
CS-172 Computability & Complexity, Spring 2021 Prof. Alistair Sinclair

Note 3: Streaming Algorithms

Acknowledgement: This note is based in part on an earlier version of Luca Trevisan.

Streaming algorithms are procedures whose input is presented in a continuous stream that must be processed
sequentially in a single pass, using only very limited memory (much less than the size of the input). This
setting corresponds to many real-life scenarios where the data to be processed is not stored anywhere but
is generated dynamically, as is the case for requests to a server, online transactions, sensor data, and so
on. Finite automata are the simplest examples of streaming algorithms, where the memory size is constant
(equal to the number of states) regardless of the length of the input stream, and each input item is processed in
constant time. In practice, however, we may allow our streaming algorithms a memory size that grows slowly
(say, logarithmically) with the length of the input. This will already take us well beyond the capabilities of
finite automata while remaining within the streaming framework. Our focus will be on memory size rather
than on the time required to process items.

In this note, we briefly introduce the topic of streaming algorithms by seeing simple examples of problems
that they can handle, along with lower bounds on the memory required for certain problems. The lower
bounds will follow from an adaptation of the ideas we have already seen for finite automata.

We should mention that streaming algorithms are a very active research topic, especially in light of their
connection to Big Data. However, since this is not the main concern of this course, we will only scratch the
surface here.

1 A simple non-regular language

Let’s start by returning to one of our canonical non-regular languages, namely

L= = {set of 0-1 strings with an equal number of 0s and 1s}.

To put this in the streaming context, we assume that the binary input symbols x1, x2, . . . , xn are presented
in a stream, and that the algorithm must determine in a single pass whether the word x1 . . . xn belongs to L.
We first make the simple observation that this problem can be solved using only O(log n) bits of memory:
simply maintain a counter of the difference between the number of 0’s and the number of 1’s seen so far,
and accept iff the counter is zero at the end of the stream. The range of this counter is clearly [−n, n], so the
number of bits required is blog2 nc + 2 (allowing one bit for the sign).

To see that this bound is optimal, we adapt the technology from our proof of the Myhill-Nerode theorem to
the streaming setting.

Definition 1. For a language L ⊆ Σ∗, we say that two streams x, y ∈ Σ∗ are streaming distinguishable
for L on inputs of length n if there exists a stream z ∈ Σ∗ such that |xz| = |yz| = n and exactly one of
xz, yz belongs to L.

This is essentially equivalent to our earlier definition of distinguishable strings for finite automata, except
that we now require the lengths of xz, yz to be exactly n; this is because in the streaming scenario we care
about the memory used as a function of the length of the input.

1

Theorem 2. Suppose that there is a set D(n) of pairwise distinguishable strings for L on inputs of length n.
Then any streaming algorithm that recognizes L must use at least log2 D(n) bits of memory on inputs of
length n.

Proof. Suppose, for a contradiction, that there is a streaming algorithm for L that uses m(n) < log2 D(n)
bits of memory on inputs of length n. Then this algorithm has at most 2m(n) < D(n) distinct internal states,
so by the pigeonhole principle there must be two different distinguishable strings x, y in our set that take the
algorithm into the same state. But this in turn means that the output of the algorithm on inputs xz, yz must
be the same, which is a contradiction.

Returning now to our language L=, we need to find a large set of distinguishable strings Sn for strings of
length n in L=. From the definition, we note that any set of distinguishable strings must all have the same
length. (Why?) Also, we may assume w.l.o.g. that n is even since there are no odd-length strings in L=.

Consider the set Sn = {0i1n/2−i : 0 ≤ i ≤ n/2}. We claim that these strings are all distinguishable: to
distinguish 0i1n/2−i and 0j1n/2−j , where i 6= j, we may use the string z = 0n/2−i1i, since then 0i1n/2−iz ∈
L and 0j1n/2−jz /∈ L. Now |Sn| = n/2 + 1, so Theorem 2 implies that any streaming algorithm for L=

must use at least dlog2(n/2 + 1)e bits of memory on inputs of any (even) length n. This implies that the
above algorithm is optimal (up to one bit).

2 Finding a majority element

We turn now to a more challenging problem. Suppose our input is a stream of elements x1, x2, . . . xn over
some general alphabet Σ, and our goal is to find a majority element in the stream (i.e., an element that occurs
more than n

2 times) Again, we want to do this in a single pass using only O(log n) bits of memory1.

The imposed memory limitation basically allows us one (or a constant number of) counters up to about n;
note that this rules out a trivial solution that keeps track of the frequencies of all elements, since this would
require |Σ| counters each potentially of size O(log n). We typically assume that Σ is very large (possibly
even growing with n), so such a dependence on ‖Σ| is not reasonable. (Imagine, e.g., that Σ is the set of all
Google search terms seen in a certain period.) How can we use a single counter to accomplish this task?

Exercise: Think about how you might solve this problem before reading on!!!

The idea is to maintain a counter for just one element as we move along the stream. Call this the active
element. Initially there is no active element and the counter is set to zero. When the next element in the
stream to be processed is xi, we update the counter and active element according to the following rule:

• if the counter is zero then make xi active and set the counter to 1, else

• [counter 6= 0] if xi is active then increment the counter by 1, else

• [counter 6= 0 and some other element is active] decrement the counter by 1

At the end of the stream, we output the currently active element (if there is one). Note that this algorithm
just needs to store the identity of one element and a single counter of maximum value n, so its memory
requirement is only dlog2 |Σ|e + dlog2 ne bits.

1Incidentally, this is a notoriously popular question in tech company interviews!

2

The correctness of the algorithm hinges on the following claim.

Claim 3. If a majority element x exists in the stream, then x is active at the end of the process.

Proof. Suppose x occurs m > n
2 times. If x is not active at the end, then we will show how to associate

each occurrence of x with a distinct occurrence of some other element. This will be a contradiction, since
there are fewer than m such other occurrences.

To show how to perform the above association, imagine that the counter is implemented using an explicit
stack of occurrences of the currently active element: each increment pushes the new occurrence onto the
stack, and each decrement pops the top occurrence off the stack. Now consider some particular occurrence
of x in the stream: this occurrence causes the counter to be either incremented or decremented. If it causes a
decrement, then we associate this occurrence of x with the occurrence of the currently active element (which
must not be x) that is popped off the stack. On the other hand, if it causes an increment then this occurrence
itself is pushed onto the stack, and we associate it with the later occurrence of some other element that
causes it to be popped off the stack. (It must eventually be popped because of our assumption that x is not
active at the end of the process.) This means that each of the m occurrences of x is associated with a distinct
occurrence of some other element, giving us the desired contradiction.

Exercise: What, if anything, can you say about the output of the above algorithm in the case that the stream
does not contain a majority element?

3 Finding a most frequent element

What if we don’t assume that a majority element exists in our stream; can we still find an element that occurs
most frequently using O(log n) space? Finding such an element is known as the “Most Frequent Element”
(MFE) problem. As the following theorem shows, the answer is a devastating “no”. We let ` = dlog2 |Σ|e
denote the bit length of the alphabet symbols, and as before n is the length of the input stream. For simplicity
we will assume that 2` > n2, which means that the size of the alphabet grows with n (at a rate of at least n2).

Theorem 4. Assuming 2` > n2, any (deterministic) streaming algorithm for the MFE problem must use at
least Ω(n`) bits of memory.

Proof. We actually prove the lower bound for a simpler language-recognition problem which fits into our
standard framework. Since this is a lower bound it will hold also for the original MFE problem as well.
Denote the alphabet Σ = {0, 1, . . . , 2` − 1}. We consider the language LMFE consisting of all strings
over Σ for which the most frequent element is 0. We will show that there are 2Ω(n`) distinguishable strings
for LMFE on inputs of length n. This will prove the theorem via the general result of Theorem 2. (Note that
here the alphabet Σ depends on n, but this does not affect Theorem 2.)

The set of distinguishable strings will be all strings of length n − 2 that have the form

xA = 0, 0, 0, a1, a1, a2, a2, . . . , a(n−5)/2, a(n−5)/2,

where A = {a1, a2, . . . , a(n−5)/2} ⊆ Σ \ {0} ranges over all possible subsets of n−5
2 nonzero elements

of Σ. Note that in xA each element of A is repeated twice, while 0 is repeated three times and no other
elements are present.

3

To see that any two strings xA, xB , where A 6= B, are distinguishable, let c ∈ Σ be an element that belongs
to A and not to B. (Such an element must exist since A,B are different subsets of the same size.) Then if
we use z = cc as the distinguishing string, we see that attaching z to xA yields a string of length n that is
not in L (because the most frequent element is c, which occurs four times), while attaching z to xB yields a
string of length n that is in L (because the most frequent element is 0, which occurs three times).

The number of such distinguishable strings is equal to the number of subsets A as above, which is

(
2` − 1

n−5
2

)
≥

(
2` − 1

e · (n−5
2)

)n−5
2

≥ 2Ω(n`),

where we have used the standard fact that
(
N
k

)
≥
(

n
ek

)k and the fact that 2`

n ≥ 2`/2 which follows from our
assumption 2` > n2.

4 A more general framework

We can actually relax the framework above to encompass a wider variety of inputs, as follows. For any
given decision problem, define

Ln,Σ = {yes-instances of size n, encoded over Σ}.

Note that Ln,Σ is just a language over the alphabet Σ = Σ(n), corresponding to problem instances of
“size” n. The actual length of the input stream may not be exactly n, but is related in a natural way to n.

As a concrete example, consider the problem of deciding whether a given undirected graph G = (V,E) is
connected. The set of inputs of size n here are all n-vertex graphs on the vertex set Vn = {1, 2, . . . , n}. We
can encode a given graph over the alphabet Σ(n) = {(v1, v2) : v1, v2 ∈ Vn, v1 6= v2} simply as the stream
consisting of its edges (in arbitrary order). The language Ln,Σ is defined as

Ln,Σ = {G = (Vn, E): G is connected},

where G is encoded as stated. Note that the length of the input stream for inputs of size n is O(n2).

As before, our goal is to design a streaming algorithm that recognizes Ln,Σ for each n, and uses only a small
amount of memory (say, O(log n) or O(polylog(n))). Conversely, to establish lower bounds on the memory
size we can try to find a set D(n) of pairwise distinguishable strings w.r.t. Ln,Σ. Note that, since problems
of size n no longer have fixed stream length n, we say that two strings x, y ∈ Σ(n)∗ are distinguishable
if there exists z ∈ Σ(n)∗ such that exactly one of xz, yz belongs to Ln,Σ(n). Then, by exactly the same
reasoning as in Theorem 2, we get a lower bound of log2 D(n) on the number of bits of memory for any
streaming algorithm for this problem.

We’ll see a concrete example on HW4.

4

