
Delaying satisfiability for random 2SAT

Alistair Sinclair1 and Dan Vilenchik2

1 Computer Science Division, University of California, Berkeley CA 94720–1776!
2 Department of Mathematics, University of California, Los Angeles, CA 90095!!

Abstract. Let (C1, C
′
1), (C2, C

′
2), . . . , (Cm, C′

m) be a sequence of ordered
pairs of 2CNF clauses chosen uniformly at random (with replacement)
from the set of all 4

(
n
2

)
clauses on n variables. Choosing exactly one

clause from each pair defines a probability distribution over 2CNF formu-
las. The choice at each step must be made on-line, without backtracking,
but may depend on the clauses chosen previously. We show that there
exists an on-line choice algorithm in the above process which results whp
in a satisfiable 2CNF formula as long as m/n ≤ (1000/999)1/4. This
contrasts with the well-known fact that a random m-clause formula con-
structed without the choice of two clauses at each step is unsatisfiable
whp whenever m/n > 1. Thus the choice algorithm is able to delay sat-
isfiability of a random 2CNF formula beyond the classical satisfiability
threshold. Choice processes of this kind in random structures are known
as “Achlioptas processes.” This paper joins a series of previous results
studying Achlioptas processes in different settings, such as delaying the
appearance of a giant component or a Hamilton cycle in a random graph.
In addition to the on-line setting above, we also consider an off-line ver-
sion in which all m clause-pairs are presented in advance, and the al-
gorithm chooses one clause from each pair with knowledge of all pairs.
For the off-line setting, we show that the two-choice satisfiability thresh-
old for k-SAT for any fixed k coincides with the standard satisfiability
threshold for random 2k-SAT.

1 Introduction

The random graph process, introduced by Erdős and Rényi in the 1960’s, begins
with an empty graph on n vertices and adds a single new edge to the graph in
each round i = 1, . . . ,m. Each new edge is chosen uniformly at random from
all unchosen edges. The resulting distribution over graphs is commonly denoted
Gn,m. One of the most fundamental random graph properties to be studied is
the emergence of a giant component: at what density m/n does a connected
component of size Ω(n) first appear? A classical result by Erdős and Rényi [9]

! Email: sinclair@cs.berkeley.edu. Supported in part by NSF grant CCF-0635153 and
by a UC Berkeley Chancellor’s Professorship.

!! Email: vilenchik@math.ucla.edu. This work was done while the author was a post-
doctoral researcher at UC Berkeley, supported by NSF grants CCF-0635153 and
DMS-0528488.

asserts that for m/n = c, c > 1/2 a constant, a random graph with m edges will
have a unique giant component whp3.

Inspired by the celebrated “power of two choices” phenomenon for balls-and-
bins [2] (n balls are randomly thrown into n bins, each ball inspecting two random
bins and choosing the less heavily loaded of the two, resulting in a significant
decrease in the maximum bin load), Dimitris Achlioptas posed the following
question for the random graph process. Suppose that edges arrive in pairs, i.e.,
in round i the pair (ei, e′i) appears, and one of these edges is chosen for inclusion
in the graph. The decision is to be made on-line, possibly based on the history
of the process, but with no backtracking. Does there exist an algorithm A that
delays the appearance of the giant component? Frieze and Bohman answered
this question positively [3], describing an on-line algorithm A whose greedy rule
postpones the appearance of the giant component until m/n ≥ 0.53. Spencer
and Wormald [18] improved this result to m/n ≤ 0.83. An upper bound of
m/n = 0.964 for every on-line algorithm was proved in [4].

Quite a few subsequent papers have addressed various other facets of the
above model, including speeding up the appearance of the giant component,
delaying the appearance of certain fixed subgraphs, speeding up the appearance
of a Hamilton cycle, and so on (see, e.g., [4, 10, 6, 16, 17]).

Another class of random structures that has been widely studied is that of
random 2CNF formulas. To generate a random 2CNF formula with m clauses
over n variables, choose uniformly at random m clauses out of all 4

(n
2

)
possible

ones. We call the resulting distribution Fn,m. Goerdt [13], and independently
Chvátal and Reed [8], showed that whenever m/n < 1 a random Fn,m formula is
whp satisfiable, while if m/n > 1 it is whp unsatisfiable. In this paper we consider
an Achlioptas process for random 2CNF formulas. Specifically, we answer the
question whether one can delay the sat/unsat threshold if at each step two
random clauses are available to choose from. As far as we are aware, this is the
first time that an Achlioptas process for random formulas has been studied.

Formally, we examine the following process: at each round i = 1, . . . ,m, gen-
erate two random clauses independently and uniformly at random (with replace-
ment) out of all 4

(n
2

)
possible clauses; then choose one of the two to be included

in the formula. The decision is to be made on-line, without backtracking, but
possibly dependent on the clauses seen so far. We note that, to avoid technical
complications, our distribution is slightly different from the Achlioptas process
for Fn,m because in our distribution some clauses may appear twice. However, a
simple calculation shows that the number of pairs of identical clauses among the
2m = Θ(n) clauses appearing in the process is o(n). Disregarding steps involving
such clauses we get exactly the Achlioptas process for Fn,m−o(n). But removing
o(n) clauses from the formula doesn’t change our result as our advantage over
the threshold will be of order Θ(n).

A random Fn,m formula can be viewed in an obvious way as a random G2n,m

graph on the set of 2n literals (i.e., variables and their negations), in which a

3 Throughout, we shall take the phrase whp (with high probability) to mean “with
probability tending to 1 as n → ∞.”

2

clause (#∨ #′) is translated into an edge between # and #′. With this picture, one
might naively think that an application of the Bohman-Frieze greedy rule [3] for
delaying the giant component suffices to delay the sat/unsat threshold for 2SAT.
After all, until the emergence of the giant component the connected components
of Fn,m are simple (mostly trees, plus a few unicyclic components), and hence
one may think that the formula is likely to be satisfiable.

However, this intuition turns out to be false. A recent result of Kravitz [15]
implies that, if one only tampers with the degrees of literals in the random
formula (leaving the parities of the variables uniformly random), then once the
average degree exceeds 1 the formula will be unsatisfiable whp. The underlying
reason, of course, is that the satisfiability of a 2CNF formula is determined not
by the literal graph above, but by the implication graph. The vertices of the
implication graph are again the 2n literals; however, for every clause (# ∨ #′) in
the formula, two directed edges are added to the implication graph: #̄ → #′ and
#̄′ → #. As is well known [1], a 2CNF formula is satisfiable iff in its implication
graph there is no variable x such that x and x̄ belong to the same strongly
connected component. Thus the fact that the literal graph has a simple structure
does not exclude the possibility of contradictory cycles in the implication graph.
This tells us that any rule we use to determine which clause to choose at each
step must take into account the parities of the variables, and thus the Achlioptas
process for 2SAT will depart from the realm of pure random graph structure that
has been explored in previous such results.

Before stating our result, let us mention that alongside the on-line version,
an off-line version of the Achlioptas process has also been studied. In the off-line
version (formulated for random 2SAT), m random pairs of clauses are generated;
then an algorithm chooses one clause from each pair, given full information about
all the pairs. For the analogous off-line version of the random graph process,
Bohman and Kim [5] prove an exact threshold for avoiding the giant component,
whose value is roughly m = 0.97677n. As we shall see shortly (Theorem 1), we
are able to obtain the exact threshold for the off-line k-SAT process.

1.1 Our contributions

Let us first state our threshold result for the off-line version. Observe that it is
not a priori clear that such a process will have a threshold, in the sense of [11].
However, we show that it does have a threshold, and that this threshold coincides
with that of random 2k-SAT. In what follows, we denote by dk the satisfiability
threshold for random k-SAT. (This threshold exists by virtue of [11]; note that
dk may depend on n as well as on k).

Theorem 1. Given m pairs (C1, C ′
1), (C2, C ′

2), . . . , (Cm, C ′
m) of random k-SAT

clauses over n variables, if m/n < d2k there exists whp an off-line choice of one
clause per pair so that the resulting formula is satisfiable. If m/n > d2k whp
every such choice will result in an unsatisfiable formula.

3

The proof uses a somewhat similar idea to that used in [4] in the context of
avoiding the giant component in the random graph process, and can be found
in Section 2.

We turn now to the on-line case, which is rather more challenging. Of course,
the off-line threshold provides an upper bound for the on-line setting, so we
immediately deduce from Theorem 1 that no on-line choice algorithm can de-
lay satisfiability beyond m/n = d2k. In particular, for 2SAT this upper bound
is d4, which is predicted experimentally to be about 9.25 [14]. A rigorous upper
bound on d4 is obtained by plugging k = 4 into the first moment bound 2k ln 2,
giving 11.09. Thus Theorem 1 proves that no on-line choice algorithm can delay
satisfiability for 2SAT beyond m/n = 11.09.

What about the more interesting question of a lower bound? Is it possible to
delay satisfiability beyond the threshold at all? We are able to answer this ques-
tion affirmatively for the case k = 2, and this is the main technical contribution
of our paper.

Before presenting our on-line algorithm we give a few definitions. We denote
the set of variables by x1, x2, . . . , xn. Throughout we use # to denote a literal
(i.e., # = xi or # = x̄i), and #̄ its negation.

Definition 1. A clause C = (# ∨ #′) is bad with respect to a set F of clauses if
either #̄ appears in F or #̄′ appears in F . A clause is good if it is not bad.

The procedure in Figure 1 specifies our on-line choice rule.

For each round i = 1, . . . ,m do:

1. Pick two clauses C1, C2, with replacement, independently at random out
of all 4

(
n
2

)
possible clauses.

2. Set Fi = {D1, D2, . . . , Di−1}, where Dj is the clause chosen in round j.

3. If C1 is good with respect to Fi, choose it, otherwise choose C2.

Fig. 1. Generating a random 2CNF instance

Our main result is formally stated in the following theorem, which says that the
above choice rule succeeds in delaying the sat/unsat phase transition for random
2CNF formulas by a constant factor:

Theorem 2. Let F be a random 2CNF formula generated by the procedure in
Figure 1. If m/n ≤ (1000/999)1/4 then F is whp satisfiable.

Experimental results predict that the right critical value of m/n when using
the above algorithm is approximately 1.2. However, to keep the analysis clear we
did not try to optimize the constant. (We do not claim that simply optimizing
over the constants in our proof will yield the value 1.2.)

4

One may also try other greedy rules, similar in flavor to the one we use, and
get different threshold values. The best experimental threshold we achieved with
a simple rule was approximately 1.5; this is discussed in more detail in Section 7.

Another way of extending the result is the following: suppose that in each
round one is allowed to choose from T clauses rather than just from two. Our
analysis easily implies that, using the same rule (but now choose CT only if
C1, . . . , CT−1 are all bad), the sat/unsat threshold scales as βT for some fixed
β > 1. We omit the details.

We also remark that the techniques we develop here to prove Theorem 2 may
be applicable in other settings. One such setting is delaying the threshold for
the pure-literal procedure in random 3SAT formulas. Broder et al [7] showed a
tight threshold of 1.63 for this model. We conjecture that using our techniques
it is possible to show that, given a choice of two clauses in each round, one can
delay the threshold for the pure literal procedure in 3SAT beyond this point.
More details are given in Section 7.

Finally, let us state a result concerning k-SAT for k = ω(logn).

Theorem 3. Given a choice of two clauses in the Achlioptas process for ran-
dom k-SAT with k = ω(logn), there exists an on-line algorithm that delays the
satisfiability threshold by a factor of 0.99/ ln 2.

Note that the sat/unsat threshold for k-SAT is (for any k) at most m/n = 2k ln 2
(this follows from a simple first moment calculation). Actually, for k = ω(log n)
this upper bound is tight [12]. The proof of Theorem 3 is self-contained and
short, and uses a different (even simpler) choice rule from that in Figure 1.

The remainder of the paper is organized as follows. In the next section, we
give the short proof of the off-line threshold, Theorem 1. Then we turn to the
proof of our main result, Theorem 2: in Section 3 we give an outline of the proof,
then in Section 4 we establish some useful properties of the distribution induced
by the algorithm, and finally we use these properties to prove Theorem 2 in
Section 5. Section 6 gives the short proof of Theorem 3. We conclude with a
brief discussion in Section 7.

2 The off-line setting: Proof of Theorem 1

Consider m pairs of random k-SAT clauses (C1, C ′
1), (C2, C ′

2), . . . , (Cm, C ′
m), and

from each pair generate a 2k-SAT clause by setting Di = Ci∨C ′
i. Set F

∗ = D1∧
D2 ∧ · · ·∧Dm. Observe that the 2k-SAT formula F ∗ may contain some “illegal”
clauses in which some variable repeats. As we shall see, this is a technicality that
is readily overcome. Hence, in what follows we allow such clauses.

The following is a general lemma that does not assume any randomness in
the choice of clauses.

Lemma 1. F ∗ is satisfiable iff there exists a choice of a satisfiable formula in
(C1, C ′

1), (C2, C ′
2), . . . , (Cm, C ′

m).

5

Proof. If there exists a choice of satisfiable formula, concatenating the unchosen
clause in every pair obviously lifts this to a satisfiable 2k-SAT formula. So F ∗ is
satisfiable. Conversely, if F ∗ is satisfiable, let ϕ be a satisfying assignment and
consider the following choice rule: evaluate Di = Ci ∨ C ′

i under ϕ, and choose
the clause (Ci or C ′

i) that contains at least one true literal under ϕ (breaking
ties arbitrarily). Since ϕ satisfies F ∗, every Di contains such a choice. Clearly,
ϕ satisfies the k-SAT formula that we chose. &'

As mentioned above, the distribution of F ∗ does not coincide exactly with that
of F2k,n,m, random 2k-SAT. The reason is that, for some i, Ci and C ′

i may share
a variable, so Di will be an illegal 2k-SAT clause. However, the following lemma
asserts that the satisfiability threshold for the two distributions is the same (both
these distributions have a threshold by [11]).

Lemma 2. Let F ∗ be distributed as above. Let d∗2k be the satisfiability threshold
for that distribution, and let d2k be the threshold for Fn,m,2k. Then d∗2k = d2k
for any fixed k.

Proof. First let us estimate the probability of a shared variable in a pair (Ci, C ′
i).

This probability is easily seen to be O(k2/n). Let T be a random variable that
counts the number of such pairs. Since the regime that is relevant for us is
m = O(22kn), we have E[T] = O(k222k) = O(1) (as k is fixed). Note that T
is binomially distributed, and so with constant probability T = 0. Hence if for
example we assume that d∗2k < d2k, then for d∗2k < m/n < d2k we get that with
some constant probability, the resulting random formula F ∗ is a random Fn,m,2k

formula, and hence satisfiable whp. Thus in turn, with constant probability F ∗ is
satisfiable above the threshold d∗2k, which contradicts the definition of a thresh-
old. The same argument shows that d∗2k > d2k cannot occur. &'

Theorem 1 follows immediately from the above two lemmas.

3 The on-line setting: Proof outline

As we have already mentioned, the satisfiability of a 2CNF formula F is de-
termined by certain structures in its implication graph G(F): namely, directed
paths from x to x̄ and from x̄ to x. The formula is unsatisfiable iff for some x
paths of both these types exist.

We may view a simple directed path p from x to x̄ in G(F) as a sequence of
clauses C1, C2, . . . , Ct, where C1 = (x̄ ∨ #1), Ci = (#̄i−1 ∨ #i) for 2 ≤ i ≤ t − 1,
and Ct = (#̄t−1 ∨ x̄). Observe that every variable in p appears twice, and except
for the variable x, each variable appears both positively and negatively.

Our proof is a first moment calculation, estimating the number of pairs of
simple paths (x ! x̄, x̄ ! x) in the implication graph. We will show that this
number is o(1) for our choice of m/n, thus proving Theorem 2.

The main challenge is to estimate Pr[C1, C2, . . . , Ct], the probability of occur-
rence of a sequence of clauses as above. Note that in the standard random 2SAT

6

model Fn,m this is straightforward: Pr[C1, C2, . . . , Ct] ∼
(
m/4

(n
2

))t
. However,

under the new distribution we will need to do much better in order to achieve
a first moment of o(1) for values of m with m/n > 1. In fact, the key point is
that our choice rule for clauses “punishes” paths in the implication graph, thus
enabling us to delay the sat/unsat threshold.

The key observation in the analysis is the following: given that a clause (#′∨#)
has been included already, then if (#̄ ∨ #′′) is to be included later, it will have to
be as the second clause (C2 in the procedure in Figure 1): it cannot be included
as the first clause because it is “bad” by our definition. This in turn means that
the first clause, C1, must itself be bad in order to allow us to choose C2. This
fact reduces the probability of some clauses in the path (at least half of them,
as we shall see), which allows us to achieve satisfiability even when m/n > 1.

One challenge in the analysis is the fact that the choice of a new clause
depends on the history of clauses chosen so far. Thus instead of dealing with a
standard “product” space4 like Fn,m, we have to analyze a more complicated
conditioned probability space.

4 Properties of the distribution

In this section we establish some properties of the distribution over formulas
induced by our choice rule. We will use these in our proof of Theorem 2 in the
next section.

Definition 2. Two clauses C and C ′ threaten each other if there exists a vari-
able x that appears positively in one and negatively in the other.

Proposition 1. Consider a simple path of length t in the implication graph
G(F). In every ordering π of the clauses on the path, at least (t/2) − 1 clauses
are threatened by clauses that appear before them in π.

Proof. Fix an arbitrary ordering π of the clauses; let T be the set of clauses
that are threatened by some clause before them in π, and N the other clauses of
the path. Every clause, except possibly for the first and last clauses of the path,
threatens exactly two other clauses, and every clause in the path is threatened
by at most two clauses. Also, no clause in N can threaten another clause in N ,
since if so the one appearing first in π would threaten the second clause and the
latter would be in T (“threatening” is a symmetric relation). To conclude, the
clauses in N threaten at least 2(|N |− 2) clauses in T (we assume the worst case
for us: both the first and last clauses are in N), each of which was counted at
most twice. All in all, |T | ≥ 2(|N |− 2)/2 = |N |− 2. Further, |T |+ |N | = t, and
therefore |T | ≥ (t/2)− 1 as desired. &'

Consider now a possible (simple) path in G(F), corresponding to the clauses
C1, . . . , Ct. Our next task is to derive an upper bound on the probability that

4 Technically Fn,m is not a product space, but standard methods allow it to be viewed
as one.

7

this set of clauses is chosen by the algorithm. This probability depends on the
order in which the clauses are chosen, which motivates the following definition.
Here π is an arbitrary permutation of the clause labels 1, . . . , t.

Definition 3. The clauses C1, . . . , Ct are chosen according to π if the algo-
rithm described in Figure 1 chooses these clauses in the order specified by the
permutation π. The clauses are chosen according to π in rounds k1, . . . , kt if
in addition the algorithm chooses clause Ci in round ki. (Note that the ki must
respect π in the sense that ki < kj iff π(i) < π(j).)

Let us fix a simple path inG(F) and a corresponding set of clauses C1, . . . , Ct,
as well as an associated permutation π and a set of rounds k1, . . . , kt respecting π.

Let A(k)
i denote the event that clause Ci is chosen in round k, and A(<k)

i the
event that clause Ci is chosen in some round k′ < k. Then we have

Pr[C1, C2, . . . , Ct are chosen according to π in rounds k1, . . . , kt] (1)

=
t∏

i=1

Pr
[
A(ki)

i

∣∣∣
⋂

j:π(j)<π(i)

A(<ki)
j

]
.

To analyze the conditional probabilities appearing in (1), we partition the
clauses into three categories as follows:

1. the first and last clauses of the path (as they appear in the implication graph,
not in π);

2. the inner clauses which are threatened by a clause that precedes them in π;
3. the inner clauses which are not threatened by a clause that precedes them

in π.

We proceed to bound the conditional probability for a clause in each category.

Proposition 2. For any fixed round k ≤ m,

Pr
[
A(k)

i

∣∣∣
⋂

j:π(j)<π(i)

A(<k)
j

]
≤ 2

4
(n
2

) .

The proof is immediate: since we are conditioning only on the past, each candi-
date clause in round k is uniformly distributed over the set of all 4

(n
2

)
clauses,

and therefore 2/4
(n
2

)
is an upper bound on Ci even being a candidate in round k.

In what follows, we use |π| to denote the number of clauses ordered by π.
(Thus |π| = t for a sequence of clauses C1, . . . , Ct.)

Proposition 3. For a fixed round k ≤ m, |π| = o(n), and α∗ = 969/970,

Pr
[
A(k)

i

∣∣∣
⋂

j:π(j)<π(i)

A(<k)
j ∩ (Ci is threatened by some preceding clause in π)

]

≤ α∗

4
(n
2

) .

8

Proof. In order for Ci to be chosen in round k, given that all clauses that precede
it in π have been previously chosen and at least one of these threatens Ci, two
events need to occur: (a) the first clause in round k is bad; and (b) Ci appears
as the second clause in round k. Since the conditioning is only on the past, these
two events are independent. The probability of the second event is trivially
1/4

(n
2

)
. As for the first event, with probability 1 − o(1) the two literals of the

first candidate clause will not occur in the set of clauses we condition upon
(because, by assumption, they span only o(n) variables). So we may assume this
is the case. We now derive a lower bound on the probability of the first clause
being good. Suppose w.l.o.g. that this clause is C = (x ∨ y). Let us calculate
the probability that either x or y appears more than four times up to round k.
The expected number of appearances of each such variable up to round k is at
most 2k/n ≤ 2m/n. (Here we are using the fact that the distribution induced by
our choice rule is symmetric for all variables that do not appear in the clauses
conditioned upon.) It is also easy to see that variable appearances are negatively
correlated (conditioning on x already appearing in a chosen clause, if x is to
appear again then it will be with at most the probability of the first appearance,
as now one or both of its parities are “punished”).

Using the Chernoff bound (which we can do due to negative correlation),
the probability that a variable appears four times is smaller than 0.467, and
therefore with probability at least 1 − 2 × 0.467, both x and y appear at most
three times. Let us assume this is the case. The worst case for us is that both
actually appear three times. Next observe that the configurations x, x, x and
x̄, x̄, x̄ are at least as likely as any other (again, by our choice rule). Therefore,
with probability at least 2/23 = 1/4, the appearances of x are either all negative
or all positive (that is, x appears in pure form). With probability at least 1/16
this is true for both x and y (conditioning on x’s configuration will not make
y’s non-pure configurations more likely than its pure ones). To conclude, with
probability at least (1 − 2 × 0.467)/16 both x and y appear in pure form. In
that case, with probability 1/4 the clause C is good (x and y appear in C
with the correct parities). Overall, then, C is good with probability at least
(1− 2 · 0.467)/(16 · 4) > 1/970. To conclude, for sufficiently large n,

Pr
[
A(k)

i

∣∣∣
⋂

j:π(j)<π(i)

A(<k)
j ∩ (Ci is threatened by some preceding clause in π)

]

≤ 969

970
· 1

4
(n
2

) . &'

Proposition 4. For a fixed round k ≤ m and |π| ≤ r,

Pr
[
A(k)

i

∣∣∣
⋂

j:π(j)<π(i)

A(<k)
j ∩ (Ci is an inner clause not threatened

by any preceding clause in π)
]
≤ 1 +O(r/n)

4
(n
2

) .

Proof. Since Ci is not threatened by any clause we condition upon, it can be
chosen as either the first or the second clause in its pair. Let N be the event “Ci

9

is not threatened by any preceding clause in π”; then (suppressing throughout

the proof the conditioning on
⋂

j:π(j)<π(i) A
(<k)
j), we have

Pr[A(k)
i | N] = Pr[Ci is chosen as first clause | N]

+ Pr[Ci is chosen as second clause | N].

Say w.l.o.g. Ci = (#1 ∨ #2). For Ci to be chosen as the first clause in round k,
it must be the case that #̄1 and #̄2 have not appeared in a chosen clause before
round k (otherwise Ci is bad). Therefore,

Pr[Ci chosen as first clause | N] =
Pr[#̄1, #̄2 don’t appear before round k | N]

4
(n
2

) .

(2)
The denominator, 4

(n
2

)
, accounts for the probability of the clause (#1 ∨ #2) actu-

ally appearing. Observe that in this case #1 and #2 do not appear in any of the
clauses we condition upon (otherwise Ci is threatened by a clause in that set as
Ci is an inner clause).

For Ci to be chosen as the second clause in round k, it must be the case
that the first clause is bad and Ci appears as the second clause. Again, these
two events are independent (as the conditioning is only on the past, and at each
round the two candidate clauses are chosen independently). With probability
O(r/n), some variable of the first clause appears in the set of clauses conditioned
upon. (This is because there are r such clauses by assumption, involving at most
2r variables.) Assume this is not the case, and let #, #′ be the two literals in the
first candidate clause. Then the probability that the clause is bad is

Pr[#̄ or #̄′ appears before round k | N]

= 1− Pr[#̄,#̄′ don’t appear before round k | N].

Observe that

p∗ ≡ Pr[#̄, #̄′ don’t appear before round k | N]

is exactly the numerator in Equation (2): in both cases we ask for the probability
that two literals (whose variables do not appear among the clauses conditioned
upon) have not appeared before round k. By symmetry, the identity of the literals
doesn’t matter, and therefore the two expressions are equal. To conclude,

Pr[A(k)
i | N] ≤ p∗

4
(n
2

) +
O(r/n) + 1− p∗

4
(n
2

) =
1 +O(r/n)

4
(n
2

) . &'

5 Proof of Theorem 2

Recall that, to prove Theorem 2, it suffices to exclude the existence of a directed
path from x to x̄ and from x̄ to x (for any x) in the implication graph G(F)
of the formula F constructed by our algorithm. We follow the same approach

10

as that in [8] for proving the threshold for random 2SAT; the main challenge
in our case is to use the “power of two choices” to get a tighter bound on the
appearance of a fixed path, using the bounds we derived in the previous section.

We branch into two cases, depending on the length of the path. We will start
with the case where one of the paths x ! x̄ or x̄ ! x is of length, say, at least
log2 n. Take a (simple) prefix of length t = log2 n of some such path, consisting
of clauses C1, C2, . . . , Ct. Let us bound the probability of such a prefix occurring:

Pr[prefix of length t] (3)

≤
(

n

t+ 1

)
· 2t+1 · (t+ 1)! ·

∑

π

Pr[C1, C2, . . . , Ct are chosen according to π].

The first factor is the number of ways to choose the t+ 1 variables, the second
counts their parities, and the last factor accounts for the probability the clauses
are actually chosen, summing over all possible orderings in which they are chosen.

We may bound this final summation over π by
(m
t

)
(for the number of ways

of choosing the rounds) times an upper bound on

Pr[C1, C2, . . . , Ct are chosen according to π in rounds k1, . . . , kt]

over all choices of k1, . . . , kt. This we obtain via Equation (1), using the bounds
on the conditional probabilities derived in Propositions 2, 3 and 4. Note first that,
by Proposition 1, at least (t/2) − 1 clauses are threatened in every ordering π.
To bound the conditional probabilities for these clauses we use Proposition 3.
Otherwise, except for the first and last clauses of the prefix, every clause is an
inner clause whose probability we bound using Proposition 4. For the first and
last clauses we use Proposition 2. Putting all this together yields

∑

π

Pr[C1, C2, . . . ,Ct are chosen according to π]

≤ t!

(
m

t

)(
α∗

4
(n
2

)
)(t/2)−1

·
(
1 +O(t/n)

4
(n
2

)
)(t/2)−1

·
(

2

4
(n
2

)
)2

.

Plugging this into Equation (3) and simplifying yields

Pr[prefix of length t]

≤ mtnt+1 · 2t ·
(

1

4
(n
2

)
)t

· (α∗)(t/2)−1 ·O(1) ≤ O(n) ·
(m
n

)t
· (α∗)t/2−1.

By our choice of m/n ≤ (1000/999)1/4, and the fact that α∗ = 969/970, for
sufficiently large t this last expression is at most O(n)βt for some fixed β < 1.
Since t ≥ log2 n, Pr[prefix of length t] = n−Ω(log n). Finally, there are at most
n ways to choose t (the length of the simple path), so the probability that any
path of length greater than log2 n exists in the implication graph is o(1).

11

Let us now move to the case of short paths. We shall bound the probability
that, for any variable x, there exists a short path from x to x̄ and from x̄ to x
(recall that we only consider simple paths). Denote the paths from x to x̄ and
from x̄ to x by p1 and p2 respectively, and let their respective lengths be t1
and t2. Suppose w.l.o.g. that t1 ≥ t2. The path p2 may contain clauses from p1:
say, s segments of total length r from p1. The number of variables in p1 is t1, and
p2 further introduces t2 − 1− r− s new variables. (We do the variable counting
in p2 as follows: for every clause in p2, we count the variable that appears first
along the path. However, some variables were counted already in p1 and need
to be subtracted. We subtract one for the first clause of p2 (x was already
counted), then we subtract one for every shared clause, and one for every clause
after a segment ends since that variable was counted in p1.) As for choosing
the segments, there are at most t2s1 ways to choose the shared segments in p1
(starting and ending points) and at most ts2 ways to choose their starting points
in p2. Once the segments and starting points are fixed, there are (t2− 1− r− s)!
ways to arrange the new variables in p2, and this completely determines p2.

Call such a path a (t1, t2, s, r)-path. We now bound the probability of any such
path occurring, for all possible choices of x. In light of the above observations,
we have

Pr[(t1, t2, s, r)-path] ≤
(
n

t1

)
· 2t1 · t1! ·

(
n

t2 − 1− r − s

)
· t2s1 · ts2 · (t2 − 1− r − s)! · 2t2−r−s

×
∑

π

Pr[C1, C2, . . . , Ct1+t2−r are chosen according to π].

We may bound the summation over π in analogous fashion to the case of
long paths above, with a factor

(m
t1+t2−r

)
to choose the rounds in which the

clauses along the paths are chosen. By Proposition 1, at least (t1/2)− 1 clauses
in any ordering of p1 are threatened by a clause that precedes them, and this
of course remains true if we order a superset of those clauses. We can bound
the conditional probabilities for these clauses using Proposition 3. For the four
clauses containing x and x̄ we use Proposition 2. For the rest of the clauses we
use Proposition 4 (some of these may be threatened as well, but we only want an
upper bound). The calculation now proceeds similarly to the single (long) path
case, giving

Pr[(t1, t2, s, r)-path] ≤ O(1) ·
(m
n

)t1+t2−r
· (α∗)(t1/2)−1 ·

(
t21t2
n

)s

· 1
n
.

Observe that t21t2 ≤ log6 n, so
(

t21t2
n

)s
= O(1). Summing over the at most log4 n

ways to choose s and r gives

O

(
log4 n

n

)
·
(m
n

)t1+t2
· (α∗)(t1/2)−1.

12

Summing again over t1, t2 such that t2 ≤ t1 ≤ log2 n, we can bound the proba-
bility of a cycle consisting of short paths through any variable and its negation
by

O

(
log6 n

n

)
·

∑

t1≤log2 n

(m
n

)2t1
· (α∗)(t1/2)−1.

Now since
(
m
n

)4
α∗ ≤

(
1000
999

) (
969
970

)
< 1, this final summation is a decreasing

geometric series and hence bounded by a constant. Hence the probability of any

such cycle is O
(

log6 n
n

)
= o(1). This completes the proof of the theorem. &'

6 Proof of Theorem 3
We employ the following greedy rule: Fix some assignment ψ to the variables,
say the all-TRUE assignment. In each round k, if just one of the two clauses
is satisfied by ψ, choose that clause; otherwise (if neither or both are satisfied)
choose one of the clauses arbitrarily.

Let us estimate the probability that in round k both clauses are not satisfied
by ψ. W.l.o.g., consider the first clause. Regardless of which variables appear in
it, only one of the 2k possible parities of the variables results in a clause that
is not satisfied by ψ. Thus the probability of an unsatisfied clause is 2−k. The
probability of both clauses being unsatisfied by ψ is thus 2−2k.

Now suppose m = 0.99n · 2k. The expected number of unsatisfied clauses is

2−2k · 0.99n · 2k = 0.99n · 2−k.

When k = ω(logn) this quantity is o(1), and the result follows from Markov’s
inequality together with the fact that the k-SAT threshold is at most m/n =
2k ln 2. &'

7 Discussion
In this paper we considered the Achlioptas process for random 2CNF instances,
and provided a simple greedy algorithm that provably delays the sat/unsat
threshold for random 2SAT in this model.

As we mentioned in the introduction, there are several natural variations of
the greedy rule we used to prove this result. For example, one can define a clause
to be bad only if both literals appear already in negated form. Intuitively, this
rule “punishes” the path structure in the implication graph even more severely
than our rule does, and indeed experiments predict the threshold to bem/n ≈ 1.5
using this rule. However, this rule is a little harder to analyze than ours, and we
expect it to yield similar numerical bounds using our methods. We conjecture
that the techniques we developed to prove Theorem 2 can be used in other
settings as well. As an example, consider the pure literal heuristic for 3CNF
instances. It is known that for random 3SAT, whenever m/n ≤ 1.63 the pure
literal procedure ends whp with all clauses satisfied [7], and this value is tight.
The main idea of the proof is that if the peeling process of layers of pure literals

13

gets stuck before the formula is satisfied, then every variable in the remaining
formula appears both positively and negatively. This combinatorial structure is
similar to the paths that we are “punishing” in the 2SAT case. Therefore one
might expect our on-line algorithm (applied to 3CNF formulas) to move the
threshold above 1.63, given a choice of two clauses at each step.

Acknowledgments.We thank Benny Sudakov for introducing us to the Achliop-
tas process, Alan Frieze for a pointer to reference [15], and Uri Feige for useful
discussions.

References

1. B. Apswall, M. Plass and R. Tarjan. A linear-time algorithm for testing the truth
of certain quantified Boolean formulas. Inf. Proc. Letters, 8:121–123, 1979.

2. Y. Azar, A. Broder, A. Karlin and E. Upfal. Balanced allocations. SIAM Journal
on Computing, 29(1):180–200, 1999.

3. T. Bohman and A. Frieze. Avoiding a giant component. Random Structures &
Algorithms, 19(1):75–85, 2001.

4. T.Bohman, A.Frieze and N.Wormald. Avoidance of a giant component in half the
edge set of a random graph. Random Structures & Algorithms, 25(4):432–449, 2004.

5. T. Bohman and J.H. Kim. A phase transition for avoiding a giant component.
Random Structures & Algorithms, 28(2):195–214, 2006.

6. T. Bohman and D. Kravitz. Creating a giant component. Combinatorics, Proba-
bility and Computing, 15(4):489–511, 2006.

7. A. Broder, A. Frieze and E. Upfal. On the satisfiability and maximum satisfia-
bility of random 3CNF formulas. Proc. 4th ACM-SIAM Symposium on Discrete
Algorithms (SODA), pp. 322–330, 1993.

8. V. Chvátal and B. Reed. Mick gets some (the odds are on his side). Proc. 33rd IEEE
Symposium on Foundations of Computer Science (FOCS), pp. 620–627, 1992.

9. P. Erdös and A. Rényi. On the evolution of random graphs. Publ. Math. Inst.
Hung. Acad. Sci. 5:17–61, 1960.

10. A. Flaxman, D. Gamarnik and G. Sorkin. Embracing the giant component. Random
Structures & Algorithms, 27(3):277–289, 2005.

11. E. Friedgut. Sharp thresholds of graph properties and the k-SAT problem. Journal
of the American Mathematical Society, 12(4):1017–1054, 1998.

12. A. Frieze and N. Wormald. Random k-Sat: A tight threshold for moderately grow-
ing k. Combinatorica, 25(3):297–305, 2005.

13. A. Goerdt. A threshold for unsatisfiability. Journal of Computer and System Sci-
ences, 53(3):469–486, 1996.

14. S. Kirkpatrick and B. Selman. Critical behavior in the satisfiability of random
Boolean expressions. Science, 264:1297–1301, 1994.

15. D. Kravitz. Random 2SAT does not depend on a giant. SIAM Journal on Discrete
Mathematics, 21(2):408–422, 2007.

16. M. Krivelevich, P. Loh and B. Sudakov. Avoiding small subgraphs in Achlioptas
processes. Random Structures & Algorithms, 34(1):165–195, 2009.

17. M. Krivelevich, E. Lubetzky and B. Sudakov. Hamiltonicity thresholds in Achliop-
tas processes. Random Structures & Algorithms, to appear.

18. J. Spencer and N. Wormald. Birth control for giants. Combinatorica, 27(5):587–
628, 2007.

14

