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Abstract

This paper contributes to the study of nonlinear dynam-

ical systems from a computational perspective. These

systems are inherently more powerful than their lin-

ear counterparts (such as Markov chains), which have

had a wide impact in Computer Science, and they seem

likely to play an increasing role in future. However,

there are as yet no general techniques available for han-

dling the computational aspects of discrete nonlinear

systems, and even the simplest examples seem very hard

to analyze. We focus in this paper on a class of quad-

ratic systems that are widely used as a model in pop-

ulation genetics and also in genetic algorithms. These

systems describe a process where randommatings occur

between parental chromosomes via a mechanism known

as \crossover": i.e., children inherit pieces of genetic

material from di�erent parents according to some ran-

dom rule. Our results concern two fundamental quan-

titative properties of crossover systems:

1. We develop a general technique for computing the

rate of convergence to equilibrium. We apply this

technique to obtain tight bounds on the rate of

convergence in several cases of biological and com-

putational interest. In general, we prove that these

systems are \rapidly mixing", in the sense that the

convergence time is very small in comparison with

the size of the state space.

2. We show that, for crossover systems, the classical

quadratic system is a good model for the behavior

of �nite populations of small size. This stands in

sharp contrast to recent results of Arora et al and

Pudlak, who show that such a correspondence is

unlikely to hold for general quadratic systems.
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1 Introduction

It is well known that linear dynamical systems (in the

form of branching processes and Markov chains) have

had a major impact in algorithmic and analytical appli-

cations in Computer Science (see, e.g., [2] and the sur-

veys [12,14]). In contrast, and despite their inherently

greater power, the study of nonlinear dynamical sys-

tems in Computer Science is still in its infancy (though

we mention some recent exceptions below). Motivated

by the belief that nonlinear systems will play an increas-

ing role in future, we aim in this paper to contribute to

research on their basic properties, and to develop ana-

lytical tools for them analogous to those that have been

essential in applications of linear systems.

Many nonlinear systems of computational interest

can be viewed as quadratic dynamical systems (QDS).

In a QDS, the probability distribution (also called the

\population") p

t

at time t evolves under random pair-

wise interactions, so that

p

t+1

(x) =

X

uvw

p

t

(u)p

t

(v)

�

1

2

�

uvwx

+

1

2

�

uvxw

�

; (1)

where u; v; w; x range over the set of states (or \types"),

and �

uvwx

denotes the probability that, in an interac-

tion between types u and v, the outcome is the pair of

types w and x. Thus interactions occur between pairs

of types u; v (\parents") selected independently at ran-

dom from the current population p

t

; the e�ect of an

interaction is to replace the parents by two \o�spring"

types created according to the distribution �

uv � �

. The

coe�cients �

uvwx

satisfy

P

wx

�

uvwx

= 1. Note that (1)

is a natural generalization of a Markov chain, whose dy-

namical equation has the form p

t+1

(x) =

P

u

p

t

(u)�

ux

.

A QDS is symmetric if the probabilities �

uvwx

satisfy

the symmetry conditions �

uvwx

= �

vuwx

= �

uvxw

, and

the reversibility condition �

uvwx

= �

wxuv

. Symmetry

of QDSs is analogous to reversibility of Markov chains.

The above framework is quite general, and captures

several important systems from the natural sciences:

e.g., Boltzmann's model of an ideal gas (where the types

are velocities of gas molecules, and interactions are col-

lisions between them) [17]; the Hardy-Weinberg model

of population genetics (where the types are the geno-

types of some species, and interactions are matings be-

tween parents) [15]; and Volterra's model of a predator-

prey ecology (where the types are the predator and the

prey, and interactions correspond to procreation and



kills) [10]. The �rst two of these examples are symmet-

ric.

In Computer Science, quadratic systems arise in ge-

netic algorithms [11], a class of heuristics for combi-

natorial optimization based loosely on the paradigm of

natural selection. This approach is attractive, but the

resulting algorithms are usually impossible to analyze

(though see [20,4]). The key ingredient of such algo-

rithms is a \mating" operator, which in many cases

is modeled by equation (1).

y

Nonlinear systems have

also been used as an analytical tool in various contexts:

examples included Valiant's construction of small-sized

monotone circuits for majority [21], Clarkson et al 's ap-

proximation algorithm for the center point [6], and the

analysis of on-line fair scheduling by Ajtai et al [1]. The

last two examples hint at the power of nonlinear systems

in providing a more compact and theoretically more el-

egant representation of linear systems whose states are

vectors in a high dimensional space.

In this paper, we focus on two questions of cen-

tral importance to computational applications of QDSs.

The �rst question concerns the rate of convergence of

the system to its equilibrium state. (Recently, Rabi-

novich et al [19] have shown that, under a mild techni-

cal condition, any symmetric QDS eventually converges

to a stationary population.) The rate of convergence is

fundamental in computational contexts, and tools for

analyzing it have been essential in applications of lin-

ear systems. In the nonlinear case, however, there is

as yet very little general theory (such as eigenvalues)

to guide us, and even the simplest systems appear ex-

tremely hard to analyze. For example, the rate of con-

vergence of the Boltzmann equation is a long-standing

open problem in theoretical physics [5].

The second question we address concerns the feasi-

bility of representing the evolution of a �nite population

by a QDS. The dynamical system (1) operates on prob-

ability distributions, and hence implicitly assumes that

the population consists of an in�nite number of indi-

viduals. Thus (1) is actually a convenient theoretical

abstraction of an analogous physical, biological or com-

putational process in which the population size is �nite,

and of manageable size. The question is: when does the

QDS faithfully represent the behavior of the �nite pop-

ulation, so that this abstraction is justi�ed? This is an

instance of the following more general question: when

is it possible to e�ciently simulate a QDS? (If the QDS

faithfully represents a small �nite population, then this

�nite system o�ers an e�cient simulation.) This is not

an interesting issue in the case of linear systems such as

Markov chains: the probability distribution at time t is

represented precisely by a single point (a population of

size 1) which performs a random walk as prescribed by

the transition probabilities of the chain. In the quad-

ratic case, however, it seems that in order to obtain a

single random sample from the population p

t

, we re-

quire two independent random samples from p

t�1

, four

from p

t�2

, and so on, so that the population size re-

quired for a faithful simulation grows exponentially with

time. This intuition was formalized recently by Arora

et al [3] and by Pudlak [18], who proved that a QDS

is capable of solving any problem in Pspace in a poly-

nomial number of steps. This means that we cannot

y

In genetic algorithms, the situation is further complicated by

the interleaving of mating with a \selection" operator, in which

�tter types are favored; see, e.g., [11].

expect e�cient simulation to be possible in general (un-

less RP = Pspace). In particular, a QDS is in general

not a good representation of the behavior of small �nite

populations. Thus it is an interesting practical and the-

oretical question to determine under which additional

assumptions such a correspondence does hold.

In this paper, we give a complete analysis of both

the above questions | rate of convergence and faithful

representation | for a subclass of QDSs that are exten-

sively studied in population genetics, and are also fre-

quently employed in the mating operator of genetic al-

gorithms. Here the types are chromosomes, represented

as strings of length n over a �nite alphabet, and the in-

teractions are \crossovers": i.e., given a pair of parent

strings u; v, the �rst child, w, is obtained by selecting a

subset S � f1; : : : ; ng of positions from some probabil-

ity distribution, and taking symbols at positions i 2 S

from u, and the remainder from v. The second child,

x, is constructed in the same way using the comple-

ment of S. By choosing the probability distribution

over S (or \crossover distribution") appropriately, one

can cast any desired reproductive rule in this frame-

work. (For precise de�nitions and concrete examples,

see Section 2.)

It is a classical result dating back to 1944 [8] that any

such system (under an obvious non-degeneracy assump-

tion) converges to a stationary population in which the

symbols at di�erent positions are mutually indepen-

dent; moreover, the probability distribution at each po-

sition can be determined from the initial population.

However, despite the wide use of this model, there were

apparently no precise quantitative results about the rate

of convergence or the relationship with �nite popula-

tions.

Our analysis settles these questions as follows. First,

we prove that any crossover system converges extremely

fast to stationarity, namely after only A logn steps,

where the factor A has a natural interpretation in terms

of the rate at which the crossover distribution separates

positions in the string. We also show that this bound

is tight (up to a small constant factor) for several spe-

ci�c crossover distributions that are used in practice.

This is apparently the �rst time that precise conver-

gence rates have been given for these systems: the best

previous analysis, using much more complex methods,

gave only much weaker asymptotic information about

the rate [15].

Our second contribution demonstrates that, for cross-

over systems, the QDS model is an appropriate mathe-

matical abstraction for the behavior of relatively small

populations of individuals. Speci�cally, we prove that

t steps of the quadratic system accurately represent t

generations of a �nite population of size only O(n

2

t).

This linear dependence on time is a dramatic improve-

ment over the obvious exponential bound mentioned

above, and provides a positive counterpart to the nega-

tive results of Arora et al and Pudlak about simulating

a general QDS. Again, this seems to be the �rst re-

sult of its kind. The question of �nite populations has

recently been addressed in the population genetics liter-

ature [13], but the notion of simulation adopted there is

much weaker than ours, and the resulting �nite system

cannot be said to faithfully reect the original nonlinear

one.

Our techniques are elementary, but rely crucially on

the novel observation that a crossover system has an



equivalent formulation as an inverse process in which

individuals randomly select genetic material from their

ancestors. This approach parallels the use of inverse

processes in the analysis of certain card-shu�ing Markov

chains [7]. The inverse process allows a surprisingly

clean treatment of �nite populations. For the bounds

on convergence rate, we further interpret the inverse

process as a random partitioning process on sets, and

analyze a suitable stopping time. This process seems to

be of independent combinatorial interest.

The remainder of this paper is organized as follows.

In Section 2 we give some de�nitions and notation con-

cerning crossover systems, quote some basic facts about

them, and present the inverse process that underlies all

our results. In Section 3 we consider the rate of conver-

gence, and in Section 4 �nite populations.

2 Crossover operators

2.1 De�nitions and basic facts

As indicated above, we consider a classical abstract ge-

netic model in which chromosomes in some species are

represented as strings of length n over a �nite alpha-

bet. Each position in the string is the locus of a gene,

and the symbol in that position is the corresponding

gene value, or allele. Mathematically there is no essen-

tial loss of generality in assuming that there are only

two possible alleles at each locus. Therefore, we shall

work throughout with the set f0; 1g

n

of all 0-1 strings of

length n, which we shall also refer to as types. Our re-

sults can be generalized in an obvious fashion to handle

more than two possible alleles at each locus.

The population at time t is a probability distribu-

tion p

t

over f0; 1g

n

, such that p

t

(v) is the proportion

of individuals of type v. The population evolves in dis-

crete time as a quadratic dynamical system of the form

given in equation (1). In this special case, mating is

controlled by a probability distribution, �, on the set

of all subsets of the set of bit positions f1; : : : ; ng. In

a mating between parents u; v, a child w is determined

by the following random process:

(i) select a subset S randomly according to �;

(ii) set w

i

=

n

u

i

if i 2 S;

v

i

otherwise.

Thus the child w receives bits from parent u in positions

i 2 S, and from v in the remaining positions. The

dynamical equation for the system may now be written

formally as

p

t+1

(w) =

X

S

X

u:u

S

=w

S

v:v

�

S

=w

�

S

p

t

(u)p

t

(v)�(S): (2)

Here, for a subset S � f1; : : : ; ng and a vector v 2

f0; 1g

n

,

�

S denotes the complement f1; : : : ; ng � S, and

v

S

is the projection of v onto S (i.e., the vector obtained

from v by deleting the bits in positions i 2

�

S). It is

not hard to see that this process can be formulated as

a symmetric QDS as de�ned in equation (1): simply

introduce a second child x such that w�x = u� v and

symmetrize.

An equivalent view of this process is that S spec-

i�es a sequence of positions along the chromosome at

which the parent from which the child inherits alleles

changes: these events are known as crossovers. We

shall refer to the distribution � as a crossover distribu-

tion. The crossover distribution controls recombination,

or the relationship between pieces of genetic material

passed from parents to children. Standard examples of

crossover distributions include the following.

Example 1 Uniform crossover. Here crossovers occur

independently at random at all positions with probabil-

ity

1

2

. Equivalently, � is the uniform distribution on all

subsets of f1; : : : ; ng.

Example 2 One-point crossover. Here there is a single

crossover at a position selected uniformly at random,

i.e., � is the uniform distribution on all sets of the form

f1; : : : ; ig, for 1 � i � n. A common generalization is

k-point crossover, in which exactly k crossovers occur

at randomly chosen distinct positions. This model is

particularly popular in genetic algorithms.

Example 3 The Poisson model. This is the most widely

used model in population genetics, and dates back to

1919 [9]. A crossover occurs between positions i and i+1

with probability p

i

�

1

2

, independent of other crossovers.

(The name of this model derives from the fact that ad-

jacent loci in the idealized string model are actually sep-

arated by large distances in the physical chromosome,

and crossovers between a pair of these loci are presumed

to occur in the physical model according to a Poisson

process in the separating interval.)

There is currently much interest in �nding crossover

distributions that model real biological mating more ac-

curately: see, e.g., [16] for an extensive discussion. The

chief drawback of the Poisson model is the assumption

of independence of adjacent intervals. Although we will

illustrate our techniques for the above standard exam-

ples, we stress that they can be applied to any crossover

distribution.

The following terminology will be useful in describ-

ing the behavior of crossover operators. A subset S is

said to separate positions i; j 2 f1; : : : ; ng if i 2 S and

j 2

�

S or vice versa. We shall call a crossover distribu-

tion � non-degenerate if, for all pairs of distinct posi-

tions i; j, there exists some subset S with �(S) > 0 that

separates i and j. All the above examples are plainly

non-degenerate.

For any given initial population p

0

, the dynamical

system (2) de�nes a trajectory (p

0

; p

1

; : : : ; p

t

; : : :) in pop-

ulation space. The �rst question that naturally arises

is: what is the asymptotic behavior of trajectories? We

say that a trajectory (p

t

)

1

t=0

converges to a population p

if p

t

! p pointwise as t ! 1. The following classical

result, �rst proved by Geiringer in 1944 [8], states that

every trajectory converges to a stationary population

in which the loci behave independently. (A stationary

population is one which remains invariant under the op-

erator of equation (2).)

Theorem 1 [8] For any non-degenerate crossover dis-

tribution, every trajectory (p

t

) converges to a stationary

population p

1

de�ned by p

1

(v) =

Q

n

i=1

c

i

(v

i

), where

c

i

(0) and c

i

(1) are the probabilities of values 0 and 1

respectively at position i in the initial population.



Remarks: (i) Plainly, the stationary population it-

self is not interesting and can be constructed by direct

methods. Our concern here is with the transient behav-

ior of the system, i.e., with its approach to stationarity.

(ii) The non-degeneracy assumption is inessential. Sup-

pose some pair of positions i; j is not separated by �;

this phenomenon is known as complete linkage. For a

degenerate crossover distribution, the bit positions can

be partitioned into equivalence classes under the rela-

tion of complete linkage; asymptotically, these classes

are mutually independent, i.e., Theorem 1 still holds

but with the index i generalized in the obvious way to

run over classes.

2.2 An inverse process

Our aim in this subsection is to reformulate the cross-

over process in a way that will ease our subsequent anal-

ysis. We will view a random individual from the pop-

ulation p

t

as a random variable over a sample space of

labeled trees that describe the sequence of matings by

which the individual was created. As will become clear

shortly, this can be seen as an inverse process in which

individuals select bits from their ancestors.

A t-step derivation is a complete binary tree of height

t, in which some of the leaves are labeled with n-bit

strings, and the interior nodes are labeled with strings

from f`; r; �g

n

in a way to be described below. We pic-

ture the tree \upside-down", with its root at level t;

each interior node, at level i say, has two parents at

level i�1. The idea is that the nodes at level i represent

the time-i ancestors of the individual at time t, while the

`=r labels indicate the transitions that brought about

its creation: an ` (respectively, r) label in position i

indicates that the ith bit was inherited from the left

(respectively, right) parent. These symbols are called

active symbols. Active symbols occur only where the

corresponding bit is eventually inherited by the root.

More formally, the labeling is de�ned as follows:

(i) The root is always labeled with a string from f`; rg

n

.

(ii) Every other interior node is labeled with a string from

f`; r; �g

n

; if the node is a right (left) parent of a node

with label L, then it has a symbol other than � in each

position i for which L

i

= r (L

i

= `), and a � in all the

remaining positions.

(iii) If a leaf is a right (left) parent of a node with a label

which contains a symbol r (`), then this leaf is labeled

with an n-bit string.

We call nodes whose labels contain an active sym-

bol active nodes, and leaves with a label active leaves.

Given such a derivation T , we de�ne an n-bit string

root(T ) by propagating bits from leaf labels to the root

as indicated by the `=r labels on the active nodes. This

string is our individual from the population at time t.

It remains to specify a probability distribution over

the labels so that the distribution of root(T ) is indeed p

t

.

This is done as follows:

1. Choose the label L on the root by selecting a subset S

at random from � and setting L

i

= r if i 2 S, and

L

i

= ` otherwise.

2. For level j = t� 1 down to 1, for each active node at

level j choose the label L by selecting a subset S at

random from � and setting

L

i

=

�

r if i 2 S and symbol i is active;

` if i 2

�

S and symbol i is active;

� otherwise.

3. Choose the labels on active leaves independently from p

0

.

We denote by D

t

the resulting sample space over

t-step derivations. The following claim should be intu-

itively clear, and may readily be veri�ed by induction.

Lemma 2 If the derivation T is drawn at random from

D

t

, the distribution of root(T ) is precisely p

t

.

The sample space D

t

will play a central role in our

analysis in the remainder of the paper. Note that the

construction of the sample space given above can be

viewed as an inverse process in which individuals select

bits from their parents.

3 The rate of convergence

Let � be an arbitrary non-degenerate crossover distri-

bution. We have seen in Theorem 1 that all trajecto-

ries under � converge asymptotically to a well-de�ned

stationary population. In this section we shall investi-

gate the quantitative question of how many generations

elapse before this asymptotic behavior sets in. To make

this question precise, let us de�ne the mixing time as

� (�) = max

p

0

minft : kp

t

0

� p

1

k � � 8t

0

� tg;

where k � k denotes variation distance and � 2 (0; 1].

Our aim is to derive tight bounds on � as a function

of n, � and the crossover distribution �. In Section 3.1

we will obtain upper bounds on the mixing time; in

Section 3.2, we will demonstrate that these bounds are

essentially tight.

Our main tool throughout will be a random set par-

titioning process that is closely related to the inverse

process introduced in the previous section. The process

is a natural one and we believe it to be of independent

combinatorial interest. It is the following: choose a sub-

set S at random according to �, and partition the set

f1; : : : ; ng by intersecting it with S. Let the resulting

sets be K

1

andK

2

. Then partitionK

1

andK

2

in similar

fashion, by selecting further random subsets S

1

; S

2

in-

dependently. Continue this process until only singleton

sets remain. More formally, the process (�) is de�ned

as follows:

k = 0; �

0

=

�

f1; : : : ; ng

	

repeat

�

k+1

= ;

for each K 2 �

k

with jKj > 1 do

select S at random according to �

K

1

= S \K; K

2

=

�

S \K

�

k+1

= �

k+1

[ fK

1

;K

2

g

k = k + 1

until all sets in �

k

are singletons

The relationship between this process and the deriva-

tion model introduced in the previous section should be

clear. The partition �

k

corresponds to the set of ac-

tive labels at level t� k of the tree; each active label is

represented by a subset K containing the positions of



its active symbols, and the partition of K into K

1

;K

2

corresponds to the splitting of these symbols into `; r.

The process stops when all sets in �

k

are singletons; at

this point, there are precisely n active leaves, each of

which contributes one bit to the root.

3.1 Upper bounds on the mixing time

We begin with a simple observation which relates the

variation distance at time t to a structural property of

elements of the sample space D

t

.

Lemma 3 Let T be a derivation drawn at random from

D

t

. If t is large enough that Pr[T has n active leaves] �

1� �, then kp

t

� p

1

k � �.

Proof: If T has n active leaves, all bits in root(T )

are descended from distinct ancestors at time 0. Hence,

conditional on this event, the distribution of root(T ) is

precisely p

1

.

The condition that T has n active leaves corresponds

precisely to the stopping rule for the process (�). Thus

we can obtain upper bounds on the mixing time by

bounding the tail distribution of this stopping time.

Let Z be the random variable (stopping time) that

counts the number of iterations of the process (�) (i.e.,

the value of k at the conclusion), and for � 2 (0; 1] de�ne

�

0

(�) = minft : Pr[Z > t] � �g:

The foregoing discussion, together with Lemma 3, im-

mediately yields the following result.

Theorem 4 � (�) � �

0

(�).

The detailed analysis of the stopping time �

0

of course

depends on �; however, it is not hard to derive an esti-

mate which, though apparently a little crude, actually

gives good bounds in many cases. De�ne

r

ij

(�) = Pr[S does not separate i and j];

where S is drawn at random from �, and set

r(�) = max

i;j

r

ij

(�):

Note that our assumption of non-degeneracy implies

that r(�) < 1.

Theorem 5 The mixing time � satisi�es

� (�) � log

1=r(�)

(n

2

�

�1

) =

1

ln r(�)

�1

�

2 lnn+ln �

�1

�

:

Proof: Consider some pair of positions i; j, and assume

that, at the start of iteration k of the above random

process, i and j belong to the same set K 2 �

k

. The

probability that i and j belong to di�erent sets in �

k+1

is clearly at least 1�r(�). Since all iterations in the pro-

cess are independent, if k is at least log

r(�)

�1

(n

2

�

�1

),

then we can be sure that i and j belong to di�erent sets

in �

k

with probability at least 1��=n

2

. But since there

are only

�

n

2

�

distinct pairs i; j, we know that every pair

is separated in �

k

with probability at least 1��. Clearly,

once all pairs have been separated, �

k

must consist en-

tirely of singletons. Thus �

0

(�) � log

r(�)

�1

(n

2

�

�1

), and

the result follows from Theorem 4.

Remarks: (i) Note that the bound on the mixing time

in Theorem 5 is extremely small compared to the num-

ber of types, which is 2

n

. There is an initial delay (the

\relaxation time") that depends only logarithmically on

the string length n, followed by an exponential decay at

rate ln r(�)

�1

.

(ii) A weak (asymptotic in ln �

�1

) bound on the mixing

time is given in [15, Theorem 6.6.1], by a much more

complex method that involves solving the evolutionary

equation explicitly. This bound, however, provides no

information about the relaxation time, which is of cen-

tral importance in computational applications.

Theorem 5 immediately yields upper bounds on the

mixing time for the classical crossover distributions de-

�ned in Section 2.1.

Corollary 6 The mixing time �

unif

for uniform cross-

over satis�es

�

unif

(�) � 2 log

2

n + log

2

�

�1

:

Proof: For uniform crossover r(�) =

1

2

.

Corollary 7 The mixing time �

1pt

for one-point cross-

over satis�es

�

1pt

(�) � n lnn+ n ln �

�1

:

Proof: For one-point crossover, r(�) = 1�

1

n

(achieved

for any pair of adjacent positions i; j), and, using the

fact that ln(1 + �) � �, we immediately obtain the

upper bound 2n lnn + n ln �

�1

. A closer examination

shows, however, that it is enough to separate only the

n�1 pairs of adjacent positions, rather than all

�

n

2

�

pairs

as in the proof of Theorem 5. This observation gets rid

of the factor of 2 in the �rst term.

Corollary 8 The mixing time �

poisson

for the Poisson

model satis�es

�

poisson

(�) � A(2 lnn+ ln �

�1

);

where A = �1= ln(max

i

f1� p

i

g).

Proof: We show that for the Poisson model,

r(�) = max

1�i�n�1

(1� p

i

):

This will imply the claim.

Consider any two loci i < j. Note that 1 � r

ij

(�)

is exactly the probability that the number of crossovers

in the interval between i and j is odd. We shall use the

following notation. Let P =

Q

j�1

k=i

(1� p

k

). E

k

denotes

the event that exactly k crossovers occur between i and

j; EVEN denotes the event that an even number of

crossovers occur between i and j; and ODD denotes

the complement of EVEN. We have

Pr[E

k

] = P �

X

fi

1

;i

2

;:::;i

k

g

k

Y

l=1

p

i

l

1� p

i

l

;



where the sum is over all k-subsets of fi; i+1; : : : ; j�1g.

Now it is not hard to see that

Pr[EVEN]� Pr[ODD] =

j�1

Y

k=i

(1 � 2p

k

):

Since Pr[EVEN] + Pr[ODD] = 1, we get

1� r

ij

(�) = Pr[ODD] =

1�

Q

j�1

k=i

(1� 2p

k

)

2

:

Since all the p

k

are at most

1

2

, this quantity is mono-

tonically increasing in j. Therefore, the minimum is

achieved for j = i + 1, and thus r(�) is achieved at a

pair of adjacent positions.

Of course, one would not expect a single closed ex-

pression such as Theorem 5 to provide a tight bound

on the relaxation time in every case. To obtain sharper

bounds in speci�c cases, one can analyze the stopping

time �

0

(�) directly and appeal to Theorem 4. For ex-

ample, we used this in the proof of Corollary 7 to re-

move the factor of 2 from our upper bound on �

1pt

(�).

As another illustration, we can also get the following

improved bound for the Poisson model that is consider-

ably sharper than that of Corollary 8 when the crossover

probabilities p

i

vary widely.

Theorem 9 The mixing time �

poisson

for the Poisson

model satis�es

�

poisson

(�) � 2min

�

t :

P

i

(1� p

i

)

t

� �

1=2

	

:

Proof: Let r

ij

= r

ij

(�). By the argument in the proof

of Corollary 8, for any two loci i < j, we have r

ij

�

minf1� p

i

; 1� p

j�1

g.

Consider t for which

P

i

(1 � p

i

)

t

� �

1=2

. Since

(1 � p

i

)

t

is the probability that positions i; i + 1 re-

main unseparated at time t, we may conclude that at

time t the probability that any pair of adjacent posi-

tions remains unseparated is at most �

1=2

. The proba-

bility that any pair of positions (not necessarily adja-

cent) remains unseparated at time 2t is bounded above

by

P

i<j

(r

ij

)

2t

. We get

n�1

X

i=1

n

X

j=i+1

(r

ij

)

2t

�

n�1

X

i=1

n

X

j=i+1

(1� p

i

)

t

(1� p

j�1

)

t

�

�

n�1

X

i=1

(1� p

i

)

t

�

2

� �:

Note that the bound in Theorem 9 can be e�ectively

computed numerically, for any values of p

i

and �. We

shall see in the next subsection that this bound is tight

to within a factor of O

�

log log logn

�

.

3.2 Lower bounds on the mixing time

We now turn to lower bounds on the mixing time. Our

aim here is to show that the upper bounds we obtained

in the previous section are tight, to within small con-

stant factors. (In the case of the Poisson model, we

achieve a factor that is not quite constant.) The anal-

ysis in this subsection is somewhat technical, and may

safely be skipped by the casual reader who is prepared

to take these statements on trust.

Our upper bounds did not depend on the initial pop-

ulation. Of course, we cannot expect this to be the case

for lower bounds. In what follows, we will always use

the initial population p

0

(0

n

) = p

0

(1

n

) =

1

2

. Thus the

stationary population will be the uniform distribution

over all strings.

As is to be expected, our estimates of the mixing

time consist of two terms: one, containing �, is the

asymptotic part, and reects the behavior of the sys-

tem for small �, while the other more interesting term

(the relaxation time) measures the time needed for the

system to reach equilibrium. For de�niteness, we may

formally de�ne the relaxation time as � (

1

4

). (The choice

of the constant

1

4

is arbitrary.)

It is a straightforwardmatter to verify that the asymp-

totic part in our bounds is tight.

Theorem 10 For any crossover distribution,

� (�) � log

1=r(�)

(2�)

�1

:

Proof: Let i; j be any pair of positions on which r(�)

is achieved. For any distribution p on n-bit strings, let

p

fi;jg

denote the projection of p onto the positions i; j

(i.e., p

fi;jg

is a distribution on 2-bit strings). Then, by

the triangle inequality for variation distance,

d

t

= kp

t

� p

1

k � kp

fi;jg

t

� p

fi;jg

1

k

If i; j are separated in the �rst t rounds, the latter ex-

pression is 0. If, however, i; j are not separated (this

happens with probability at least �) the variation dis-

tance is

1

2

, which proves the theorem.

Obtaining good lower bounds on the relaxation time

is much harder. Essentially one has to identify a dis-

tinguishing property that separates p

t

from the uniform

distribution, i.e., a large deviation whose probability is

small under the uniform distribution, but not under p

t

.

This property will be di�erent for each crossover dis-

tribution. To analyze large deviations in p

t

, we will

again use the process (�): more speci�cally, we will

view strings in p

t

as being constructed by taking the

partition �

t

created by the process (�) at time t, and

assigning to each block the value 0 or 1 independently

with probability

1

2

. We believe that the analysis of large

deviations in this process is of independent interest.

We now show that the upper bounds on the relax-

ation times of uniform and one-point crossover in Corol-

laries 6 and 7 are tight to within small constant factors.

Theorem 11 For uniform crossover, the relaxation time

is at least

�

1

2

� o(1)

�

log

2

n.



Proof: Let t =

1

2

log

2

n � log

2

c, where c > 1 is a

constant to be speci�ed later. Then �

t

surely con-

tains a block K of size cn

1=2

. Consider the set W of

strings w with j#1(w)�#0(w)j � cn

1=2

, where #1(w)

and #0(w) denote the number of 1s and 0s respectively

in w. For the uniform distribution, Cherno� bounds

give Pr[W ] � 2e

�c

2

=2

. On the other hand, under p

t

we have Pr[W ] �

1

2

, since with probability

1

2

the bit

assigned to K matches the majority in the rest of the

string. Taking c = 3 makes the variation distance at

least

1

4

.

Remark: Using a considerably more involved analysis,

we can improve the constant in the above theorem to

1� o(1). More speci�cally, we can show that �

unif

() �

log

2

n� C for constants  and C. The constant  here

is rather less than

1

4

, but as we have noted the choice

of

1

4

in the de�nition of relaxation time is arbitrary. We

defer the proof to the full version of the paper.

Theorem 12 For one-point crossover, the relaxation

time is at least

�

1

2

� o(1)

�

n lnn.

Proof: Let t = cn lnn, where 0 < c < 1 is a con-

stant to be speci�ed later. The proof proceeds in two

stages: First, we show that with probability close to 1,

the number of pairs of adjacent positions that are in the

same block at time t is at least n

1

2

+�

, for some small �.

Then, we show how this implies a large variation dis-

tance.

Stage 1: Since for this system all partitions �

i

consist

of blocks of consecutive positions, the process (�) can be

viewed as inserting \wedges" in the \slots" between ad-

jacent positions. We say that two adjacent positions are

separated if there is a wedge between them, otherwise

they are unseparated (i.e., separated adjacent positions

are in di�erent blocks; unseparated adjacent positions

are in the same block).

We consider the following related process. Balls are

dropped into n bins, empty at �rst. At each time step

i � t, some balls are dropped according to a probability

distribution P

i

. All distributions P

i

share the following

property:

� For any subset of bins K, the probability that all

jKj bins receive a ball simultaneously is at most

n

�jKj

.

Call the distributions having this property \legal." Con-

sider the following game: start with all bins empty; at

each step an adversary is permitted to pick an arbitrary

legal distribution P , then balls are dropped into the

buckets according to P .

The relation between this game and our question is

the following. The bins are analogous to the slots be-

tween adjacent positions, and the balls are analogous to

the wedges. In the process (�), the distribution under

which new wedges are inserted is determined by the cur-

rent partition, and it has the above-mentioned property.

(Notice that no matter what the partition is, any block

is further partitioned with probability proportional to

the number of slots between its adjacent positions.) So,

the choice of adversary strategy in the bins and balls

game can only make things worse for our analysis.

Thus, instead of bounding the number of unsepa-

rated adjacent positions, we show the following, stronger,

claim:

Claim Let 0 < � � 1. There is an absolute constant

c such that for t = cn lnn, regardless of the strategy of

the adversary, with probability 1� o(1) there remain at

least n

1

2

+�

empty bins at time t.

To prove the claim, let 3 � k �

p

lnn be an integer, and

let t

0

be a time at which the number of empty bins is

at least n

1�

1

k

. We show that, with probability at least

1 � n

�O

(

1

k

)

, the number of empty bins at time t

0

+

�

1

k�1

�

1

k

� 2�

�

n lnn is at least n

1�

1

k�1

+�

. Taking k =

3 and assuming � is small gives c �

1

6

(since the random

variable t

0

is non-negative). However, a slightly more

careful argument, summing over k = 3; 4; : : : ; b

p

lnnc

and taking � =

ln lnn

lnn

, yields c =

1

2

� o(1).

So now assume that n

1�

1

k

bins are empty, and set

t =

�

1

k�1

�

1

k

� 2�

�

n lnn. Our argument uses large

deviation bounds for martingales. In order to apply

these bounds, we need to limit the number of bins that

can get a ball in a single step. Let A denote the event

that at all times between t

0

and t

0

+ t at most k of the

above empty bins receive a ball. Let B denote the event

that at time t

0

+ t at least n

1�

1

k�1

+�

bins are empty.

We wish to estimate Pr[B]. We do this indirectly, by

estimating Pr[A!B] = Pr[:A _ B] and Pr[:A]. We

then use Pr[B] � Pr[A!B]� Pr[:A]. The reason for

doing this is that the estimation of Pr[A!B] can be

simpli�ed by considering the following modi�ed game.

As long as A holds (i.e., at most k bins receive a ball

in each step), we follow the game determined by the

adversary strategy. As soon as A is about to be violated

(i.e., more than k bins are to receive a ball), we switch to

a more accommodating sequence of distributions where

A is never violated. We bound Pr[B] for this modi�ed

game. Clearly, the same bound holds for Pr[A!B] in

the original game.

First, we bound Pr[:A]. By our assumptions,

Pr[:A] �

1

n

k+1

�

n

1�

1

k

k + 1

�

n lnn �

lnn

n

1

k

: (3)

We now bound Pr[A! B], or rather Pr[B] in the

modi�ed game. For i = 0; 1; : : : ; t, de�ne the ran-

dom variable Y

i

to be the expectation of the number

of bins that will remain empty at the end of the modi-

�ed game, as computed at time t

0

+ i. This expectation

is, of course, over the strategy of adversary. Clearly,

E[Y

i+1

j Y

i

] = Y

i

, and the sequence of random vari-

ables Y

0

; Y

1

; ::; Y

t

is a martingale. Moreover, since we

are assuming that A holds, jY

i

�Y

i+1

j � k. Thus, using

Azuma's inequality, we have

Pr[Y

t

� Y

0

< �k�

p

t] � e

��

2

=2

: (4)

What is Y

0

? Let Z

1

; Z

2

; : : : ; Z

n

1�

1

k

be indicator ran-

dom variables with Z

j

= 1 i� the jth empty bin (at



time t

0

) remained empty at time t

0

+ t. By our as-

sumptions, the probability that any bin receives a ball

in one time step is at most

1

n

; therefore p

j

= Pr[Z

j

=

1] �

�

1�

1

n

�

t

. By linearity of expectation,

Y

0

=

X

j

p

j

� n

1�

1

k

�

1�

1

n

�

t

:

After substituting in the value of t, a routine calculation

reveals that Y

0

� n

1�

1

k�1

+2�

.

On the other hand, taking � =

p

2 lnn and recalling

that k � 3, we get

Y

0

� k�

p

t � n

1�

1

k�1

+2�

� 2

p

n lnn � n

1�

1

k�1

+�

;

for all su�ciently large n. Recalling inequality (4) and

plugging in our bound for Y

0

and our choice of �, we

get

Pr

h

Y

t

< n

1�

1

k�1

+�

i

� n

�1

:

Thus, in the original game, Pr[A ! B] � 1 � n

�1

.

Putting this together with inequality (3),

Pr[B] � Pr[A!B]�Pr[:A] � 1�

1

n

�

lnn

n

1

k

� 1�n

�O

(

1

k

)

:

This concludes the proof of the Claim, and hence also

Stage 1 of the proof of the Theorem.

Stage 2: Given a distribution D on the n-bit strings,

let X

i

, i = 1; 2; : : :; n� 1, be �1 random variables with

X

i

= 1 i� positions i and i + 1 in the string are equal,

and �1 otherwise. Let X =

P

i

X

i

.

When D is the uniform distribution, the X

i

are in-

dependent, and using Cherno� bounds we get Pr[X >

n

1

2

+�

] � e

�n

2�

=2

. On the other hand, when D is p

t

,

from Stage 1 the number of unseparated adjacent po-

sitions in �

t

is at least n

1

2

+�

with probability 1� o(1),

and therefore Pr[X > n

1

2

+�

] �

1

2

� o(1) (because if

i; i + 1 are separated then X

i

= 1 with probability

1

2

,

so the sum of X

i

over such positions is non-negative

with probability

1

2

). Taking � =

ln lnn

lnn

, as required in

Stage 1, guarantees a variation distance of at least

1

4

for

su�ciently large n.

We conclude this section with a result that shows

that the upper bound on the mixing time of the Poisson

model given in Theorem 9 is tight to within a factor that

is close to constant. The proof is somewhat technical,

and for reasons of space we give only a very brief sketch

of it; the details may be found in the full version of the

paper.

Theorem 13 The upper bound on the relaxation time

of the Poisson model obtained by setting � =

1

4

in The-

orem 9 is tight to within a factor of O(log log logn).

Proof (sketch): Given the sequence of probabilities p

i

de�ning the Poisson model, we introduce a new pa-

rameter which we call the rate of the sequence. For

1 � i � n� 1, de�ne ~p

i

as the rounding of p

i

up to the

closest power of 2; i.e., ~p

i

= 2

�m

� p

i

� 2

�(m+1)

.

Let A

j

denote the set of positions with ~p

i

= 2

�j

, and

let a

j

= jA

j

j. Now, the rate R of the sequence (p

i

) is

R = max

j:a

j

>0

2

j+1

�

log(a

j

+ 1) + log log logn+ 2

�

:

Now on the one hand it can be shown that T � R,

where T is the upper bound in Theorem 9 obtained

by setting � =

1

4

. And on the other hand, it can

be shown using a suitable distinguishing property that

�

poisson

(

1

4

) � R=O(log log logn).

4 Finite populations

In this section, we address the issue of the relationship

between the idealized quadratic crossover system and

an analogous system based on a �nite population. As

explained in the Introduction, a na��ve analysis leads to a

combinatorial explosion in the population size required

for a faithful correspondence, as a function of time.

The standard �nite population analog of the quad-

ratic system (2) is the following. We maintain a �-

nite population F

t

of individuals of size m. The ini-

tial �nite population, F

0

, is just a random m-sample

from p

0

. Given the �nite population F

t

at time t, we

construct F

t+1

by repeating the followingm times: pick

two parents u; v uniformly with replacement from F

t

,

generate a child w of u; v exactly as in the quadratic

system, and add w to F

t+1

. (Other �nite population

models are also sometimes used. For example, one can

construct a random pairing of the individuals in F

t

and

mate each pair to produce a pair of children. F

t+1

con-

sists of these pairs. Our results carry over to such al-

ternative schemes with obvious modi�cations.)

Let us denote by f

t

the distribution over types that

is induced by picking an individual u.a.r. from the ran-

dom �nite population F

t

. Clearly we cannot expect f

t

to be identical to p

t

because the �niteness introduces

correlations between parents. The extent of this dis-

crepancy should decrease with population size m and

increase with time t. For a general QDS, as explained

in the Introduction, the Pspace-completeness results

of [3,18] imply that f

t

deviates substantially from p

t

unless m is very large as a function of t. Here we will

show in contrast that, for any crossover system, f

t

in

fact closely resembles p

t

even when m is of size only

O(n

2

t).

Recall the inverse process based on derivations pre-

sented in Section 2.2. The key observation is that we

can readily augment this process to take account of a

�nite population. Since the population is �nite, each

individual has an index between 1 and m. A derivation

of an individual at time t is again a labeled complete bi-

nary tree, except that now each active node also has an

index that speci�es which individual in the �nite pop-

ulation is represented by the node. We also enforce the

following consistency condition: if two nodes at some

level have the same index, then all labels and indices

in the subtrees rooted at these nodes must be identical.

(This is because the nodes represent the same individ-

ual.) For a derivation T , the n-bit string root(T ) is

de�ned by propagating bits from the leaves to the root

exactly as before.



The sample space �

t

over these derivations is de-

�ned in similar fashion to D

t

in Section 2.2, except that

we must handle the indices correctly. This is done as

follows:

1. Choose the index on the root u.a.r. from f1; : : : ;mg,

and the label L on the root as before.

2. Repeat for levels j := t� 1 down to 1:

(i) For each index i at level j+1, choose two in-

dices i

r

and i

`

independently and u.a.r. from

f1; : : : ;mg. For each level j + 1 active node

indexed i, label its right parent i

r

and its left

parent i

`

.

(ii) For each index i at level j, choose a random

label L(i) as before. Label the level j active

nodes indexed i with L(i).

3. Repeat the above indexing process for the active leaves.

Draw an m-sample from p

0

and label the active leaves

indexed i with the ith element of the m-sample.

The following counterpart to Lemma 2 states that this

sample space accurately reects what is going on in the

�nite population model. We omit the straightforward

proof.

Lemma 14 If the derivation T is drawn at random

from �

t

, the distribution of root(T ) is precisely f

t

.

We now have two labeled tree models, D

t

and �

t

,

that represent p

t

and f

t

respectively. The discrepancy

between these two models is captured precisely by the

concept of a collision, which is de�ned as a pair of active

nodes in the same level of a derivation in �

t

that share

the same index. We call a derivation that contains one

or more collisions a colliding derivation. Fortunately,

provided the population size is not too small, collisions

are rare: the reason for this is that there are at most

n active nodes at each level. The next lemma makes

this precise.

Lemma 15 If T is drawn at random from �

t

, then

Pr[T is a colliding derivation] �

2n

2

t

m

:

Proof: Fix a level i, and consider all trees in

^

�

t

that

do not have a collision at levels i + 1 through t. The

active nodes at level i are taken from among the par-

ents of active nodes at level i+ 1: there are at most 2n

such candidates for each tree. Since there are no colli-

sions up to level i + 1, the labels for these candidates

are drawn independently and uniformly at random from

f1; 2; : : : ;mg. The chance of a collision at level i is thus

at most

�

2n

2

�

=m �

2n

2

m

. Therefore, for all i,

Pr[collision at level i j no collision above level i] �

2n

2

m

:

The result follows by summing over levels i.

Armed with this fact, we can now prove the main

result of this section, which quanti�es the discrepancy

between p

t

and f

t

in terms of the population size.

Theorem 16 For an arbitrary crossover distribution,

the quadratic system p

t

and the system f

t

based on a

�nite population of size m satisfy kp

t

� f

t

k �

8n

2

t

m

.

Proof: We introduce a slightly modi�ed version, �

0

t

of the sample space �

t

, de�ned as follows: a derivation

in �

0

t

is constructed in exactly the same way as for �

t

,

except that if in step 2(i) some index is drawn more

than once for some level j we discard the tree and start

again. Call the distribution on root(T ) induced by this

modi�ed process r

t

. We claim that

kr

t

� f

t

k �

4n

2

t

m

and kp

t

� r

t

k �

4n

2

t

m

:

The result then follows from the triangle inequality.

To see the �rst of the above inequalities, note that

for any derivation T 2 �

0

t

we have

Pr

�

0

t

[T ] = Pr

�

t

[T ]=(1� �);

where � is the collision probability, which is bounded by

Lemma 15. The remaining �-fraction of derivations has

probability 0 in �

0

t

. This implies a variation distance

of at most 2�.

To see the second inequality, follow in parallel the

process in Section 2.2 for generating D

t

and the pro-

cess in this section for generating �

0

t

, as they progress

level by level from the root to the leaves. As long as

no collision occurs in the second process, the two pro-

cesses produce identical distributions (if we forget the

indices in �

0

t

on completion). If the second process does

have a collision, it restarts and we make a worst-case as-

sumption that it produces an arbitrary tree. This again

yields a variation distance of at most 2�.

We conclude that, for any � > 0, the �nite population

system and the quadratic system remain within varia-

tion distance � for at least t steps provided only that

the population size is at least m =

�

8n

2

t

�

�

. It is an

intriguing open question whether a similarly close cor-

respondence holds for other natural quadratic systems.

Remark: One consequence of Theorem 16 is that, in

the case of crossover systems, the QDS can be simulated

e�ciently using a small �nite population (of size only

O(n

2

t), where t is the number of steps to be simulated).

It is worth noting that this simulation can in fact be

streamlined; speci�cally, it is possible to sample exactly

from the time-t distribution p

t

of the quadratic system

in time only O(nt). This fact again relies crucially on

the inverse process introduced in Section 2. To see this,

note that it is enough to generate the active nodes of a

tree T from the distribution D

t

. Then, root(T ) can be

determined and taken as the sample. Since there are at

most n active labels (and therefore n active nodes) at

any level, the active portion of T can be generated using

the process described before Lemma 2 in time O(nt).
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