
CS172 Computability & Complexity, Spring 2021

Homework 10
Out: 16 Apr. Due: 23 Apr.

Instructions: Submit your solutions in pdf format on Gradescope by 5pm on Friday, April 23. Solutions may be
written either in LATEX (with either machine-drawn or hand-drawn diagrams) or legibly by hand. (The LATEX source
for this homework is provided in case you want to use it as a template.) Please be sure to begin the solution for each
problem on a new page, and to tag each of your solutions to the correct problem! Per course policy, no late solutions
will be accepted. Take time to write clear and concise answers; confused and long-winded solutions may be penalized.
You are encouraged to form small groups (two to four people) to work through the homework, but you must write up
all your solutions on your own. Depending on grading resources, we reserve the right to grade a random subset of the
problems and check off the rest; so you are advised to attempt all the problems.

1. Consider the problem of deciding whether a Boolean formula in 2-CNF (i.e., conjunctive normal form with
two literals per clause) is unsatisfiable. This problem corresponds to the language

2-UNSAT = {〈φ〉 : φ is in 2-CNF and is not satisfiable}.

We know from CS170 that there exists a polynomial time algorithm for deciding whether such a φ is satis-
fiable, so we know that 2-UNSAT ∈ P.

(a) Show that 2-UNSAT belongs to NL.
[NOTE: Be careful here! You do not have enough space to write down a complete assignment!]

(b) By giving a reduction from PATH, show that 2-UNSAT is NL-complete (w.r.t. log-space reduction).

(c) Deduce that 2-SAT is also NL-complete.

2. Consider the problem STRONG-CON, defined as follows:

STRONG-CON := {〈G〉 : G is a strongly connected directed graph}.

(Recall that a directed graph G is strongly connected if, for every pair of vertices u, v, there is a path from u
to v and from v to u in G.) Show that STRONG-CON is NL-complete.

3. This problem concerns the following two languages:

ALLDFA = {〈D〉 : D is a DFA that accepts all input strings}
ALLNFA = {〈N〉 : N is an NFA that accepts all input strings}

(a) Show that ALLDFA is NL-complete.

(b) Show that ALLNFA is PSPACE-complete. [HINT: For hardness, try a direct reduction from any lan-
guage in PSPACE to ALLNFA. Consider a computation sequence of a PSPACE TM M on input w,
and construct an NFA that “guesses” a place where the sequence goes wrong. (This is somewhat
reminiscent of the proof we saw earlier in the class that ALLCFG is undecidable.)]

(c) Parts (a) and (b) indicate that there is a huge difference in computational complexity between ALLDFA

and ALLNFA. Why does this not contradict the fact that DFAs and NFAs are equivalent, in the sense
that both recognize the regular languages?

1


