented in Figure 5. This completes the description of the program P and
hence the proof of the theorem.

8

'−1 := 〈m − 1〉
next char : read '0

if '0 = 0 goto end of input
'−1 := '−1 ∗ 〈m〉
'−1 := '−1 + '0
if 0 = 0 goto next char

end of input : '1 := 0
shift : if '−1 = 〈m− 1〉 goto state0[[

code to shift head left: see Fig. 4
]]

if 0 = 0 goto shift

Figure 5: Input and initialization

Exercise: [Hard!] Does the theorem remain true if “three-register RAM” is replaced by “two-register
RAM”?

7 Conclusions

We have seen that the class of languages recognizable by Turing Machines is exactly the same as the class
of languages recognizable by Random Access Machines.2 Since we should readily believe that a RAM is
capable of simulating any conceivable computer, this fact constitutes very strong evidence to support the
Church-Turing Thesis. Moreover, the situation is exactly analogous for many other models that were de-
veloped to formalize the notion of computation: all of them have turned out to be equivalent to the Turing
Machine in computational power. Thus the class of Turing-recognizable languages (i.e., languages recog-
nized by TMs) is an extremely robust class. Note also that the simulations between Turing Machines and
RAMs presented above preserve the halting property: i.e., the simulating machine halts whenever the origi-
nal one does. Thus we get the same robustness for the class of Turing-decidable languages (i.e., languages
recognized by a TM that halts on all inputs). For historical reasons, Turing-recognizable languages are often
called recursively enumerable, and Turing-decidable languages are often called recursive.

2Actually, putting Theorems 1 and 2 together, we have seen that the apparently much more limited three-register RAM is capable
of simulating an arbitrary RAM.

9

