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Abstract

We study approximation algorithms for the permanent of an n × n (0, 1) matrix A based on the
following simple idea: obtain a random matrix B by replacing each 1-entry of A independently by
±e, where e is a random basis element of a suitable algebra; then output |det(B)|2. This estimator
is always unbiased, but it may have exponentially large variance. In our first main result we show
that, if we take the algebra to be a Clifford algebra of dimension polynomial in n, then we get
an estimator with small variance. Hence only a constant number of trials suffices to estimate the
permanent to good accuracy. The idea of using Clifford algebras is a natural extension of earlier
work by Godsil and Gutman, Karmarkar et al., and Barvinok, who used the real numbers, complex
numbers and quaternions respectively.

The above result implies that, in principle, this approach gives a fully-polynomial randomized ap-
proximation scheme for the permanent, provided |det(B)|2 can be efficiently computed in the Clif-
ford algebras. Since these algebras are non-commutative it is not clear how to do this. However,
our second main result shows how to compute in polynomial time an estimator with the same mean
and variance over the 4-dimensional algebra (which is the quaternions, and is non-commutative);
in addition to providing some hope that the computations can be performed in higher dimensions,
this quaternion algorithm provides an exponential improvement in the variance over that of the
2-dimensional complex version studied by Karmarkar et al.
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1 Introduction

The permanent of an n × n (0, 1) matrix A = (aij) is defined as

per(A) =
∑

π∈Sn

n
∏

i=1

ai,πi.

Equivalently, per(A) counts the perfect matchings in the (n + n)-vertex bipartite graph whose
adjacency matrix is A. Computing per(A) exactly is #P-complete, as was shown in Valiant’s
seminal 1979 paper [20].

The past decade or so has seen a surprising variety of approaches aimed at designing a poly-
nomial time approximation algorithm for the permanent. These can be divided into (at least)
four categories: elementary recursive algorithms [18]; reductions to determinants [6, 12, 7, 3, 4];
iterative balancing [15]; and Markov chain Monte Carlo [5, 9, 11, 13, 10]. All the approaches have
yielded non-trivial results (at a minimum, fully polynomial approximation schemes for random
matrices, or polynomial time approximation algorithms with approximation ratio cn for a modest
constant c > 1), and fascinating insights both into the problem and into the wider implications
of the associated mathematical techniques. Recently, as reported in [10], the Markov chain Monte
Carlo approach led to the first fully polynomial randomized approximation scheme for the perma-
nent of an arbitrary (0, 1) matrix (and indeed of any matrix with non-negative entries). This is a
randomized algorithm which takes as inputs A and a parameter ε ∈ (0, 1] and outputs a value that
approximates per(A) within a factor 1 ± ε with high probability; the running time is polynomial
in n and 1

ε .
In this paper we pursue another of the approaches mentioned above, namely reduction to

determinants. We are motivated both by the intrinsic elegance of this approach, and by the fact
that, if successful, it seems likely to lead to a more efficient algorithm. (The authors of [10] did
not attempt to minimize the exponent in their polynomial running time; but even with fine tuning
that algorithm is unlikely to be practical.)

The origins of the determinant approach go back to the following beautiful observation of Godsil
and Gutman [6]. Let A be an n × n (0, 1) matrix, and let B be the matrix obtained by replacing
each 1-entry of A independently by a uniform random element of {±1}. Then the random variable
(det(B))2 is an unbiased estimator of per(A), i.e., its expectation is exactly per(A). This is easy to
verify using the facts that the terms in the expansions of permanent and determinant are identical
up to sign, and that every cross term in the expansion of det(B)2 disappears because it contains
an independent factor bij with E[bij] = 0.

Unfortunately, however, the above estimator has in general a very large variance, so if we were
to use it to estimate per(A) we would need to take the mean of exponentially many independent
samples to get a good estimate with high probability. More precisely, given any unbiased estima-
tor XA of per(A), the number of samples needed to approximate per(A) within a factor 1± ε with

high probability is const
ε2

E[X2
A]

E[XA]2
. We call the ratio

E[X2
A]

E[XA]2
of the second moment to the square of the

expectation the critical ratio of the estimator.
Karmarkar et al. [12] showed that the critical ratio of Godsil and Gutman’s estimator when run

on any n × n (0, 1) matrix A is bounded above by 3n/2. More remarkably, they also showed that
if each 1-entry of A is replaced not by {±1} but by a random element of {±1,±i} (where i is the
complex square root of −1),† forming a matrix C, then the analogous estimator |det(C)|2 is still
unbiased and the bound on the critical ratio drops to 2n/2. This is still exponential, but substantially
smaller than the Godsil-Gutman version. In addition, Frieze and Jerrum [7] showed that the critical

†Actually Karmarkar et al. used complex cube roots of unity, rather than fourth roots as stated here. We prefer
the latter choice as it fits more naturally into our generalized framework. It is not hard to check that the use of kth
roots for any k ≥ 3 leads to essentially the same asymptotic behavior.
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ratio of the Karmarkar et al. estimator is polynomially bounded with high probability for a random
(0, 1) matrix A.

These ideas were pushed further by Barvinok [3] in a rather different framework. Instead of
asking how much time is needed to compute a (1 ± ε) approximation of per(A), Barvinok asked
how good an approximation can be obtained in polynomial time. Under this measure, he showed
that the original Godsil-Gutman idea could also be improved by replacing each 1-entry of A by
a continuous sample from a standard normal distribution; the resulting algorithm approximates
per(A) within a factor of about (3.57)n with high probability in polynomial time. Moreover, the
extension of Barvinok’s algorithm to the complex numbers, analogous to that of Karmarkar et
al., provides an improvement of this approximation ratio to about (1.79)n. Barvinok also showed
that a further extension to the quaternion algebra (i.e., each 1-entry of A is replaced by a value
b1 + b2i + b3j + b4k, where i, j, k are Hamilton’s quaternions and the b’s are independent standard
normal) again improves the approximation ratio to about (1.32)n. Finally, Barvinok observed
that R, C and H are the first three Clifford algebras and suggested that it might be possible to
generalize his estimators to these. In a subsequent paper [4], Barvinok also proposed an extension
of his techniques to higher dimensional real matrix algebras and conjectured that, for sufficiently
high dimension, it may yield a polynomial time approximation algorithm for the permanent within
ratio cn for any desired constant c > 1. (Note that this is a much weaker requirement than that of
a fully polynomial randomized approximation scheme.)

In this paper, we apply higher dimensional Clifford algebras to the original approximation
scheme framework, and demonstrate a more dramatic improvement than that conjectured by Barvi-
nok. We begin with the observation that the sets {1}, {1, i}, {1, i, j, k} are the basis elements of
the first three Clifford algebras ‡ of dimensions 1, 2 and 4 respectively. For each m ≥ 1, we define
a permanent estimator based on the Clifford algebra CLm of dimension 2m−1. The estimator is
analogous to that of Godsil-Gutman and Karmarkar et al., and is very easy to describe: simply
replace each 1-entry of A by an independent element chosen u.a.r. from {±e1,±e2, . . . ,±e2m−1},
where the ei are the basis elements of CLm, to obtain a matrix B; then output |det(B)|2. Note
that det(B) is a value in CLm; the norm-square function | · |2 is simply the sum of squares of the
coefficients in the above basis. It is not hard to show that this estimator remains unbiased for
all m.

Our first main result is that the critical ratio of the estimator decreases dramatically with the
dimension. Specifically, we show:

Theorem A Let XA = |det(B)|2 be the value output by the above algorithm over CLm, with

m = 4q + 2. Then E[XA] = per(A) and the critical ratio
E[X2

A]

E[XA]2
for any n× n matrix A is bounded

above by (1 + 1
22q )n/2.

An immediate corollary of this theorem is that, if we put q = ⌈1
2 log2 n⌉, then the critical ratio is

bounded by a constant! — i.e., a constant number of trials suffice to get a good approximation of
per(A). Moreover, to achieve this we need only work in the algebra CL4q+2 of dimension 24q+1 =
O(n2), which is also polynomial in n. Thus, in principle, the approach yields a fully-polynomial
randomized approximation scheme for the permanent.§

The only catch is that our estimator requires the computation of |det(B)|2, where B is a matrix
of basis elements of a high-dimensional algebra. The algebras CLm are not commutative for m ≥ 3
(CL1 is the reals; CL2 is the complex numbers; CL3 is the quaternions), so standard polynomial
time determinant computations break down. (In fact, there is evidence that computing general
determinants in a non-commutative setting is computationally infeasible [17].) Nonetheless, we are
able to overcome this obstacle at least for the first interesting case, namely the quaternions; for this

‡More accurately, the second Clifford algebras. For definitions see the next section.

§We have chosen the values m ≡ 2 mod 4 to allow the cleanest statement of Theorem A. In fact the critical ratio
is monotonically decreasing with m, and our techniques allow a similar bound to be computed for any m.
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algebra, our general analysis shows that the critical ratio is at most (3/2)n/2. In our second main
result, we show how to define a modified quaternion estimator closely related to the original one,
but easily computable in polynomial time.¶ Surprisingly, we show that this modified estimator has
the same first and second moments as the original one, yielding:

Theorem B There is a quaternion-based unbiased estimator for the permanent that is computable
in polynomial time and has critical ratio at most (3/2)n/2.

Recall that the estimator of Karmarkar et al. has critical ratio 2n/2, so Theorem B gives a
further significant exponential improvement. We leave as an intriguing open problem the question
of whether the higher-dimensional estimators with small variance whose existence is guaranteed by
Theorem A also have modified versions that are computable in polynomial time.

The following is a brief road-map of the paper. In section 2 we present the minimal set of
facts about Clifford algebras required to understand our work. We go on in section 3 to define
our generalized estimators based on the Clifford algebras CLm, and show that they are always
unbiased. The bulk of this section is devoted to the proof of the bound on the critical ratio of these
estimators, as stated in Theorem A. The proof exploits the substantial group-theoretic structure
underlying the Clifford algebras, and offers as a byproduct new insights into why the introduction
of complex numbers by Karmarkar et al. improves on the initial Godsil-Gutman algorithm. In
section 4 we define and analyze the modified estimator over the quaternion algebra, thus proving
Theorem B.

2 Clifford Algebras

In this section we cover the necessary fundamentals of Clifford algebras that we require for our
estimators. There is a great deal of theory on Clifford algebras, but we will present only the
minimal required background. For further reading we recommend, e.g., [14].

The Clifford algebras we will use are real algebras with basis elements of the form ua1a2...ak
, with

ai ∈ [m] = {1, . . . ,m} and ai < ai+1, together with uǫ = 1. The multiplication rules are simple:
for i 6= j ∈ [m], uiuj = uij = −ujui, and uiui = 1. A general element of the Clifford algebra can
thus be written as h =

∑

S cSuS , where cS is real and S ranges over subsets of [m].
We will restrict ourselves to the “second Clifford algebras,” a set of subalgebras of the full

Clifford algebras defined above. In a second Clifford algebra, every basis element must have an
even number of subscripts: e.g., u12, u2467, etc. We denote the mth such Clifford algebra CLm.
Clearly the number of basis elements of CLm is the number of even-cardinality subsets of [m], which
is 2m−1. Of course this is also the dimension of the algebra over the reals.

The first few Clifford algebras are familiar enough. CL1 has 1 as its only basis element and
is just the real numbers, R. CL2 has basis {1, u12}, and is in fact the complex numbers, C, with
i = u12. (Note that u2

12 = u1u2u1u2 = −u2
1u

2
2 = −1.) CL3 has basis {1, u12, u23, u13} and is

the quaternions, H, with u23 = j and u13 = k. (The reader may check the familiar properties
i2 = j2 = k2 = −1 and ij = k = −ji.) Note that CL3 (and hence CLm for all m ≥ 3) is not
commutative; however, if two basis elements do not commute then their two products differ only
up to a sign. The reader may consult the multiplication table for CL4 in Appendix A.

Conjugation in CLm is defined in the natural way. The conjugate of a basis element uS , written
uS , is its inverse, i.e., the (unique) element that satisfies uSuS = uSuS = 1. The conjugate of a
general element u =

∑

S cSuS is defined as u =
∑

S cSuS . Note that in general we cannot construct
the inverse of u from u, as uu may not be real; indeed, in CLm for m ≥ 4 not every element has an
inverse.

The following useful observations can readily be verified from the above definitions:

¶The determinant computation is a discrete version of Barvinok’s quaternion estimator [3], but the analysis is
substantially different in that we are analyzing the second moment while he was analyzing the tails.
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1. A basis element uS is self-conjugate (i.e., uS is its own inverse, uS = uS) if and only if S
consists of 4k subscripts. If S consists of 4k + 2 subscripts, then uS = −uS. Notice that for
any S, u2

S = ±1.

2. The product of two basis elements uS and uS′ is ǫuS⊕S′, where S ⊕ S′ is the disjoint union
of S and S′ and ǫ is a sign that depends on the number of inversions necessary to produce
S ⊕ S′ from S and S′.

3. Two basis elements commute if and only if the number of subscripts they share is even; i.e.,
uSuS′ = uS′uS if and only if |S ∩ S′| = 2k. Otherwise, uSuS′ = −uS′uS .

4. If u, u′ are signed basis elements chosen independently and uniformly at random, then their
product uu′ is also a uniformly random signed basis element.

It will be convenient to associate with each Clifford algebra CLm the group of its 2m signed
basis elements Gm. Each group element α ∈ Gm corresponds to either uS or −uS for some S ⊆ [m],
and the group operation is simply multiplication as defined in CLm. For α ∈ Gm, we denote by uα

the corresponding signed basis element in CLm. Thus an arbitrary element of CLm can be written
as h =

∑

α∈Gm
cαuα for cα ∈ R

+. We assume that cα is non-zero for at most one of uS and −uS ,
so that this representation is unique.

Recall from the introduction that our permanent estimators are of the form |det(B)|2, where
the entries of the matrix B, and therefore also det(B), lie in the Clifford algebra CLm. Thus we
need to define the norm-square |u|2 for u ∈ CLm. Generalizing from the reals, complex numbers
and quaternions, we might try to use the definition |u|2 = uu. However, this is problematic in CLm

for m ≥ 4 because uu is not in general real. Instead, we will define |u|2 to be the real part of uu;
equivalently, if u =

∑

S cSuS , then |u|2 =
∑

S c2
S (which is just the squared length of u, viewed as

a 2m−1-dimensional vector).
Because the Clifford algebras are non-commutative, we also need to exercise care in our defini-

tion of determinant. Many alternative definitions of determinant that are equivalent for matrices
over a field turn out not to be equivalent in the absence of commutativity. This topic has been
studied before for general non-commutative rings (see, e.g. [8]), and particularly in the context of
the quaternions (see [2] for an overview). Unless otherwise stated, we will define determinant as
det(B) =

∑

π∈Sn
sgn(π)

∏n
i=1 bi,πi =

∑

π∈Sn
sgn(π)b1,π1 · · · bn,πn. (Note that in a non-commutative

setting the order of multiplication in each monomial is significant; we take it to be in row or-
der.) This definition is sometimes called the “Cayley determinant” or “row-determinant.” Another
closely related definition of interest is the “Moore determinant,” which is the same as the Cayley de-
terminant except that the order of the terms in each monomial is determined by the cycle structure
of the corresponding permutation. Finally there are two definitions that apply to the quaternions
but not immediately to higher-dimensional Clifford algebras: the “Dieudonné determinant,” which
is based on Gaussian elimination, and the “Study determinant,” which relates a quaternion matrix
to a larger complex matrix. These latter two notions are closely related and we will use both in
the implementation of our quaternion estimator in Section 4.

3 General Clifford Algebra Estimators

3.1 Definition and expectation

For each Clifford algebra CLm, we can define a corresponding estimator for the permanent in the
natural way: given a (0, 1) matrix A, replace each 1-entry of A with a signed basis element of
CLm chosen independently and uniformly at random to obtain a new matrix B; then compute
XA = |det(B)|2, where det(B) is the Cayley determinant defined above, which lies in CLm; and
|det(B)|2 is the real part of det(B) det(B). We prove first that this estimator is unbiased for all m.
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The proof is similar to the proofs for the low-dimensional versions of Godsil-Gutman (m = 1) and
Karmarkar et al. (m = 2), but is complicated by the fact that uu is not necessarily real.

Proposition 3.1 In any Clifford algebra CLm, we have E[XA] = per(A).

Proof: We first introduce some notation. Given a permutation π, we define Bπ to be
∏n

i=1 bi,πi

and Bπ to be
∏1

i=n bi,πi. Thus BπBπ =
∏n

i=1 ai,πi. Further, given two permutations π1 and π2, we
say that R(B,π1, π2) = 1 if Bπ1Bπ2 is real and 0 otherwise. Note that R(B,π, π) = 1 for all π.

We can write E[XA] =
∑

B Pr(B)
∑

π1π2
sgn(π1π2)Bπ1Bπ2R(B,π1, π2) where the sum is over all

possible choices of the random matrix B and Pr(B) is the probability of choosing B. We then
proceed as follows:

E[XA] =
∑

π1

∑

B

Pr(B)Bπ1Bπ1R(B,π1, π1) +
∑

π1 6=π2

∑

B

Pr(B)Bπ1Bπ2R(B,π1, π2)

=
∑

π1

∏

i

ai,πi +
∑

π1 6=π2

∑

B

Pr(B)Bπ1Bπ2R(B,π1, π2)

= per(A) +
∑

π1 6=π2

∑

B

Pr(B)Bπ1Bπ2R(B,π1, π2).

To finish the proof, note that all choices of B are equally likely. When π1 6= π2, let j be the
smallest index such that π1j 6= π2j. Then bj,π1j is chosen independently of the other basis elements,
and for each value uS it takes on, it takes on −uS with equal probability; and in each case the
value of R(B,π1, π2) is the same. Thus the sum on the right is 0 and E[XA] = per(A).

3.2 The second moment: block diagonal case

Recall that the efficiency of the estimator XA is governed by its critical ratio,
E[X2

A]

E[XA]2
. Thus we need

to compute the second moment, E[X2
A]. We first perform a detailed analysis for block diagonal

matrices, and then in the next subsection use this to derive a bound for all matrices. Let A1 =
(

1 1
1 1

)

. Then the block diagonal matrix An is the 2n × 2n matrix with n copies of A1 along its

diagonal. From Proposition 3.1 we have E[XAn ] = per(An) = 2n. For convenience we define A0 to
be the 1× 1 identity matrix; note that XA0 is identically 1. We will study the distribution of XAn

in the algebra CLm as m varies.
The main result of this section is the following theorem:

Theorem 3.2 Let An be the block diagonal matrix defined above, and let m = 4q+2 for some q ∈ N.

Then in CLm, we have that E[X2
An

] ≤ [4(1+ 1
2m/2 )]n, and thus the critical ratio

E[X2
An

]

E[XAn ]2
≤ (1+ 1

2m/2 )n.

Before embarking on the proof of the theorem, we first provide some geometric intuition as to
why increasing the dimension of the Clifford algebras decreases the variance of our estimator. Let

B1 =
(

b11 b12

b21 b22

)

denote the random matrix computed by the algorithm when run on A1. Then

det(B1) = b11b22 − b12b21. Since the product of two random signed basis elements in CLm is again
a random signed basis element, it is clear that det(B1) has the same distribution as a + b, where
a, b are independent random signed basis elements. Thus, in distribution, XA1 = |a + b|2.

Now, if we consider CLm as a 2m−1-dimensional vector space over R, then the basis elements a
and b are signed elementary basis vectors, and XA1 = |a + b|2 is the squared length of the vector
a + b. The estimator is exact if a and b are orthogonal, in which case XA1 = 2 = per(A1). The
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variance results entirely from the remaining cases a = ±b, which give XA1 = 4 and XA1 = 0,
respectively. Since a and b are randomly chosen from a set of size 2m, we have in particular that

XA1 =











4 if a = b (with probability 1/2m);
0 if a = −b (with probability 1/2m);
2 otherwise (with probability 1 − 2/2m)

and therefore that the second moment is

E[X2
A1

] =
(

16 × 1
2m

)

+
(

0 × 1
2m

)

+
(

4 × (1 − 2
2m )

)

= 4
(

1 + 1
2m−1

)

.

Observe how increasing the dimension of CLm increases the probability that two randomly chosen
elementary signed basis vectors are orthogonal, which in turn decreases the variance of XA1 .

We now proceed with the proof of Theorem 3.2 for general n. Let Bn denote the random matrix
computed by the estimator when run on the block-diagonal matrix An. Then, in distribution,
det(Bn) = (a1 +b1)(a2 +b2) · · · (an +bn) for mutually independent random basis elements ai and bi.
We wish to compute the second moment of XAn = |det(Bn)|2.

For the first three values of m, namely CL1 = R, CL2 = C, and CL3 = H, it is trivial to extend
the above analysis for n = 1 to general n. In these three algebras the norm-squared function
| · |2 is real-valued and a multiplicative homomorphism, so we have XAn =

∏

i |ai + bi|
2, and

E[X2
An

] = E[X2
A1

]
n

= [4(1+ 1
2m−1 )]n. However, for the general case m ≥ 4 we need to do some work

since | · |2 is no longer a homomorphism. Our argument will exploit the detailed structure of the
algebras CLm.

The proof of Theorem 3.2 for general n and q is contained in Lemmas 3.3, 3.4, and 3.5 below.
The proofs of these lemmas in turn depend on the following basic observation. Recall that, in
distribution, det(Bn) = (a1 + b1)(a2 + b2) · · · (an + bn) for mutually independent random signed
basis elements ai and bi. Therefore, still in distribution, det(Bn) det(Bn) = (a1 + b1) · · · (an +
bn)(an + bn) · · · (a1 + b1) = (a1 + b1) det(Bn−1) det(Bn−1)(a1 + b1). Rewriting slightly, we get

det(Bn+1) det(Bn+1) = a(1 + c) det(Bn) det(Bn)(1 + c)a, (1)

where, again, a and c are independent random signed basis elements.
The success of the Clifford algebra estimators can be explained by the algebraic restrictions on

the behavior of XAn . The concrete ideas are contained in the following lemma and its proof:

Lemma 3.3 Suppose we are working in CLm. Then, for any choice of Bn, det(Bn) det(Bn) is
either zero or of the form 2k ∑

α∈G uα, where k is a non-negative integer and G is a self-conjugate
subgroup of Gm (i.e., u2

α = 1 for all α ∈ G).

Note that any self-conjugate subgroup G is necessarily abelian. Note also that the above repre-
sentation assumes that G does not contain both α and −α; all the self-conjugate subgroups in
the sequel can easily be seen to have this property and we will assume it from now on. We will
write −G to denote the set of α ∈ Gm such that −α ∈ G.

Proof of Lemma 3.3 (sketch): We proceed by induction on n. In the base case n = 0, we
always have det(B0) det(B0) = 1, which can be written in the form 2k ∑

α∈G uα with k = 0 and G
the trivial subgroup {1}. Now, applying the induction hypothesis to (1) and expanding, we get

det(Bn+1) det(Bn+1) = 2ka
(

∑

α∈G

uα + c(
∑

α∈G

uα)c + c(
∑

α∈G

uα) + (
∑

α∈G

uα)c
)

a. (2)

Our task is therefore to show that, for an arbitrary self-conjugate subgroup G and signed basis
elements a and c, the r.h.s of (2) is either zero or can be written in the form 2k′ ∑

α∈G′ uα for some
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k′ ≥ 0 and self-conjugate subgroup G′. This follows from a fairly straightforward case analysis,
whose structure we outline below. The proofs for each case are deferred to Appendix B. (Cases 1
and 2 are analogous to the cases a = ±b and a orthogonal to b, respectively, in our earlier analysis
for the case n = 1.)

Case 1: c ∈ G ∪ −G.
Here if c ∈ G then the outside coefficient 2k quadruples to 2k+2, and the subgroup G transmutes

to another subgroup G′ = aGa of the same size as G. Otherwise, if c ∈ −G, we obtain 0.
Case 2: c 6∈ G ∪ −G.
We divide this case into two more subcases.
case 2a: c commutes with G, c = c. Here the coefficient 2k doubles to 2k+1, while G expands

to a subgroup G′ = a(G ∪ cG)a of twice the size of G.
case 2b: All other cases (c commutes with G and c = −c; or c does not commute with G).

Here the coefficient doubles to 2k+1 while G transmutes to another subgroup G′ of the same size.
This completes the sketch of the proof of Lemma 3.3.

Example: We illustrate each of the above cases with a running example from CL5, the 16-
dimensional algebra whose subscripts are drawn from {1, . . . , 5}. We start with det(B0) det(B0) = 1
(so k = 0 and G is the trivial subgroup {1}) and follow the evolution of det(Bn) det(Bn) for some
particular sequence of choices of c. (We will fix a = 1 throughout for ease of computation.)

• c = u1234 (case 2a). Expression (1) is (1+u1234)(1)(1+u1234), which simplifies to 2(1+u1234).
The outside coefficient has doubled to 2 and G has expanded to the subgroup {1, u1234}.

• c = u1234 (case 1). Here expresssion (1) is 2(1 + u1234)(1 + u1234)(1 + u1234), which simplifies
to 8(1 + u1234). The outside coefficient has quadrupled to 8 and G has transmuted (to itself,
because a = 1). (Note that if c had been −u1234, we would have obtained 0.)

• c = u23 (case 2b). Here expression (1) is 8(1 + u23)(1 + u1234)(1 − u23), which simplifies to
16(1 + u1234). The outside coefficient has doubled and G has transmuted (to itself).

• c = u25 (case 2b). Here expression (1) is 16(1 + u25)(1 + u1234)(1 − u25), which simplifies to
32(1 − u1345). The outside coefficient has doubled and G has transmuted to the subgroup
{1,−u1345}.

The proof of Lemma 3.3 reveals a simple pattern to the behavior of det(Bn) det(Bn) that allows
us to easily bound E[X2

An
]. Note that since XAn is the real part of det(Bn) det(Bn), its value is

just the outside coefficient 2k.

Lemma 3.4 Let p be the maximum possible value of the ratio 2|G|/|Gm| over all self-conjugate
subgroups G in Gm. Then in CLm we have E[X2

An
] ≤ [4(1+p)]n, and thus the critical ratio satisfies

E[X2
An

]

E[XAn ]2
≤ (1 + p)n.

Proof: We again use induction on n. In the base case n = 0, we have XA0 = 1 with probability 1,
and hence E[X2

A0
] = 1. For the inductive step we examine the random variable det(Bn+1) det(Bn+1).

Recall that, conditioned on the value of det(Bn) det(Bn), the distribution of this r.v. is as in (1)
where a, c are independent random signed basis elements. From Lemma 3.3 we know that det(Bn) det(Bn)
is either zero or of the form 2k ∑

α∈G uα for some k and G; thus the r.v. XAn has value zero or 2k

respectively. From the proof of Lemma 3.3 we see that the outside coefficient 2k exactly doubles
in all cases except case 1. In this latter case it either quadruples (if c ∈ G) or becomes zero (if
c ∈ −G). Plainly each of these outcomes occurs with probability |G|/|Gm|. Thus, conditioned
on XAn , the distribution of XAn+1 is







4XAn with probability |G|/|Gm|;
0 with probability |G|/|Gm|;
2XAn with probability 1 − 2|G|/|Gm|.
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Since |G|/|Gm| ≤ p/2 by definition of p, we therefore have

E[X2
An+1

] ≤ (16p
2 + 4(1 − p))E[X2

An
] = 4(1 + p)E[X2

An
]. (3)

This completes the proof by induction on n.

Lemma 3.4 bounds the second moment in terms of p = max 2|G|
|Gm| , where the maximum is over

all self-conjugate subgroups G in CLm. The final ingredient is to show that p decreases rapidly as
a function of m:

Lemma 3.5 Let m = 4q + 2, and let p be defined as above. Then in CLm, p ≤ 1
22q+1 .

Proof of Lemma 3.5 (sketch): We shall give a very simple argument that yields a slightly
weaker bound, namely p ≤ 1

2q , and conveys the main idea. The additional factor of 2 in the
exponent requires some slightly more detailed analysis (see Proposition B.9 in Appendix B).

Let G be a self-conjugate subgroup of Gm, and let H be the subgroup G ∩ Gm−1. It is easy to
check that either H = G or |H| = |G|/2. This tells us that for any self-conjugate subgroup G of Gm,
there is a subgroup of at least half its size in Gm−1. Hence p does not increase as m increases.

Now consider CL4q. The basis element g that contains every index (e.g., u12345678 in CL8) is
self-conjugate and commutes with every other basis element. This element (or its negation) must
be contained in every maximal self-conjugate subgroup G of G4q; otherwise G∪ gG is a larger such
subgroup.

Moving to CL4q+1, we wish to show that the size of any maximal self-conjugate subgroup
G ⊆ G4q+1 is unchanged from the size of a maximal self-conjugate subgroup in G4q, and hence p
decreases by a factor of 2. Consider G′ = G ∩ G4q, a self-conjugate subgroup of G4q. If G′ = G,
then G is already a subgroup of G4q and thus no larger than a maximal self-conjugate subgroup
of G4q. Otherwise G′ is smaller than G and therefore exactly half the size of G. We now observe
that G′ cannot be a maximal self-conjugate subgroup of G4q: if it were, it would contain one of
the elements ±g, but no element of G4q+1 − G4q commutes with g. Thus G′ is half the size of a
maximal self-conjugate subgroup, and G is the same size as a maximal subgroup.

Putting Lemmas 3.4 and 3.5 together, we are done with the proof of Theorem 3.2 and hence with
the main business of this section. Theorem 3.2 and its proof contain the essential intuition about
the behavior of the second moment on block diagonal matrices as m increases, and immediately
imply that for m = O(log n), the critical ratio is bounded above by a constant. For technical
reasons, in order to bootstrap this to a bound for general matrices we actually need to derive the
exact form of E[X2

An
] as a sum of exponentials

∑

i ciE
n
i , not just an upper bound [4(1+ 1

22q+1 )]n as in
Theorem 3.2. Somewhat remarkably, it turns out that E[X2

An
] is the sum of only two exponentials, as

the following theorem states. The proof follows from a slightly more refined analysis of the behavior
of the subgroups than that used in the proof of Lemma 3.4, and may be found in Appendix B.

Theorem 3.6 Let m = 4q + 2. In CLm, E[X2
An

] = c1E
n
1 + c2E

n
2 , where E1 = 4(1 + 1

22q+1 ),
E2 = 4(1 − 1

22q+1 ), and c1, c2 are non-negative constants with c1 + c2 = 1. Thus in particular
E[X2

An
] ≤ En

1 .

Remark: The reason we choose m ≡ 2 mod 4 is to allow the cleanest possible formulation of
Lemma 3.5 and Theorem 3.6. However, the essential point is that a constant factor increase in
the dimension (i.e., a constant additive increase in m) leads to a constant factor decrease in p (the
relative size of the maximum subgroup). In fact, we have seen that p is monotonically decreasing
with m, and a more detailed analysis shows that p decreases by a factor of 2 when m ≡ 1, 2, 3
or 5 mod 8, and otherwise remains unchanged.
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3.3 The second moment: general case

We now extend our bound from the block diagonal case to general matrices. This analysis will rely
on the exponential form of the second moment in the block diagonal case from Theorem 3.6.

Theorem 3.7 Suppose that in CLm, the second moment for the block diagonal matrix An satisfies
E[X2

An
] = c1E

n
1 + c2E

n
2 for 2 ≤ E2 < E1 and non-negative constants c1, c2 with c1 + c2 = 1. Then

the critical ratio for an arbitrary n × n matrix A satisfies

E[X2
A]

E[XA]2
≤

2
∑

i=1

ci

(

Ei − 2

2

)n/2

≤

(

E1 − 2

2

)n/2

.

Substituting the value E1 = 4(1 + 1
22q+1 ) from Theorem 3.6 immediately yields Theorem A in the

Introduction.
Before embarking on the proof of Theorem 3.7, we introduce a useful graph-theoretic framework

from [12]. Recall that we may view per(A) as the number of perfect matchings in a bipartite graph
B(A) in which (i, j) is an edge if and only if aij = 1. We define P (A) to be the set of permutations
{π ∈ Sn : ai,πi = 1∀i}, which correspond naturally to perfect matchings in B(A) (and we will blur
this distinction). Thus per(A) = |P (A)|. We need the following observations:

(i) Given two perfect matchings π1 and π2, let the graph G be their union π1 ∪ π2. Then G
is a disjoint union of even-length cycles and isolated edges. We will define c(G) to be the
number of cycles of G. Conversely, the cycle cover G can be described as the union of a pair
of perfect matchings in 2c(G) distinct ways. We write G(A) as the set of all such cycle covers.
We therefore can write per(A)2 =

∑

G∈G(A) 2c(G)

(ii) Given G,G′ ∈ G(A), we will say that G′ ⊆ G if all of the edges of G′ are contained in G, or
equivalently, if G′ can be formed from G by collapsing some of the cycles of G. Thus there
are

(c(G)
k

)

2k graphs G′ ⊆ G such that c(G′) = c(G) − k.

(iii) Consider the union of four perfect matchings π1, π2, π3, π4. We will say that π1∪π2∪π3∪π4 is
even if every edge in the union is covered an even number of times. In this case, π1∪π2∪π3∪π4

forms a cycle cover.

(iv) Consider any G ∈ G(A), and let A(G) denote the adjacency matrix of G. Then the estimator
XA(G) run on A(G) has the same distribution as XAc(G)

, the estimator on the block diagonal
matrix with c(G) blocks.

Proof of Theorem 3.7: Proceeding as in the proof of Proposition 3.1, we can write

E[X2
A] =

∑

B

Pr(B)
∑

π1π2π3π4

sgn(π1π2π3π4)Bπ1Bπ2Bπ3Bπ4R(B,π1, π2)R(B,π3, π4) (4)

To simplify notation, define Bπ1π2π3π4 = Bπ1Bπ2Bπ3Bπ4 and write RE[Bπ1π2π3π4] to denote the
summation

∑

B Pr(B)Bπ1π2π3π4R(B,π1, π2)R(B,π3, π4).
Our first observation is that RE[Bπ1π2π3π4] = 0 unless π1 ∪ π2 ∪ π3 ∪ π4 is even. This follows

because of the presence, in non-even cases, of an independent factor b in Bπ1π2π3π4 that takes on
values ±uS with equal probability. Thus we may rewrite equation (4) as

E[X2
A] =

∑

G∈G(A)

∑

π1∪π2∪π3∪π4=G

RE[Bπ1π2π3π4], (5)

where we can ignore sgn(π1π2π3π4) since it must be 1 when π1 ∪ π2 ∪ π3 ∪ π4 is even.
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We now prove, for any fixed G ∈ G(A), that

∑

π1∪π2∪π3∪π4=G

RE[Bπ1π2π3π4] =
2

∑

i=1

ci(Ei − 2)c(G). (6)

This is done by induction on c(G). The base case c(G) = 0 is verified by noticing that π1 = π2 =
π3 = π4 must be the same permutation, so Bπ1π2π3π4 = 1, and both evaluations of R(·) are also 1,
so the left-hand side of (6) is 1 =

∑

i ci(Ei − 2)0.
Now for any fixed G, let us define A(G) as the (0, 1) matrix associated with G. Then

E[X2
A(G)] =

∑

G′∈G(A(G))

∑

π1∪π2∪π3∪π4=G′

RE[Bπ1π2π3π4].

Since one possible instance of G′ is G itself, we can rewrite this as
∑

π1∪π2∪π3∪π4=G

RE[Bπ1π2π3π4] = E[X2
A(G)] −

∑

G′⊂G

∑

π1∪π2∪π3∪π4=G′

RE[Bπ1π2π3π4]

=
∑

i

ciE
c(G)
i −

∑

G′⊂G

∑

π1∪π2∪π3∪π4=G′

RE[Bπ1π2π3π4]

=
∑

i

ciE
c(G)
i −

c(G)
∑

k=1

(c(G)
k

)

2k
∑

i

ci(Ei − 2)c(G)−k

=
∑

i

ciE
c(G)
i −

∑

i

ci(E
c(G)
i − (Ei − 2)c(G))

=
∑

i

ci(Ei − 2)c(G)

In the second line here we have used Theorem 3.6 together with observation (iv) from earlier; in
the third line we have used the induction hypothesis and observation (ii).

This completes the inductive proof of (6). Plugging the result into equation (5) gives

E[X2
A] =

∑

G∈G(A)

2
∑

i=1

ci(Ei − 2)c(G) ≤
∑

G∈G(A)

(E1 − 2)c(G).

Finally, combining this with the observation that E[XA]2 =
∑

G∈G(A) 2c(G) we obtain

E[X2
A]

E[XA]2
≤

∑

G∈G(A)(E1 − 2)c(G)

∑

G∈G(A) 2c(G)
≤ max

G∈G(A)

(E1 − 2)c(G)

2c(G)
≤

(

E1 − 2

2

)n/2

.

The last inequality above requires the observation that E1 ≥ 4 (which follows because E[X2
An

] ≥

E[XAn ]2 = 4n). This completes the proof of the theorem.

We should note that our analysis includes the real- and complex-based estimators of Godsil-
Gutman [6] and Karmarkar et al. [12], as well as the quaternion-based estimator as special cases.
The second moments of these estimators on the single block matrix A1 are E[X2

A1
] = 8 for R,

E[X2
A1

] = 6 for C, and E[X2
A1

] = 5 for H. Further, since the norm-squared function | · |2 is a
homomorphism for these three cases, we can immediately deduce the exact form of the second
moments for the block diagonal case as E[X2

An
] = 8n for R, E[X2

An
] = 6n for C, and E[X2

An
] = 5n

for H. Applying Theorem 3.7 then gives the following result:

Corollary 3.8 The critical ratio for the estimator XA is bounded above by
E[X2

A]

E[XA]2
≤ 3n/2 for R,

E[X2
A]

E[XA]2
≤ 2n/2 for C, and

E[X2
A]

E[XA]2
≤ (3

2 )n/2 for H.

For the real and complex cases, these are the same as the bounds derived by less general methods
in [12].
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4 Computing the estimator

We turn now to the question of implementing the estimators of the previous section. These estima-
tors are defined in terms of the symbolic determinant of a matrix whose entries are basis elements
of a high-dimensional Clifford algebra. Since such algebras are non-commutative, it is not clear
how to perform such a computation in polynomial time; indeed, it is known that computing general
determinants in a non-commutative setting is computationally infeasible [17].

Our goal in this final section is to show that this difficulty can be overcome at least in the
first interesting case, namely the quaternion algebra H = CL3. (Recall that this algebra is non-
commutative.) What we shall do is to construct a permanent estimator having the same flavor as
that of the previous section, but which is efficiently computable; although the new estimator will
not be equal to the previous one, it will also be unbiased and satisfy the same bound on the critical
ratio for the quaternions given in Corollary 3.8. Thus the performance guarantee of the previous
section can actually be achieved in polynomial time.

4.1 A modified estimator over the quaternions

Our new estimator YA begins as before by replacing each 1-entry of A by a random element from
H8 = {±1,±i,±j,±k}, the signed basis elements of the quaternion algebra. Call the resulting
random matrix H. Now, however, rather than working with the symbolic determinant det(H), we
use its so-called Dieudonné determinant, defined as the result of performing a standard Gaussian
elimination procedure on H as follows:

if n = 1 then return Gauss(H) = h11

else if column h·1 = 0 then return Gauss(H) = 0
else if h11 = 0 then add any row hi· with hi1 6= 0 to row h1·

for all i > 1 add row multiple −hi1h
−1
11 h1· to row hi·

return Gauss(H) = h11Gauss(H11)

Note that Gauss(H) is quaternion-valued. Its value may depend on the row chosen in the third
line. However, the classical theory of Dieudonné determinants (see, e.g., [1]) ensures that the norm-
square, |Gauss(H)|2, is well defined (and indeed preserved under any sequence of row and column
operations). Note that in the quaternions the norm-square is just |h|2 = hh as this is always
real-valued, and hence inverses exist.

Evidently the estimator YA can be computed in O(n3) time. However, despite its resemblance
to that of the previous section, it is not at all clear that it inherits the nice properties of that
algorithm. Indeed, it is not even clear that it is unbiased. Note in particular that |Gauss(H)|2

and |det(H)|2 may differ considerably. For example, if we take H =
(

i j
j i

)

then it can easily be

checked that |Gauss(H)|2 = 4 whereas |det(H)|2 = 0. However, we shall see presently that, when
the non-zero entries of H are random quaternion basis elements, then these two quantities share
the same first and second moments!

Before proceeding, it will be convenient to note that |Gauss(H)|2 can be written equivalently as
a single complex determinant, known as the “reduced norm”, or “Study determinant” of H. This is
derived from the representation of the quaternions as 2×2 complex matrices as follows. For h ∈ H,

write h uniquely as b + cj, where b, c ∈ C. Then h is represented by the matrix φ(h) =
(

b c
−c b

)

.

Thus in particular the basis elements are represented as

φ(1) =

(

1 0
0 1

)

; φ(i) =

(

i 0
0 −i

)

; φ(j) =

(

0 1
−1 0

)

; φ(k) =

(

0 i
i 0

)

. (7)
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Given an n × n quaternion matrix H, define a 2n × 2n complex matrix D = DH by

dij =
[

φ(h⌈ i
2
⌉,⌈ j

2
⌉)

]

(i mod 2),(j mod 2)
.

In words, DH is formed by replacing each entry hij of H by its corresponding 2×2 complex matrix,
and then erasing the boundaries between these matrices.

We define the reduced norm of H as det(DH). (Since DH is a complex matrix, this is well-defined
and efficiently computable.) The following fact is easy to check (see, e.g., [2]):

Proposition 4.1 For any n × n quaternion matrix H, |Gauss(H)|2 = det(DH).

Thus in what follows we may think of YA as being defined either as |Gauss(H)|2 or as det(DH).
This flexibility will prove useful in our analysis.

Our goal is to show that the above permanent estimator YA is unbiased and has the same second
moment as the quaternion version of the general estimator derived in the previous section. Thus
we will prove the following, which is exactly Theorem B of the Introduction.

Theorem 4.2 For any n × n (0, 1) matrix A, the Dieudonné determinant estimator YA satisfies

E[YA] = per(A) and
E[Y 2

A]

E[YA]2
≤

(

3
2

)n/2
.

Our analysis will proceed along similar lines to that of the previous section, but the Dieudonné
determinant will prove a little harder to work with than the symbolic determinant. In section 4.2
we will deal with the expectation, and in section 4.3 with the second moment.

Remark: This result reveals a connection between the Cayley determinant and the Dieudonné
and Study determinants of a quaternion matrix. Other such relationships between the Moore
determinant and the Dieudonné and Study determinants are described by Aslaksen [2].

4.2 Analysis of expectation

For the expectation, it will be useful to work with the reduced norm formulation of YA. Let
D = DH ∈ C

2n×2n be the reduced norm matrix computed by the algorithm. Then we have

E[YA] = E[det(D)] = E
[

∑

π∈S2n

sgn(π)
2n
∏

i=1

di,πi

]

def
=

∑

π∈S2n

E[Dπ].

Clearly each entry dij of D depends on exactly one entry of H, namely h⌈ i
2
⌉,⌈ j

2
⌉. Conversely,

each entry hij of H determines four entries of D, namely d2i−1,2j−1, d2i−1,2j , d2i,2j−1 and d2i,2j .
Moreover, by (7) we can view these four entries as bij, cij , −cij and bij respectively, where bij , cij

are chosen randomly as follows: flip a fair coin. If Heads, choose bij u.a.r. from C4 = {±1,±i} and
set cij = 0; if Tails, set bij = 0 and choose cij u.a.r. from C4.

Now let π ∈ S2n. The factors di,πi of Dπ depend on a set π|n of between n and 2n entries of H,
viz.

π|n =
{

(⌈ i
2⌉, ⌈

πi
2 ⌉) : i ∈ [2n]

}

=
{

(k, ⌈π(2k−1)
2 ⌉), (k, ⌈π(2k)

2 ⌉) : k ∈ [n]
}

.

The result is an immediate consequence of the following two claims (recall that P (A) is the set of
nonzero permutations in A):

Claim 1: Let π ∈ S2n. Then E[Dπ] 6= 0 ⇒ π|n ∈ P (A).

Claim 2: Let σ ∈ P (A). Then E[Dσ]
def
=

∑

π:π|n=σ E[Dπ] = 1.
The intuition behind these claims is that the only permutations with nonzero expectation in

D are those that correspond exactly to nonzero permutations in A, and each such permutation
contributes an expected value of 1, thus yielding the permanent.
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To prove Claim 1, consider π ∈ S2n with E[Dπ] 6= 0. Fix any odd i = 2k− 1 ∈ [2n], and assume
πi = 2l− 1 is odd (the case of πi even is handled similarly). Thus di,πi = bkl ∈ C4, where bkl is the
result of the random experiment described earlier. Since bkl has a random sign, this factor cannot
be independent of all other factors in Dπ. But since the elements of H are all independent, the
only other elements of D which are not independent of bkl are di,πi+1 = ckl, di+1,πi = −ckl and
di+1,πi+1 = bkl. And since π is a permutation, the only one of these that can be a factor of Dπ

is di+1,πi+1. Hence we must have π(i + 1) = πi + 1. This in turn implies that ⌈πi
2 ⌉ = ⌈π(i+1)

2 ⌉,

so π|n contains only one entry in the kth row of H, namely (k, ⌈π(2k−1)
2 ⌉). Since i was arbitrary,

we conclude that π|n ∈ Sn. Clearly π|n cannot contain an index pair (k, l) with akl = 0, since
otherwise Dπ would be zero. Thus π|n ∈ P (A) and Claim 1 is proved.

To prove Claim 2, fix σ ∈ P (A). We will in fact prove the stronger property that
∑

π:π|n=σ Dπ =
1. Consider a permutation π ∈ S2n with π|n = σ. By the argument above, each element hi,σi

corresponds to two factors in Dπ: either bi,σi and bi,σi or ci,σi and −ci,σi. Thus the set {π : π|n = σ}
is in 1-1 correspondence with the subsets of [n], where the subset specifies those i which contribute
factors bi,σi. Recall that for each i, either bi,σi ∈ C4 and ci,σi = 0 or vice versa. Hence Dπ = 0
for all but one of these permutations π, namely the permutation π̂ corresponding to the subset
N = {i : bi,σi 6= 0}. For this permutation, we have Dπ̂ = sgn(π̂)(−1)n−|N |. And an easy induction
on n − |N | establishes that sgn(π̂) = (−1)n−|N |, from which Claim 2 follows.

This concludes the proof of the first part of Theorem 4.2.

4.3 Analysis of second moment

To prove the second moment claim in Theorem 4.2, we will proceed in similar fashion to the previous
section. In particular, the main step once again is to express the second moment of the estimator
for a general matrix A in terms of that for the 2 × 2 all-1’s matrix A1:

Theorem 4.3 Let E1 = E[Y 2
A1

]. Then for any n × n (0, 1) matrix A, we have

E[Y 2
A] =

∑

G∈G(A)

(E1 − 2)c(G).

The proof of Theorem 4.3 can be found in Appendix C. It is similar in overall structure to our second-
moment analysis for general CLm in section 3, but both simpler because of the fixed dimension
m = 3 and more complex because of the Dieudonné determinant. This latter complication is
handled with similar technology to the expectation analysis in the proof we have just given.

In light of Theorem 4.3, it remains only to compute E1. Let H = (hij) be the random quaternion
matrix computed by the algorithm when run on A1. Following the progress of the algorithm Gauss
shows that

YA1 = |Gauss(H)|2 = |h11h22 − h11h21h11h12|
2.

Thus YA1 has the same distribution as |h − g|2, where h, g are chosen independently and u.a.r.
from H8. An easy hand calculation then shows that YA1 takes the values 0 and 4 each with
probability 1

8 , and the value 2 with probability 3
4 . Thus E1 = 5, so from Theorem 4.3 we get

E[Y 2
A] =

∑

G∈G(A) 3c(G) for an arbitrary A. Hence the critical ratio is bounded above by

E[Y 2
A]

E[YA]2
=

∑

G∈G(A) 3c(G)

∑

G∈G(A) 2c(G)
≤ max

G∈G(A)

(

3

2

)c(G)

≤

(

3

2

)n/2

.

This completes the proof of the second claim in Theorem 4.2, and the analysis of our modified
quaternion estimator.
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4.4 Beyond the quaternions

The question of whether the performance of our higher-dimensional Clifford algebra estimators XA

can also be achieved in polynomial time remains an intriguing open problem. Of course, a posi-
tive resolution would, in light of Theorem A, imply a fully-polynomial randomized approximation
scheme for the permanent completely different from that of [10]. We have developed an efficient
version of the estimator in the next algebra, CL4, which according to large-scale experiments has
the same performance as the corresponding XA. This would actually overcome another major ob-
stacle, as CL4 is the first algebra that is not a division algebra (i.e., not all elements have inverses).‖

However, so far we have not been able to go beyond this. We note that CLm for any m has a rep-
resentation as k × k matrices over R, C or H (or direct sums of these), so one can always define an
analog of the “reduced norm” we used for the quaternions. It is also easy to see that the resulting
estimator is unbiased, but experiments indicate that the second moment is much larger than that
of the corresponding XA.
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Appendix

A The Clifford algebra CL4

The Clifford algebra CL4 has eight basis elements: {1, u12, u23, u13, u1234, u34, u14, u24}. The only
self-conjugate basis elements are 1 and u1234. Note that these are also the only two elements that
commute with all others. The complete multiplication table is as follows:





























1 u12 u23 u13 u1234 u34 u14 u24

u12 −1 u13 −u23 −u34 u1234 −u24 u14

u23 −u13 −1 u12 −u14 u24 u1234 −u34

u13 u23 −u12 −1 u24 u14 −u34 −u1234

u1234 −u34 −u14 u24 1 −u12 −u23 u13

u34 u1234 −u24 −u14 −u12 −1 u13 u23

u14 u24 u1234 u34 −u23 −u13 −1 −u12

u24 −u14 u34 −u1234 u13 −u23 u12 −1





























If h = c1 + c2u12 + c3u23 + c4u13 + c5u1234 + c6u34 + c7u14 + c8u24 then its conjugate h is defined as

h = c1 − c2u12 − c3u23 − c4u13 + c5u1234 − c6u34 − c7u14 − c8u24.

Note that

hh = c2
1 + c2

2 + c2
3 + c2

4 + c2
5 + c2

6 + c2
7 + c2

8 + 2(c1c5 − c2c6 − c3c7 + c4c8)u1234,

which is not real. The norm-square is defined by |h|2 =
∑8

i=1 c2
i .

B Proofs from Section 3

In this section, we present proof details for Lemma 3.3, Lemma 3.5 and Theorem 3.6 that were
omitted from the main text.

Proof of Lemma 3.3: Before proceeding with the case analysis of equation (2) outlined in the
main text, we require some easy facts about self-conjugate subgroups.

Lemma B.1 Let G be a subgroup of Gm, and let a be any element of Gm. Let H be the subset
of G that commutes with a, i.e., b ∈ H if and only if ab = ba. Then H is a subgroup of G, and
furthermore, either H = G or |H| = |G|/2.

Proof: That H is a subgroup of G is immediate. Suppose that H 6= G, and let G−H = {b1, . . . br}
be those elements of G that do not commute with a. Now notice any product bibj does belong to
H. Thus the elements b1bi are all distinct and belong to H, so H is at least as large as G − H.

Lemma B.2 In the situation of the previous lemma, with |H| = |G|/2, let g be an element of G
but not H. Then gH = G − H.

Lemma B.3 [Expansion] Let G be a self-conjugate subgroup of Gm, and let c be a self-conjugate
element of Gm that commutes with G but is not in G ∪ −G. Then G ∪ cG is also a self-conjugate
subgroup of Gm and has twice the size of G.
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Lemma B.4 [Conjugation] Let G be an arbitrary subgroup of Gm. For any a ∈ Gm, a(
∑

α∈G uα)a
can be written as

∑

α∈G′ uα, where G′ = aGa is a conjugate subgroup of G. Hence if G is self-
conjugate, then so is G′.

We now proceed with the case analysis from the main part of the paper.
Case 1: c ∈ G ∪ −G.
First, note that since G is self-conjugate and abelian then c is also self-conjugate and commutes

with every element of G. Then expression (2) from the sketch proof of Lemma 3.3 in the main text
becomes 2ka(2

∑

α∈G uα + (c + c)
∑

α∈G uα)a = 2ka(2
∑

α∈G uα + 2c
∑

α∈G uα)a. Now if c ∈ G then
cG = G, so c

∑

α∈G uα =
∑

α∈G uα and we get 2k+2a(
∑

α∈G uα)a. We then apply the conjugation
lemma. Similarly, if c ∈ −G, then cG = −G and we end up with 0.

Case 2: c 6∈ G ∪ −G.
case 2a: c commutes with G and c = c. As in case 1, (2) becomes 2ka(2

∑

α∈G uα +
2c

∑

α∈G uα)a. Since c is self-conjugate and commutes with G, from the expansion lemma we
can write this as 2k+1a(

∑

α∈G′ uα)a where G′ = G ∪ cG is also self-conjugate. We then apply the
conjugation lemma.

case 2b: All other cases. It is convenient to further divide this case as follows:
(i) c commutes with G but c = −c. Here (2) becomes 2k+1a(

∑

α∈G uα)a, and the conjugation
lemma finishes this case.

(ii) c does not commute with (all of) G. By Lemma B.1, the elements of G that commute
with c form a subgroup H ⊂ G with |H| = |G|/2. Thus the first two terms in the parentheses
in (2) become

∑

α∈G uα + c(
∑

α∈G uα)c = 2
∑

α∈H uα. We now analyze the last two terms.
First suppose that c = c. Here the last two terms become c(

∑

α∈G uα) + (
∑

α∈G uα)c =
2c

∑

α∈H uα so, upon combining with the first two terms, (2) becomes 2k+1a(
∑

α∈H uα+c
∑

α∈H uα)a.
Now H must be self-conjugate since it is a subgroup of G; and c is self-conjugate, commutes
with H, and does not belong to H ∪ −H. Thus the expansion lemma allows us to rewrite
∑

α∈H uα + c
∑

α∈H uα as
∑

α∈G′ uα, where G′ = H ∪ cH is self-conjugate and |G′| = 2|H| = |G|.
We then apply the conjugation lemma and we are done.

Now suppose that c = −c. Here c(
∑

α∈G uα)+(
∑

α∈G uα)c = 2c
∑

α∈G−H uα, so upon combining
with the first two terms (2) becomes 2k+1a(

∑

α∈H uα + c
∑

α∈G−H uα)a. Recall from Lemma B.2
that G − H = gH for some g ∈ G not in H. Thus we can rewrite

∑

α∈H uα + c
∑

α∈G−H uα as
∑

α∈H uα+cg
∑

α∈H uα. Since cg is self-conjugate ((cg)2 = cgcg = −ccgg = −c2g2 = −(−1)(1) = 1)
and commutes with H (both c and g commute with H), we can again apply the expansion lemma
followed by the conjugation lemma.

This completes the case analysis and hence the proof of Lemma 3.3.

In preparation for the proofs of Lemma 3.5 and Theorem 3.6, we develop some more detailed
information about the subgroups arising in the proof of Lemma 3.3. For any particular Gm, we
partition the set of all self-conjugate subgroups of Gm into equivalence classes such that G ∼ G′ iff
the respective probabilities (over the choice of a random signed basis element c) that G falls into
cases 1,2a, and 2b are the same as those for G′. While it may appear a priori that we could have
a proliferation of equivalence classes for each size of subgroup, this turns out not to be the case for
most values of m:

Lemma B.5 If m 6= 0 mod 4 then all subgroups of a given size 2i that arise from the block diagonal
estimator are equivalent.

Proof of Lemma B.5: We do this by induction on the size 2i of the subgroups. For the base case
i = 0, we have only the trivial subgroup {1}, so the statement is vacuously true. Now assume i > 0.
A subgroup G of size 2i can arise either from expansion (as in case 2a) or from transmutation (as
in the other cases). It therefore suffices to show the following two claims:
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Claim 1: If subgroups G and G′ of size 2i are both formed by expansion, then G and G′

are equivalent
Claim 2: If G transmutes to another group G′′ of the same size, then G and G′′ are

equivalent.

Proof of Claim 1: We require the following lemmas:

Lemma B.6 Suppose a subgroup H of size 2i−1 expands to a subgroup G of size 2i. Then |Z(H)| =
2|Z(G)|, where Z(H) and Z(G) are the centralizers∗∗ of H and G in Gm.

Proof: The proof appeals to a linear algebra description of Gm. Consider F
m
2 , the m-dimensional

vector space over F2. We identify a basis element a of Gm with the vector v whose ℓth component
is 1 if and only if ℓ appears among the subscripts of a. Note that given two basis elements a
and b their product (up to sign) is described by the sum of their corresponding vectors v + w.
Furthermore, if we define the dot product in the usual way, then a and b commute if and only if
v · w = 0.

A self-conjugate subgroup K of size 2j can then be represented (up to sign) as a j-dimensional
subspace WK of F

m
2 . K is generated by exactly j elements, and a basis for the subspace WK

consists of the vectors corresponding to these generators. These vectors are distinct because of
our restriction that if a ∈ K then a 6∈ −K. The vectors must be linearly independent since a
linear dependence would imply that one generator is a product of the others up to sign, which is
impossible.

We define VK to be the subspace spanned by WK and 1, the all-ones vector. The basis elements
that commute with K are then exactly those represented by the orthogonal subspace V ⊥

K . Any
v ∈ V ⊥

K must have an even number of subscripts since v · 1 = 0, and must commute with K since
v · w = 0 for all w ∈ WK . It is a well-known fact that dimVK + dimV ⊥

K = dim F
m
2 = m. There are

thus 2dim V ⊥
K unsigned basis elements in Z(K), so |Z(K)| = 2dim V ⊥

K +1.
Finally, observe that if H expands to G, then dim VH = dimVG−1. This is true since G requires

one more generator than H, and further, none of these generators can be 1 since m 6= 0 mod 4.
Thus |Z(H)| = 2|Z(G)|.

Lemma B.7 When H expands to G as above, exactly half of the elements in Z(H) − Z(G) are
self-conjugate.

Proof: Recall from case 2a of the proof of Lemma 3.3 that G can be described as a(H ∪ cH)a
for some self-conjugate c that commutes with H. Since conjugation by a changes only the signs of
H ∪ cH we see that Z(G) = Z(H ∪ cH).

Note that H ⊆ Z(H), and consider the set of cosets of H in Z(H). Note that the elements of a
coset are either all self-conjugate or all not self-conjugate ((dh)2 = dhdh = ddhh = d2). Also, the
elements of a coset either all commute with c (and hence with G) or all do not commute with c
(dhc = cdh ⇔ dch = cdh ⇔ dc = cd).

Now consider a coset dH in Z(H) − Z(G) that is not self-conjugate. Then cdH is also in
Z(H)−Z(G) but is self-conjugate. Similarly, if dH in Z(H)−Z(G) is self-conjugate, then cdH is
not. Thus we have a bijection between self-conjugate and non-self-conjugate cosets in Z(H)−Z(G),
proving the lemma.

To finish the proof of Claim 1, consider two subgroups G and G′, both of size 2i. Suppose that G
expanded from H and G′ from H ′. By induction H and H ′ are equivalent. Thus |Z(H)| = |Z(H ′)|,
and from Lemma B.6, we also have |Z(G)| = |Z(G′)|. Since |G| = |G′|, the probabilities of case 1

are the same. From the equivalence of H and H ′ and Lemma B.6, we also have that the numbers

∗∗Recall that the centralizer of a subgroup G in Gm is the set of elements of Gm that commute with all of G.
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of elements of Gm that commute with G and G′ are the same. Furthermore, from Lemma B.7 we
have that the numbers of these that are self-conjugate are also the same. Hence the probabilities
for case 2a are also equal, and therefore those for case 2b must be equal as well.

Proof of Claim 2: Suppose a subgroup G transmutes to G′′, as in cases 1 and 2b. We will
show that G and G′′ are equivalent. In fact, we will show the stronger result that there is some
automorphism φ of Gm that carries G to G′′. Recall that the analysis of case 2b in the proof of
Lemma 3.3 included two subcases. In subcase (i), the new group G′′ is of the form aGa, and the
automorphism is simply conjugation by a. The same argument applies in case 1.

Subcase (ii) of case 2b is slightly more involved. Recall that here we begin with G and a basis
element c that commutes with only half of G. Then G can be described as H ∪ gH, where H is
the subgroup of G that commutes with c and g ∈ G does not commute with c. If c = c, we end up
with G′′ = a(H ∪ cH)a, and if c = −c, we end up with G′′ = a(H ∪ cgH)a. We claim the following,
which is routinely verified:

Lemma B.8 Let d, g ∈ Gm be self-conjugate such that d does not commute with g. We say that
an element b ∈ Gm is even with respect to d and g if it commutes with neither or both of d and g,
and odd otherwise. Then the map φ : Gm → Gm, defined as φ(b) = b for b even and φ(b) = dgb
for b odd, is an automorphism of Gm.

If c = c, we apply this lemma with d = c and see that φ(H ∪ gH) = H ∪ cH, and if c = −c we set
d = cg and see that φ(H ∪ gH) = H ∪ cgH. We then apply conjugation by a to obtain G′′.

Once we have an automorphism, our claim follows immediately: if a basis element c falls into
a certain case with respect to G, then φ(c) falls into the same case with respect to G′′.

As we are now done with Claims 1 and 2, this concludes the proof of Lemma B.5.

The above analysis also allows us to precisely determine the size of the largest possible subgroup
for all values of m 6= 0 mod 4. In particular we have the following:

Proposition B.9 Let m = 4q + 2. Then the largest possible self-conjugate subgroup has size 22q.

Proof: We prove this by determining how much a self-conjugate subgroup can expand, starting
from the trivial subgroup {1}. There is no loss of generality here since any self-conjugate subgroup
G can be seen as the result of a sequence of expansions. (For example, starting from {1}, we can
iteratively expand to G by adding at each step an element of G not in the current subgroup.)

When m ≡ 2 mod 4, the self-conjugate elements comprise exactly half of the 2m−1 unsigned
basis elements. (To see this, recall that the unsigned basis elements correspond to even cardinality
subsets of {1, . . . ,m}; the self-conjugate elements correspond to those subsets of cardinality 4k+2.)
Thus when the subgroup has size 20 = 1, its centralizer contains 2m−2 self-conjugate unsigned basis
elements. At each expansion step, the subgroup size doubles and the number of self-conjuate
unsigned basis elements in the centralizer halves until the two are the same; this occurs when the
subgroup has size 2t, where t = m−2

2 = 2q.

We assume from now on that m = 4q + 2. In this case, Proposition B.9 implies that the
quantity p = maxG

2|G|
|Gm| defined in Lemma 3.4 is exactly 1

22q+1 . This completes the deferred proof
of Lemma 3.5.

Now for each possible size, 2i, of self-conjugate subgroup, define pi,k(n) to be the probability
that det(Bn)det(Bn) is of the form 2k ∑

α∈G uα, where G is of size 2i. (In light of Lemma B.5, this
probability depends only on the size of G, not on its contents.) From our analysis in the proof of
Lemma 3.3, we can write the following system of recurrence relations for the pi,k(n):

pi,k(n) = αipi,k−1(n − 1) + βipi,k−2(n − 1) + γipi−1,k−1(n − 1), (8)
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where pi,k(0) = 1 if i = k = 0 and pi,k(0) = 0 for all other values of i, k. Here αi is the probability
of transmuting while doubling the coefficient (case 2b), βi is the probability of transmuting while
quadrupling (half of case 1), and γi is the probability of expanding (case 2a for the smaller group
size 2i−1). The values of the coefficients αi, βi, γi depend only on the sizes of G and its central-
izer Z(G), and the number of self-conjugate elements in Z(G); thus they can be written down
exactly using the technology developed in Lemmas B.6 and B.7.

We now write
Pi(n) =

∑

k

22kpi,k(n)

so that the second moment of the estimator is

E[X2
An

] =
∑

i

Pi(n).

Theorem 3.6 is now an immediate consequence of the following two lemmas:

Lemma B.10 For all i and all n > 0, Pi(n) = λiPi(n − 1) + µiPi−1(n − 1) for constants λi and
µi (independent of n). Also P0(0) = 1, Pi(0) = 0 otherwise.

Lemma B.11 The closed form of
∑

i Pi(n) is a sum of two exponentials; i.e.,
∑

i Pi(n) = c1E
n
1 +

c2E
n
2 , where E1 = 4(1 + 1

22q+1 ), E2 = 4(1 − 1
22q+1 ), and c1, c2 are non-negative coefficients with

c1 + c2 = 1.

Proof of Lemma B.10: Observe the following:

Pi(n) =
∑

k

22kpi,k(n)

=
∑

k

22k
(

αipi,k−1(n − 1) + βipi,k−2(n − 1) + γipi−1,k−1(n − 1)
)

= 4αi

∑

k

22(k−1)pi,k−1(n − 1) + 16βi

∑

k

22(k−2)pi,k−2(n − 1) + 4γi

∑

k

22(k−1)pi−1,k−1

= (4αi + 16βi)Pi(n − 1) + 4γiPi−1(n − 1).

Setting λi = 4αi + 16βi and µi = 4γi finishes the proof.

Proof of Lemma B.11: From Lemma B.10, we have a system of recurrences of the form Pi(n) =
λiPi(n − 1) + µiPi−1(n − 1) for i = 0, . . . , t, where t = m−2

2 = 2q (so the largest subgroup has
size 2t). Define S(n) =

∑

i Pi(n), so that S(n) = E[X2
An

]. Then S(n) =
∑t

i=0(λi + µi+1)Pi(n − 1),
where we define µt+1 = 0. Now inspection of the proofs of Lemmas B.6 and B.7 allows us to write
down exact values for αi, βi, γi in the recurrence (8), and hence for λi, µi. Bearing in mind the fact
that m = 4q + 2, we get that µi = 4( 1

2i −
1

2m−i ) and λi = 4(1− 1
2i+1 + 1

2m−i−2 ). Hence we can write

S(n) =
∑t

i=0 4(1 + 2i

2m−1 )Pi−1(n).

We now rewrite this as S(n) = 4(1+ 2t

2m−1 )S(n−1)−R(n−1) = λtS(n−1)−R(n−1), where we

define R(n) =
∑t−1

i=0 4(2t−2i

2m−1 )Pi(n). Invoking the recurrence on the Pi, this can be written as R(n) =
∑t−1

i=0 4(2t−2i

2m−1 )(λiPi(n−1)+µiPi−1(n−1)). An elementary but tedious algebraic manipulation now
shows that R(n) = λt−1R(n − 1), from which it follows that R(n) = λn

t−1R(0). Here R(0) =

4( 2t−1
2m−1 )P0(0) = 2t−1

22t−1 .
Finally, plugging this back into the expression for S(n) yields S(n) = λtS(n − 1) − λn

t−1R(0).

Using the base case S(0) = P0(0) = 1, this can be solved to give S(n) = (1 − R(0)
λt−λt−1

)λn
t +

R(0)
λt−λt−1

λn
t−1.

Noting that λt = E1 and λt−1 = E2, and that both coefficients are non-negative, we have proved
the lemma.
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C Proofs from Section 4

In this section, we supply the proof of Theorem 4.3 which was omitted from the main text.

Proof of Theorem 4.3: We require two straightforward preliminary observations about the
behavior of the second moment on matrices whose graphs are the union of just two permutations.

Proposition C.1 Let G = G(π1, π2) for π1, π2 ∈ Sn be any graph such that c(G) = 1. Then
E[Y 2

A(G)] = E1.

Proof: Recall that |Gauss(H)|2 = det(DH) is invariant under elementary row and column opera-
tions on H. Thus we may assume that A has the form

A =

(

I 0
0 A′

)

, where A′ =















1 1
1 1 0

1 1
. . .

. . .0
1 1















.

Let H be the random quaternion matrix computed by the algorithm, and write H =

(

HI 0
0 H ′

)

.

Then clearly det(DH) = det(DHI
) det(DH′), and it is easy to check that det(DHI

) = 1 always.
Thus we need only prove the Proposition for A having the same bidiagonal form as A′. But since
A1 is the special case n = 2 of this form, it suffices to prove that E[Y 2

A] does not in this case depend
on the size of A. The quaternion matrix H corresponding to such an A has the form

H =















h1 g1

g2 h2 0
g3 h3

. . .
. . .0
gn hn















,

where the hi and gi are independent random elements of H8. When we run Gaussian elimination
on this matrix, we get

Gauss(H) = h1h2 · · ·hn + (−1)n+1h1 · · ·hn−1gnhn−2gn−2 · · · g2h1g1.

But since hn only appears as a factor in the first term, and gn only in the second term, we see
that Gauss(H) has the same distribution as h + g, where h and g are independent and uniformly
distributed over H8. Thus E[Y 2

A] does not depend on n and we are done.

Proposition C.2 Let G = G(π1, π2) for π1, π2 ∈ Sn be arbitrary. Then E[Y 2
A(G)] = E

c(G)
1 .

Proof: As in the previous proof, by applying row and column operations we may assume that A
has the form

A =











A1 0
A2

. . .

0 Ac(G)











,

where each Al is of the form dealt with in Proposition C.1. Let H be the quaternion matrix
computed by the algorithm when run on A. Then H has the form

H =











H1 0
H2

. . .

0 Hc(G)











,
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where the matrices Hl are independent and distributed as if they had been computed by the
algorithm run on the matrices Al. Now because the norm-square function for the quaternions is a
homomorphism (i.e., |h1h2|

2 = |h1|
2|h2|

2), we have

det(DH) =

c(G)
∏

l=1

|det(Hl)|
2,

which implies

E[Y 2
A] =

c(G)
∏

l=1

E[Y 2
Al

].

The result now follows from Proposition C.1.

We now proceed with the analysis of the second moment for a general matrix A. As in the
analysis of the expectation, let D = (dij) ∈ C

2n×2n be the “reduced norm” matrix computed by
the algorithm. Then we have

E[X2
A] = E





∑

π,π′∈S2n

sgn(ππ′)
2n
∏

i=1

di,πidi,π′i





def
=

∑

π,π′∈S2n

E[Dππ′ ]. (9)

Again each entry dij of D depends on exactly one entry of H, namely h⌈ i
2
⌉,⌈ j

2
⌉. Let π, π′ ∈ S2n.

Then the factors di,πi and di,π′i of Dππ′ depend on a set ππ′|n of between n and 4n entries of H,
where ππ′|n = π|n ∪π′|n. From (9), Theorem 4.3 is an immediate consequence of the following two
claims:

Claim 1: Let π, π′ ∈ S2n. Then E[Dππ′ ] 6= 0 ⇒ ππ′|n ∈ G(A).

Claim 2: Let G ∈ G(A). Then E[DG]
def
=

∑

π,π′:ππ′|n=G E[Dππ′ ] = (E1 − 2)c(G).
To prove Claim 1, fix π, π′ ∈ S2n with E[Dππ′ ] 6= 0. Clearly ππ′|n corresponds to some bipartite

graph B on n + n vertices. To see that B must be a graph formed by two permutations in Sn, fix
some odd i = 2k − 1 ∈ [2n] and consider the corresponding four factors, di,πi, di,π′i, di+1,π(i+1),
and di+1,π′(i+1). Suppose πi = 2l − 1 is odd (the case when it is even is similar). Thus di,πi = bkl.
Since the four factors under consideration are independent of all other factors in Dππ′ , it must be
the case that bkl is also one of the four. In particular, either π(i + 1) or π′(i + 1) must equal πi + 1
(so that either di+1,π(i+1) or di+1,π′(i+1) equals bkl). We assume π′(i + 1) = πi + 1; the other case
is handled similarly. There are two cases to consider:

Case (i): π′i = πi, so that bkl appears twice among the four factors. But then bkl must also
appear twice, so π(i + 1) = πi + 1. But then (k, l) is the only index pair in ππ′|n of an entry in the
kth row and lth column of H. Equivalently, B has an isolated edge from the kth vertex on the left
to the lth vertex on the right.

Case (ii): π′i 6= πi. Observe that neither ckl nor −ckl can be a factor of Dππ′ since either bkl = 0
or ckl = 0. Thus ⌈π′i

2 ⌉ 6= l. So suppose π′i = 2l′ − 1 is odd with l′ 6= l (the even case is handled
analogously). Then bkl′ must be the last of the four factors, i.e., π(i + 1) = 2l′. But then (k, l) and
(k, l′) are the only index pairs in ππ′|n of entries in the kth row of H. This corresponds to B having
exactly two edges with incident on the kth vertex on the left. Now repeat the argument starting
from the right vertices l and l′ to see that they too have exactly two incident edges each. Repeat
the argument until an even length cycle is closed.

The above two cases imply that each vertex on the left of B is either the endpoint of an isolated
edge, or takes part in an even length cycle. We conclude that ππ′|n is a graph formed by two
permutations in S2n. Clearly ππ′|n cannot contain an index pair (k, l) with akl = 0. Claim 1
follows.

We now prove Claim 2 by induction on c(G). Fix G ∈ G(A). For the base case, assume c(G) = 0.
But then G = π for some permutation π ∈ P (A), and it is easy to see that E[DG] = 1 = (E1 − 2)0.
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For the induction step, assume the claim holds true for all graphs G′ with fewer cycles than G.
Consider the matrix A(G). It follows from Claim 1 that

E[X2
A(G)] =

∑

G′∈G(A(G))

E[DG′ ].

But now by Proposition C.2 we may write

E
c(G)
1 =

∑

G′⊆G

E[DG′ ],

and we may apply the induction hypothesis:

E
c(G)
1 = E[DG] +

c(G)
∑

k=1

(c(G)
k

)

2k(E1 − 2)c(G)−k

= E[DG] + E
c(G)
1 − (E1 − 2)c(G).

Thus we have E[DG] = (E1 − 2)c(G), which completes the proof of Claim 2 and of Theorem 4.3.
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