
dSpace: Composable Abstractions for Smart Spaces
Silvery Fu and Sylvia Ratnasamy

UC Berkeley

Abstract
We present dSpace, an open and modular programming
framework that aims to simplify and accelerate the develop-
ment of smart space applications. To achieve this, dSpace pro-
vides two key building blocks — digivices that implement de-
vice control and actuation and digidata that process IoT data
to generate events and insights. In addition, dSpace intro-
duces novel abstractions –mount, yield, and pipe – via which
digivices and digidata can be composed into higher-level ab-
stractions. We apply dSpace to home automation systems
and show how developers can easily and flexibly leverage
these abstractions to support a wide range of home automa-
tion scenarios. Finally, we show how the dSpace concepts
can be realized using a microservices-based architecture and
implement dSpace as a Kubernetes-compatible framework.

CCS Concepts: • Software and its engineering → Ab-
straction, modeling and modularity.

Keywords: IoT, smart spaces, design principles, framework
ACM Reference Format:
Silvery Fu and Sylvia Ratnasamy. 2023. dSpace: Composable Ab-
stractions for Smart Spaces. In ACM SIGOPS 28th Symposium on
Operating Systems Principles (SOSP ’21), October 26–28, 2021, Vir-
tual Event, Germany. ACM, New York, NY, USA, 18 pages. https:
//doi.org/10.1145/3477132.3483559

1 Introduction
Living spaces – homes, offices, retail locations – are being
transformed by the proliferation of IoT devices. For exam-
ple, shipments of IoT devices have tripled in the last five
years [2, 4] and the global smart home market is projected to
surpass 1.1 trillion USD by 2023 [3]. Given these trends, it is
important that we have the right systems support for build-
ing smart space applications. This need has been recognized
by both research [1, 15, 58, 62, 65, 66, 72–74] and industry
solutions [11, 29, 44, 45]. These address the challenge of
heterogeneity across devices: they propose unified device ab-
stractions [23, 44], common system services [23, 29, 62, 72],
common policy languages [44, 45], and so forth. They also
Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
SOSP ’21, October 26–28, 2021, Virtual Event, Germany
© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8709-5/21/10.
https://doi.org/10.1145/3477132.3483559

address the challenges around discovery, localization, and
networking of such devices [23]. Taken together, this semi-
nal work tackled an essential first step – making it easier to
discover, network, and program individual devices.

However, looking ahead, we anticipate a future in which
smart spaces will be increasingly ubiquitous and increasingly
sophisticated: incorporating a greater variety of devices and
use-cases that are customized to individual needs, integrated
with AI/analytics, and capable of advanced operations such
as delegating management to trusted 3rd parties (e.g., a gar-
dening service, emergency services, appliance maintenance
services, etc.). From a systems perspective, the challenge in
realizing the above vision is to make it easy for developers
to support such flexibility. Unfortunately, today’s IoT frame-
works fall short in this regard. As we elaborate on in §2, for
programmers, developing IoT applications is often tedious.
They typically operate at a device level (e.g., lamps, cameras)
with limited support for composing these into higher-level
abstractions (e.g., home, building). As a result, developing an
IoT application involves writing substantial ad-hoc glue code
to compose these devices (e.g., configuring home settings
based on the events inferred from a camera) with limited
support for rich policies and few higher-level abstractions.
Not surprisingly then, users also often find these appli-

cations tedious to configure and/or limited in function. For
example, in current home automation products, users specify
automation policies by writing rudimentary if-this-then-that
rules [31, 44] over per-device state which can be hard to
reuse, manage, or reason about as the number of devices and
scenarios increase. In short, IoT lacks a systems architecture
that would simplify and accelerate application development.

Thewell-established approach to simplifying development
and improving developer efficiency is via abstraction and
modularity [67] - allowing developers to repurpose modular
building blocks and combine these into higher-level abstrac-
tions that shield downstream developers from lower-level
details. This approach both improves developer efficiency
and simplifies the task of providing users with high-level
abstractions (e.g., programming “the home” vs. individual
devices). There’s a rich literature on developing such abstrac-
tions for specific domains such as analytics [9, 56], AI [42, 51],
and networking [64]. The contribution of these systems lies
in identifying a minimal set of abstractions that are intuitive
for the task at hand yet flexible enough to support a range
of applications in that domain.
What is this minimal set of abstractions for smart space

applications? In this paper, we propose two modular build-
ing blocks and three abstractions that serve to hierarchically

https://doi.org/10.1145/3477132.3483559
https://doi.org/10.1145/3477132.3483559
https://doi.org/10.1145/3477132.3483559

SOSP ’21, October 26–28, 2021, Virtual Event, Germany Silvery Fu and Sylvia Ratnasamy

compose these building blocks into higher level abstractions.
The two building blocks are the digivice, which abstracts
the devices to be actuated, and the digidata which abstracts
how IoT data is processed. A digivice is flexible in that the en-
tity it represents may be an individual device or aggregates
of devices; a physical device (e.g., lamp) or a virtual/abstract
one (e.g., “home”). Digivices are declaratively controlled –
i.e., users specify the desired state of a digivice without spec-
ifying how that state is achieved. These design choices are
in contrast to existing IoT frameworks in which a device
abstraction typically corresponds to a single physical device,
couples both actuation and data processing for that device,
and exposes imperative APIs to control that device.
Digivices and digidata – which we collectively refer to

as “digis” – can be composed using three abstractions: (1)
mount(A, B) allows higher-level digivice B to configure/ac-
tuate digivice A; (2) pipe(A, B) arranges for the output data
from A to be consumed by B, and (3) yield(A, B), for 𝐴
mounted to 𝐵, yield allows 𝐵 to relinquish control over 𝐴.
Thus digis can be easily reused and composed to form so-
phisticated actuation/data processing relationships whichwe
call a digi-graph. A digi-graph describes the flow of control
(or “intents”) among digivices and the flow of data through
digivices and digidata.

Low-level digis can be composed into higher-level abstrac-
tions that are controlled in a declarative manner. For exam-
ple: a lamp digivice may be mounted to a room digivice and
a camera digivice piped to a stream digidata which is also
mounted to the same room digivice. The room digivice might
then configure the lamp based on the objects recognized in
the camera’s stream; finally, under certain conditions, the
room digivice might “yield” control over the camera to a
third-party emergency control digivice.

As we’ll discuss, dSpace faces unique challenges that stem
from its role in integrating with the physical world. We
address these challenges with certain novel design choices:
Adaptive composition. In dSpace the composition between
digis is dynamic and automatically adapted based on policies
and real-world events; e.g., a roomba digivice that moves be-
tween rooms might automatically detach from one room
digivice and get mounted to another.
Embedded policies. In dSpace, policies are expressed and
enforced independently within each digi rather than as a
standalone flat file of rules as is common today. This mod-
ularity makes it easier to correctly maintain and execute
policies even as the digi-graph evolves.
Intent reconciliation: A software system that is imple-
mented in a declarative style will typically accept a target
intent and implement “state reconciliation” to move its cur-
rent state tomatch this intent [54]. Aswe’ll discuss, in dSpace,
a system might need to go further and adapt its target intent
and must do so in an autonomous manner based on policy
and real-world conditions (e.g., overriding the home’s target
“sleep” state when certain human activities are detected). To

support this in a modular manner, digis implement “intent
reconciliation” in which a digivice may update its own in-
tent which is then recursively propagated to its upstream
neighbors in the digi-graph.

A final challenge is that we want dSpace’s implementation
to match the modularity of its design. For this, we implement
dSpace using a microservices based architecture. Specifically,
we adapt the Kubernetes (k8s) design pattern of stateless
controllers that coordinate only via a persistent data store.
We show how tomap our abstractions to k8s-style controllers
and implement them in a manner that is compatible with,
yet decoupled from k8s. Doing so allows us to reuse much
of the k8s tooling while still providing features tailored to
our smart-space domain.

We evaluate dSpace in the context of smart home applica-
tions.1 We implement digis for 9 real-world home IoT devices
from 9 different vendors, and 4 data processing frameworks.
Using these, we implement 10 different deployment scenar-
ios of mounting complexity, showing that dSpace allows
developers to easily construct rather sophisticated use-cases.
In addition, we show that these scenarios cannot be easily
realized by existing smart-home frameworks such as Smart-
Things and Home Assistant: 40% of our scenarios cannot
be supported by any of these other frameworks. For those
scenarios that could be supported, doing so requires as much
as 4x more lines of code/configuration than dSpace.

2 Design Goals and Rationale

2.1 Goals

Our aim is to design a framework that simplifies the de-
velopment and use of smart space applications yet is flexi-
ble enough to enable a diverse range of these applications.
To balance ease-of-development and flexibility, we want (1)
modular building blocks that are (2) controlled in a declara-
tive manner. This simplifies code reuse and evolution and
reduces the surface area of the code that a developer must
understand. In addition, we want to make it easy for devel-
opers to (3) compose high-level abstractions and aggregates –
e.g., a “room” controller that coordinates all the devices in
a room; a “home” controller that coordinates all the rooms,
and so forth. Such abstractions simplify development for
downstream coders and ultimately simplify the user experi-
ence since it is now easier to build applications that expose
higher-level controls to users (e.g., putting an entire room
into a low-energy mode).
Finally, we also want to simplify the use of smart-home

apps. For this, our framework aims to simplify (4) integration
with AI/ML frameworks. Doing so paves the way for policies
that are automatically learned rather than manually written
by users (§6). In addition, we aim to support (5) delegation

1We believe dSpace’s modularity, flexibility, and rich policy structure are
applicable to smart spaces more generally (e.g., offices, residential, campus)
but leave an exploration of this to future work.

dSpace: Composable Abstractions for Smart Spaces SOSP ’21, October 26–28, 2021, Virtual Event, Germany

of controls via which a user can flexibly outsource portions
of home management to different third-party services; e.g.,
outsourcing control over garden irrigation to a landscap-
ing service, or yielding control over the home to a city-run
emergency service under certain events. Delegation frees
the home owner from the burden of home management but
does so in a controlled and fine-grained manner.

2.2 Challenges

To some degree, the above are classic goals and our novelty
lies only in tackling them in the context of smart spaces. This
context raises certain unique challenges:
1) Composition must be adaptive, based on events and con-
ditions in the physical world. Consider a home with “room”
controllers that program the devices in that room; this set
of devices changes with device mobility (e.g., a roomba) yet
must be automatically handled. Delegation also requires
adaptive composition – e.g., a room that is mounted to an
emergency controller in the event of extreme heat.
2) Policies abound. A key challenge in smart spaces is that
there is rarely a single “correct” action and instead user
preferences as captured by policies determine the desired
behavior of the system - e.g., does the user want the heat
turned on when entering a room? to what level? does she
prefer appliances to be run at night or when the user is
away from the home? And so on. Today’s systems maintain
such policies as a flat file of IFTTT rules [31, 48] but this is
hard to scale with increasing numbers of devices, difficult to
maintain in customized deployments, and at odds with the
information hiding that higher-level abstractions provide.
3) Intent specification is messy. In our declarative control par-
adigm, the dSpace application configures the target state
or “intent” for each device based on user policies or other
control logic. The challenge that arises in applying this para-
digm to our context is that intents may also be determined by
interactions in the physical world – e.g., consider a scenario
in which a user manually turns on a lamp in a home that
is in sleep mode. Ideally, this action should cause the home
to reconsider its intended state - e.g., “waking” the relevant
room, or the entire house, or perhaps raising an alarm. The
exact action to be taken is a matter of policy - the challenge
for us is to provide the architectural hooks that allow the
developer to more easily express how conflicting intents (e.g.,
from the virtual vs. physical world) should be resolved.

2.3 Design choices

We highlight the key design decisions that allow dSpace to
meet the above goals and challenges.
(1) Separation of control and data. Our first design prin-
ciple is to decouple data and control processing into distinct
abstractions: digivices and digidata, as mentioned in §1. This
is in contrast to several existing IoT systems (e.g., Home-
Assistant [29]) but is a deliberate choice that we made for

two reasons. First, it allows us to adopt different program-
ming paradigms for each: declarative models for control
processing and dataflow models for data processing. Second,
it allows us to easily leverage existing analytics and AI frame-
works [9, 51, 56, 68, 71] rather than reinvent the wheel (see
§3.1). I.e., developers of digivice control logic can leverage
systems like Tensorflow or Spark while keeping their control
logic cleanly separated and easier to evolve.
(2) First-class composition. Our second design principle
is to embrace composition as a first-class design primitive,
leading to the mount and pipe operators corresponding to
digivices and digidata respectively. Such composition allows
us to easily program aggregates of devices (e.g., configuring
all the devices in a room R by iterating through the devices
mounted to R) and to construct digivices at a higher layer
of abstraction (e.g., instead of interacting with individual
lamps, we can simply configure the brightness of the room).
Composition also simplifies reuse since it allows the same
building blocks to be composed in different ways to achieve
different goals.
Another important design decision is how we constrain

composition and the resultant digi-graph. A natural approach
would be to compose digis into higher-level aggregates and a
hierarchical control tree. This approach captures the natural
organization commonly found in the physical world. E.g.,
consider a scenario where a campus or company headquar-
ters wants to enforce occupancy limits. Each building/office
in the campus may have their local policies that translate the
campus-wide occupancy limit to per-floor or per-room limit
based on which they may adjust the lighting, temperature,
humidity, and smart locks settings on individual devices.
However, we do not limit ourselves to just a single static

control hierarchy. Instead, a user/developer can define a
multi-rooted control hierarchy. E.g., a lamp digivice might
be mounted to a room controller (that controls devices in
the presence of home occupants) and an energy-efficiency
controller (that implements power savings when occupants
are absent). As a different example, a digi-graph might in-
clude three services separately controlled by home owners,
a landscaping service, and an emergency service. Note that
allowing multiple control hierarchies to simultaneously con-
figure a device can lead to access conflicts in which differ-
ent controllers overwrite each other’s configurations (e.g.,
a lamp’s power level) leading to unpredictable and undesir-
able outcomes. To avoid access conflicts, we enforce that
multiple control hierarchies may simultaneously read the
device states but only one control hierarchy is allowed to
write/configure the device.

We achieve this with programmable “yield” and “mount”
policies that explicitly determine which hierarchy is allowed
to control the device at any point in time (e.g., “yield control
to the emergency digivice under <. . . > condition”). Multi-
rooted hierarchies with explicit yield policies allows dSpace
to support delegation and adaptive composition, providing

SOSP ’21, October 26–28, 2021, Virtual Event, Germany Silvery Fu and Sylvia Ratnasamy

a level of flexibility that goes beyond traditional modular
software frameworks that allow code reuse within a single
developer/operator context.
(3) Embedded policies. dSpace implements embedded poli-
cies and intent reconciliation (§3.5) to meet our last two
challenges. In dSpace, a policy is contained within a digi;
i.e., it is written as a part of that digi’s definition and imple-
mentation. Their embedded nature ensures that policies are
co-located (i.e., “fate share”) with their associated digi. As
such, the scope of an embedded policy is immediately clear:
it is determined by the position of its corresponding digi
within the overall digi-graph. For example, two rooms – a
bedroom and a kitchen – may have different policies for their
desired light and sound levels and these policies must only
be imposed on devices currently “mounted” to that room.
Embedded policies (together with the digi-graph topology)
make it easy to correctly identify devices and enforce policy
even as devices move from one room to another.
Finally, we briefly discuss our approach to accommodat-

ing device heterogeneity since this has been the focus of
much prior work. The common proposal is to address het-
erogeneity through standardization (e.g., of configuration
parameters for a particular class of devices). However, in
practice, adoption of such standards has been slow and at
times hampered innovation. Thus, in dSpace, we do not as-
sume any standardized device models. At the same time, we
liked the idea of shielding developers from the vagaries of
vendor-specific APIs. dSpace achieves this through the no-
tion of a universal digivice that exposes a “universal” set of
configuration parameters and that includes the code to trans-
late from these universal parameters to a vendor-specific
digivice. E.g., consider a universal lamp U that exposes a
standardized set of parameters 𝑢 and contains the logic to
translate 𝑢 to the parameters 𝑙 of a vendor-specific lamp L.
In dSpace, we mount L to U so that any higher-level digivice
that U is mounted to is shielded from the details of L. Note
that there is no magic here and we are not claiming to have
solved the challenge of heterogeneous APIs: someone still
has to write U and deal with the idiosyncrasies of L’s imple-
mentation. Instead, our only claim is that we’re providing
a framework that makes it easy to systematically reuse U
and the effort that went into developing it. Moreover, this
approach is flexible: developers can choose when and which
universal devices to use on a per-device basis.

2.4 Putting the pieces together

To build an end-to-end smart space application, a developer
and/or user selects the desired digivices and digidata, com-
poses them into her desired hierarchy, and then “programs
the space” using the declarative API exposed by the digivice
at the root of the hierarchy. This high-level input is then
translated into control actions (or “intents”) that travel down
the hierarchy. Similarly, events from the physical world
travel up the hierarchy. Intents and events are processed

at each digi in accordance with its embedded policy and
this processing may trigger additional control actions and/or
intent reconciliation.
Developers follow the above process when developing a

dSpace application, while users (i.e., home owners and occu-
pants) do so when setting up and using the application. Users
interact with dSpace by configuring high-level intents and
writing/customizing policies. We envision that interaction
will be done via a user-friendly user interface (UI) and user
experience (UX) design, though the design of this UI/UX is
beyond the scope of this paper.

3 Design

3.1 Abstractions

A smart space consists of physical and abstract entities. Using
dSpace, developers create digital abstractions (“digis”) to
control these entities and process the data they generate.
Specifically, we introduce two core abstractions: digivice and
digidata, which we depict as shown in Fig.1a.2
Digivice: A digivice enables declarative control over physi-
cal devices and other digivices. Each digivice (𝐷) contains
four key components:
(i) A model (𝐷.𝑚𝑜𝑑): this is a set of attribute-value pairs that
capture the intended state or the intent for the digivice, its
current state or status, events generated, and other relevant
information – the list of attributes can be found in Table 1
and sample digivice models in Fig.1b and Fig.1d.
(ii) A list of the digivice’s children (𝐷.𝑐ℎ) in the digi-graph.
(iii) A driver, 𝐷.𝑑𝑟𝑣 (): this is the code whose main function
is to reconcile the digivice’s intended state (𝐷.𝑚𝑜𝑑.𝑖) with
its current state (𝐷.𝑚𝑜𝑑.𝑐). I.e., based on current events and
conditions, as well as policies (described below), the driver
takes action(s) tomove the digivice’s current state towards its
intended one. Actions might involve directly interfacing with
and controlling physical devices, programming the intents
of its children in the digi-graph, generating events etc..
(iv) Policies (𝐷.𝑝𝑜𝑙): these are rules that can be written by the
developer or the user that guide how the dSpace driver re-
sponds to physical events. Policies are key to programming/-
customizing an application’s behavior to specific scenarios
and user preferences.
Digidata: A digidata enables data processing to be inte-
grated natively with digivices. A digidata follows the same
design pattern as a digivice with a few differences/exten-
sions: (i) the digidata’s model (𝑇 .𝑚𝑜𝑑) includes data input
(𝑇 .𝑚𝑜𝑑.𝑖𝑛) and data output (𝑇 .𝑚𝑜𝑑.𝑜𝑢𝑡) attributes, (ii) the
digidata’s driver (𝑇 .𝑑𝑟𝑣 ()) includes data processing code that
implements the data transformation from the input data to
the output data as specified by the data input and output
attributes. It can also be a thin wrapper around a standalone

2Our visual representation of digivice/data is inspired by that of the
Click [64] authors.

dSpace: Composable Abstractions for Smart Spaces SOSP ’21, October 26–28, 2021, Virtual Event, Germany

Lamp digivice model
meta:
 kind: UniLamp
 name: ul1
 namespace: default
control:
 power:
 intent: "on"
 status: "off"
 brightness:
 intent: 0.3
 status: 0.3
obs:
 reason: DISCONNECT

Scene digidata model
meta:
 kind: Scene
 name: lvroom
 namespace: default
data:
 input:
 url: rtsp://..
 output:
 objects:
 - person:

x: 1299
y: 210
w: 303
h: 607

Room digivice model
meta:
 kind: Room
 name: LvRoom
 namespace: default
control:
 mode: ..
 brightness: ..
obs:
 objects: person, dog
mount:
 unilamp:
 ul1: {..} // (b)
 scene:
 lvroom: {..} // (c)

intent status

digivice{..}

children

⥁

input
 digidata{..}

⥁
input

output

output

(a) (b) (c) (d)

Figure 1. a. Conceptual models of digivice (top) and digidata (bottom); b. a Lamp digivice model; c. a Scene digidata model; d.
a Room digivice model that mounts/controls a Lamp as its child and pipes/reads data from a Scene.

Abstraction Notation Description Attribute

Digivice

D.mod
.i Digivice D’s intended states intent
.c D’s current states status
.e Events generated and observed by D obs

D.ch D’s children on digi-graph mount

D.drv() D’s driver is a function func(D.mod.*, D.pol, c.mod.*, physical world events)
→ (D.mod.*, c.mod.i, action on physical devices), ∀𝑐 ∈ 𝐷.𝑐ℎ

n/a

D.pol Rules specified by the developer or user that update D.mod.* based on D.mod.* and c.mod.* reflex

Digidata T.mod .in Digidata T’s data input input
.out T’s output data output output

T.drv() Data processing code that implements the transformation between input and output n/a

mount mount(A, B) Allows B to write to A.mod.i (or .in if A is digidata)
and read from A.mod.c (or .out) and A.mod.e n/a

pipe pipe(A, B) Writes A.mod.out to B.mod.in n/a
yield yield(A, B) Revokes B’s write access to A.mod.i (read access is unchanged) n/a
Table 1. Abstractions in dSpace, their notations, and attributes in our implementation of a digi’s model.

data processing system such as FFmpeg [16] and Tensor-
flow [51]. An example “Scene” digidata is shown in Fig.1c.
This digidata takes a video stream (from input.URL), imple-
ments object recognition, and updates detected objects (to
output.Objects).

We refer to digivice and digidata collectively as digis. At-
tributes in a digi’s model follow a predefined schema. The
model is accessible via verbs, a predefined set of APIs to
access attribute-value pairs using their URIs, e.g., get(URI)
and update(URI, new_value).

3.2 Composition

Digivices and digidata can be composed to form a “digi-
graph”. Composition takes place when users call the follow-
ing composition verbs on digis:
mount: Given a digi 𝐴 and digivice 𝐵,𝑚𝑜𝑢𝑛𝑡 (𝐴, 𝐵) allows
𝐵 to control 𝐴. Note that A might be a digivice or digi-
data, while B must be a digivice. Specifically, 𝐵 can write to
𝐴.𝑚𝑜𝑑.𝑖 and read from 𝐴.𝑚𝑜𝑑.𝑐 , and likewise for digidata.
We refer to 𝐵 as the parent digivice and𝐴 as the child. Mount
can be used to implement different semantics:“𝐵 represents
𝐴,” e.g., a universal lamp digivice represents a vendor-specific
one; and “𝐵 aggregates𝐴,” e.g., a room digivice includes other
lamp digivices. A digivice can mount multiple children and
can also have multiple parents, subject to the mount rule

that we describe in §3.3. Mount can also happen at any level
(e.g., 𝐴 mounted to 𝐵 and 𝐵 mounted to another digivice 𝐶),
forming a hierarchy. Further, each mount has a mode that
can take the value “expose” or “hide”. The latter prevents the
parent digivice from accessing the child digivice’s children
while the former allows it to do so.
pipe: given two digidata 𝐴 and 𝐵, pipe(𝐴, 𝐵) writes 𝐴’s out-
put to 𝐵’s input; i.e., updates to 𝐴.𝑚𝑜𝑑.𝑜𝑢𝑡 are written to
𝐵.𝑚𝑜𝑑.𝑖𝑛. Note that if 𝐴.𝑚𝑜𝑑.𝑜𝑢𝑡 is a pointer to data (e.g., a
URL to a video stream), only the pointer gets written to 𝐵.𝑖𝑛.
Each digidata can pipe to multiple digidata; i.e.,write its data
output attributes to their input attributes. However, at most
one digidata can pipe to an input attribute; i.e., we enforce
a single writer per port. The URIs to the input and output
attributes in 𝐴 and 𝐵 must be specified when calling pipe.
One can use thus the pipe verb to compose digidata to

form “data flows”. As mentioned earlier, a digivice can mount
a digidata and thus update its data input attributes and read
from its data output attributes.
yield: composition via the mount verb can lead to a multi-
rooted hierarchy. We rely on the yield verb and mount rule
(§3.3) to enforce sensible write and mount semantics (§3.3).

Specifically, calling the yield verb, e.g., 𝑦𝑖𝑒𝑙𝑑 (𝐴, 𝐵) means
that digivice 𝐵’s driver no long has write access over 𝐴.
However, the yielded parent digivice may continue to watch

SOSP ’21, October 26–28, 2021, Virtual Event, Germany Silvery Fu and Sylvia Ratnasamy

A

U X

V

B

Y ZW

A

U X

V

B

Y ZW

(a) disallowed (b) allowed

Figure 2. Cases where mount is disallowed or allowed.
for updates to the child’s model and act accordingly. Note
that one can use the mount, pipe, and yield verbs to unmount,
remove pipe, and unyield respectively by simply setting the
corresponding flag at the verb call.

Information about composition is maintained as composi-
tion references, where each composition reference tracks the
relationship between a pair of digis. Fig.1d includes examples
for mount reference/attribute, e.g., mount.unilamp.ul1. De-
velopers define mount references in the digivice’s schema to
specify which digivice/data kinds are compatible and hence
can be mounted to this digivice. We’ll describe how the com-
position references are implemented/used at runtime in §5.
3.3 Multi-hierarchy

Digivices can be composed into multi-rooted hierarchies.
But not all hierarchies make sense! To see this, consider
digivice A, B, U - Z above where A, U - Z form a hierarchy
as shown in Fig.2a. We want to mount some of A, U - Z to
B (imagine adding digivices in a home hierarchy to a new
power controller). Clearly we want to avoid loops since they
can lead to erroneous or unpredictable behavior as intents
and status are passed around in a cycle. In addition, note that
in Fig.2a B can write the intent of both X and Z where Z is
already a child of X. This can lead to intent conflicts where
Z’s intent can be set by both B and X.

Our goal is to avoid mount loops and intent conflicts while
still allowing a multi-rooted hierarchy in some constrained
form. To this end, we require that the digi hierarchy formed
by calling mount/yield must be a multitree (more formally,
a diamond-free poset [61]) and we meet this requirement by
enforcing the following rule when mount is called:
Mount rule: A digivice cannot join a hierarchy that it or any
of its descendants is already a part of.
An example of a hierarchy that is allowed is shown in

Fig.2b. However, the mount rule alone still does not solve the
multi-hierarchy problem. As long as a digivice has multiple
parents, there can be intent conflicts among the parents. Our
solution to this is simple: for each digivice, we allow only
a single writer at a time and who gets to be the writer is
determined by the yield policy as described next.
3.4 Adaptive Composition

The multi-hierarchy enables shared and delegated control
over digivices. In smart space contexts, such sharing often
needs to happen dynamically, adapting to real-world events,
e.g., when the fire alarm is on, a home digivice should hand
over its control to an emergency-control digivice; or when a

roomba robot moves between rooms, its digivice might be
unmounted from the previous room and mounted to the new
one. We often want such adaptive composition to be driven
by user-defined policies without a human in the loop.
dSpace achieves adaptive composition by allowing users

to define composition policies that invoke yield and mount
when a specified condition is met. For example, a yield pol-
icy may specify the condition under which control over a
shared digivice is transferred from one digivice to another.
An example yield policy can be found in the Appendix B.3.
Mount policies work in a similar fashion allowing digivices
to be mounted/unmounted based on predefined conditions.3
Yield allows us to enforce a single-writer policy as follows:
when𝑚𝑜𝑢𝑛𝑡 (𝐴, 𝐵) is called, if 𝐴 has no other active parent
(where active means the parent hasn’t yielded the child) then
the mount call completes and 𝐵 can write to𝐴. However, if𝐴
already has an active parent, then the mount is automatically
followed by a yield that ensures 𝐵 cannot write to 𝐴.

3.5 Intent Reconciliation

In dSpace, developers and users “embed” automation logic
and policies within a digivice. As described so far, mount and
yield policies ensure that at any point in time, a digi’s intent
can only be modified by one other digivice; i.e., we’re enforc-
ing single writer semantics on a digi’s intent. However, intent
conflicts can still result from events in the physical world.
E.g., consider a lamp whose digivice is currently mounted
to a room digivice and the room has set the lamp’s intended
state to be “on” and now a user physically turns off the lamp.
Should the lamp stay on (as dictated by the room) or off (as
dictated by the user’s action)? The answer in this case may
seem clear - the user’s action should be respected and the
lamp turned off. However, the answer might be less clear in
a scenario that (say) involves disabling a home alarm or un-
locking a door. Such scenarios lead to intent conflicts though,
unlike above, they involve a conflict between a digivice’s
parent in the digi-graph and the physical world (versus a
conflict between a digi’s multiple parents).
dSpace addresses this by allowing developers or users to

define intent reconciliation policies in the digivices. These
policies are executed whenever an intent conflict occurs
and provides conflict resolution. For instance, when the user
physically turns off the lamp, the room may react by reset-
ting the lamp to be “on”, overwriting the user’s intent; or it
may adjust its own intent to be compatible with these events.
Note that the action taken to resolve an intent conflict is
a matter of policy and hence application/user dependent.
What dSpace provides is the framework for defining such
policies and the runtime guarantees that ensure intent recon-
ciliation is executed correctly. For correct execution, dSpace
introduces a version number in the digivice model which is

3Although not currently implemented, one might extend adaptive composi-
tion to data flow composition with, e.g., pipe policies.

dSpace: Composable Abstractions for Smart Spaces SOSP ’21, October 26–28, 2021, Virtual Event, Germany

incremented when the model is updated. We rely on oppor-
tunistic concurrency control based on this version number
to achieve serializability on model updates. The dSpace run-
time guarantees that if a writer sees updates to a model with
two version numbers 𝑉𝑎 and 𝑉𝑏 (with 𝑉𝑎 < 𝑉𝑏), then it must
have also seen all updates with version number between the
two if any. This ensures that an active parent of 𝐷 will not
miss any intent updates on 𝐷 . We describe how dSpace’s
implementation handles concurrent intent updates in §5.2.

3.6 Security and Privacy

Security and privacy are important design aspects for IoT
systems and dSpace is no exception. There is an extensive lit-
erature on IoT security and privacy that, broadly interpreted,
falls under two main categories: understanding user aware-
ness and requirements [77, 78, 80] and providing system
support [55, 69, 75, 76, 79] for security and privacy.
With regard to system support, dSpace embraces best

practice via the following techniques: (1) Role-based Access
Control (RBAC). In dSpace, each digi driver is associated with
a role that constrains the driver’s access to its own model.
dSpace controllers (§5.2) are associated with roles that are
granted the corresponding access for them to enforce compo-
sition semantics (e.g., the mounter is assigned write-access
to the parent and its children). Users and third-party digis
are assigned access by the admin-user following standard
practice for managing roles/permissions. (2) Isolation. As we
will cover in §5, digis are run in separate application con-
tainers which provide OS-level isolation including separate
namespaces, network stacks, and performance isolation via
cgroups [19]. This helps prevent buggy digis from sabotaging
other digis when they are running on the same node. (3) Ad-
mission control and general Kubernetes protections. Unlike the
common single-node/monolithic architecture in existing IoT
frameworks, dSpace builds on top of Kubernetes and allows
digis to run in different machines in a distributed fashion.
As such, security-critical digis can be run on their dedicated
nodes separated from the others. Further, all entities are
authenticated with standard tools (e.g., client certificates)
when the Kubernetes apiserver receives an API request from
them. Each API request undergoes integrity checks by the
apiserver to filter malformed requests. dSpace thus provides
defense in depth via these layers of system-level protections.
Next, we discuss the aspects where we believe dSpace’s

design can be helpful on the end-user/UX front. Prior stud-
ies have reported that the gap between the user’s mental
model and the real device setup (e.g., the device topology,
how devices interoperate) can introduce security and pri-
vacy risks [77, 80]. We speculate that dSpace makes it easier
to bridge the gap because (i) the dSpace hierarchy reflects
natural organization in the real-world (e.g., lamp mounted
to room, then room to home); (ii) dSpace enables adapta-
tion that reflects real-world events (e.g., intent reconciliation
given human inputs, dynamic composition); (iii) our use of

embedded policies means that policies are co-located with
their associated objects and operations rather than exposed
to users (or UX designers) as unstructured flat files; and fur-
ther (iv) composition must be explicit and is a prerequisite
to imposing policy - i.e., existence of a policy is not enough
(unlike today’s frameworks). As such, dSpace raises a user’s
awareness to security and privacy issues, including who has
access to what data and devices.
Together, we believe these design choices make it easier

for developers and users to understand the security of their
solutions. However, proving this conclusively requires a UX
design and user studywhich is beyond the scope of this paper.
In summary, we believe that security and privacy in smart
spaces requires the right combination of system design and
UX design. dSpace addresses the systems side but a complete
solution including a UX design is a topic for future work.

4 Programming and Execution Model
In this section, we present the programming and execution
model of dSpace. Developers create a digi by specifying its
model schema and programming the driver. The driver con-
sists of event handlers that are invoked in response to model
updates, executing the digi’s embedded policies. dSpace sim-
plifies digi development via a driver programming library,
described in this section, and dSpace controllers (§5).

4.1 Model Specification

To create a new digi, one starts by designing its model
schema. Below (left) shows the schema of a simple Plug
digivice where we specify the digi’s identifiers - its group,
version, and kind - as well as a control attribute “power”
and string as its data type. Table 1 summarizes the list of
attributes that one can add to a digi.4
1 group: digi.dev
2 version: v1
3 kind: Plug
4 control:
5 power: string

1 import digi, pytuya
2 plug = pytuya.Plug("device_id")
3 @digi.on.control
4 def handle(power):
5 plug.set(power["intent"])

4.2 Driver Programming

In essence, dSpace supports standard event-driven program-
ming. Developers program a set of handlers as part of the
driver logic that gets executed when models are updated. An
example in Python is shown in the code block above (right).
It begins by importing the digi driver library and any device
libraries (here, pytuya for programming Tuya devices [46])
if needed. In this example, a handler handle(power) is de-
fined with a decorator@digi.on.control (line 4) specifying
that this handler will be invoked when changes occur on the
control attributes; and when invoked it sets the plug to the
power’s intent value.

4To avoid confusion on the terms: we refer to a digi that has control at-
tribute(s) as a “digivice” and one that has data attribute(s) as a “digidata”.
No digi can have both control and data attributes (§3).

SOSP ’21, October 26–28, 2021, Virtual Event, Germany Silvery Fu and Sylvia Ratnasamy

1 reflex:
2 motion-brightness:
3 policy: >-
4 if $time - .motion.obs.last_triggered_time <= 600
5 then .control.brightness.intent = 1 else . end
6 priority: 1
7 processor: jq

Figure 3. Example on-model policy with reflex.

We now explain how driver programmingworks in dSpace.
First, recall that in dSpace a digi driver can only access its
own model. Programming a digi driver is thus conceptually
very simple: writing policies/logic (§3.5) that manipulate
the digi’s model (essentially processing a JSON document)
plus any other actions to affect the external world (e.g., send
a signal to a physical plug, invoke a web API, send a text
message to your phone etc.). dSpace’s runtime handles all
other tasks such as syncing states between digis’ models
when they are composed (§5).

dSpace’s driver library provides a few useful programming
primitives. They are, briefly, (i) Filters are specified via the
digi.on decorator that decides when a handler should be
called. One can supply parameters to the filters, e.g., adding
a path to focus further down on an attribute’s sub-tree ; as
well as the priority of the handler. (ii) Views provide con-
venient transformations of the model, e.g., rearranging the
attributes in the model such that they are more easily ac-
cessible. Views can be chained. Updates to a view will be
automatically applied to the source view it is transformed
from. We include code examples of digi drivers in the Ap-
pendix B and codebase [12].
Configure Policies with Reflex: Users or operators can
define new behaviors or augment a digi’s existing behav-
ior by specifying on-model policies (§3). This is done via
the reflex API in dSpace. Fig.3 shows an example where a
“motion-brightness” (the name) reflex is defined to configure
the brightness of a lamp if any motion was detected in the
past 10 minutes. This logic is specified in the policy field
and will be executed by jq [36] defined in the processor
field. One can specify the priority of a reflex in the priority
field following the same rule as the handlers in the driver
(default to 0; and negative value disables). Further, one can re-
configure handlers in the driver by specifying a reflex with
the handler’s name. Under the hood, a reflex is executed as
just another handler in the driver, as described next.
4.3 Driver Execution

As depicted in Fig.4, the driver starts when digi.run() is
called. It creates a reconciler, registers handlers with the rec-
onciler, and starts watching for changes in the model. The
reconciler is a single process that executes the handlers in
order during a reconciliation cycle. When handlers are regis-
tered, they are sorted by their priority values. High priority
handlers will be executed later than the low priority ones. If
the list of handlers are updated (i.e., via the reflex API), the

order will be updated accordingly. A handler will be executed
only if its model changes satisfy the condition specified in
the filter. A reconciliation cycle is triggered whenever there
is a new update to the model, unless the update is caused by
the previous reconciliation. Once all handlers are executed,
the reconciler writes the updated model to the apiserver.

digi.run() Create
reconciler

Register
handlers

HandlerX

HandlerY

Reconciler

Watch
model

HandlerZ

digi lib

From
apiserver

To
apiserver

{ }

{ }

...

Figure 4. The digi driver subscribes to changes of the model
from the apiserver and runs the reconciliation cycle, invoking
handlers from priority low to high. Each handler may modify
the model and at the end of a reconciliation cycle the (new)
model is posted to the apiserver.

5 Runtime Architecture
The architecture of dSpace comprises (1) an application layer
running digis in separate containers (Pods in Kubernetes)
and (2) a system layer with an apiserver hosting models and
the dSpace controllers that provide runtime support for digi
composition, policy, and run-time guarantees. In this section,
we will focus on the runtime components in the latter.

Apiserver
Mounter

Syncer

...

Digi
Driver

Roles

Pod

Pods

Digi Models

...

k8s
controllers

dSpace
controllers

Scheduler

S
ys

te
m

 L
ay

er
A

pp
 L

ay
er

Digi
Driver

Digi
Driver

Pod Pod

Figure 5. dSpace’s architecture has two parts: (i) an applica-
tion layer that runs application digis as standard Kubernetes
Pods and (ii) a system layer that runs apiserver, k8s con-
trollers and dSpace controllers.

5.1 Apiserver

The apiserver, as its name suggests, stores data as API ob-
jects (e.g., digi models) and exposes them via standard REST
APIs. We reuse the k8s apiserver [10] as we find it a natu-
ral choice for hosting attribute-value pairs and allows them
to be accessible over REST APIs. The apiserver stores the
attribute-value pairs in a persistent key-value store [24]. It
exposes an asynchronous Watch API that allows one to sub-
scribe to changes in a model, in addition to standard CRUD
operations. Following Kubernetes’s convention, we refer to
these APIs as verbs.

dSpace: Composable Abstractions for Smart Spaces SOSP ’21, October 26–28, 2021, Virtual Event, Germany

Before serving and/or executing the verb requests, the
apiserver runs a series of checks on whether the verb is valid,
including correctness of syntax and semantics, sufficient
access rights from the caller, whether the proposed changes
violate composition rules etc. The last check is performed
by the dSpace’s admission webhook (as part of the mounter
dSpace controller) which we will describe next.

5.2 dSpace Controllers

Kubernetes provides controllers such as the scheduler, de-
ployment controller, and autoscaler to support container
orchestration. While these controllers are sufficient for de-
ploying the digis, there are no existing controllers or mecha-
nisms that provide the support for composition and policy
dSpace aims to offer. Hence, we implemented a collection of
dSpace controllers to support composition and policy.
MounterWhen digi A is mounted to B, the mount controller
(or mounter for short) synchronizes the states between their
models at runtime, i.e., between the model of A (𝑀𝐴) and
model of B (𝑀𝐵). This is done by, briefly: (i) when themounter
first sees a mount reference to A appear on the𝑀𝐵 , it copies
𝑀𝐴 under the mount attribute of𝑀𝐵 . We refer to the copied-
over𝑀𝐴 as a model replica. It is stored as part of𝑀𝐵 under
A’s mount reference. (ii) When𝑀𝐴 is changed, the mounter
syncs the updates to the model replica in𝑀𝐵 ; (iii) when the
model replica is changed, the mounter syncs the updates
to 𝑀𝐴. Note that the mounter will not sync any updates
on .status fields in the control attributes from the model
replica to𝑀𝐴 since the status information should never flow
southbound. It will, however, sync .intent updates from 𝑀𝐴

to the model replica to allow intent reconciliation.
Further, in dSpace, each model contains a version number5

that is incremented whenever the model is updated. The
version number is also copied over to the model replica.
dSpace ensures that the states in𝑀𝐴 won’t get overwritten
by any outdated states from its parent/𝑀𝐵 . To do so, the
mounter compares the version number of𝑀𝐴 to that of𝑀𝐴’s
model replica (in𝑀𝐵) and syncs the states of the replica only
when the replica’s version number is no less than the version
number of𝑀𝐴. Finally, the mounter implements the rest of
mount semantics, yield and mount modes (hide/expose), by
syncing the states accordingly.
SyncerThe sync controller tracks two givenmodels, a source
and a target, and syncs states between the two models. The
sync information is tracked in a Sync API object stored on
the apiserver. Syncer implements the data-flow composi-
tion with pipe. Whenever a user calls dq pipe A.output.x
B.input.x, dq creates a Sync object using A.output.x as the
source and B.input.x as the target.
Policer Akin to the Syncer, the policy controller watches all
Policy objects (e.g., mount and yield policy) where each Pol-
icy object consists of the policy statement and digis involved

5Note that this version number is different from the schema version (§4.1).

in the policy. The policer starts watching for changes on
these digis and enforces the policy if any of the conditions
are triggered. Note that the Mounter, Syncer, and Policer sub-
scribe to model changes via the Kubernetes’s Watch API [39],
without constantly polling for updates.
Topology webhook An admission webhook [20] is a mech-
anism in Kubernetes to extend the apiserver’s request ad-
mission process. When the apiserver receives a request, it
will forward the request to a registered webhook and the
webhook can decide whether to accept or reject the request.
dSpace leverages this mechanism and implements a topology
webhook to enforce the multi-hierarchy and single-writer
constraints (§3). Topology webhook tracks the latest status
of the digi-graph and rejects any invalid changes (e.g., an in-
valid mount/pipe request) that lead to an invalid digi-graph.
5.3 Implementation

Our implementation comprises ≈10.4K lines of code (LoC),
57% in Go for the runtime, 24% in Go for the dq command
line (including code generators and digi image support), and
19% in Python for the driver library (built on top of kopf,
an open-source k8s operator framework [33]). All dSpace
controllers and web hooks use standard APIs to interact with
Kubernetes control plane. All digis, dSpace controllers, and
policies can be created and/or composed declaratively via
standard Kubernetes configuration (yaml), using its com-
mand line kubectl, or dq, which provides complementary
commands/shortcuts such as run, mount, yield, pipe, build,
alias, push, pull etc. to simplify run-time operations and
avoid configuration file sprawl [30]. Currently we provide
only a Python front-end for driver programming. We expect
both higher-level UI/UX support and other driver language
support for in future.

For system security, we reuse k8s’s access control mecha-
nisms (Service Accounts and its RBAC module [47]). An im-
plication of our k8s-based implementation is that we inherit
many of its desirable features with respect to fault handling
(e.g., automatic pod restart), availability, persistence, applica-
tion delivery, CI/CD (digi image), and configuration manage-
ment (kustomize, kubectl). Finally, between leaf digis and
the physical devices, we preserve vendor-specific security
mechanisms such as device-level authentication and encryp-
tion. dSpace is open source and additional detail about our
implementation can be found in our code repository.6

6 Evaluation
Our evaluation focuses on answering two main questions:
(a) does dSpace meet our goal of enabling and simplifying
the development of advanced smart-space deployments? and
(b) is our k8s-style implementation flexible and performant?
We evaluate these questions using a combination of four
approaches: (i) we use dSpace to implement a range of de-
ployment scenarios using real-world home IoT devices and
6https://github.com/digi-project/dspace

SOSP ’21, October 26–28, 2021, Virtual Event, Germany Silvery Fu and Sylvia Ratnasamy

Device Type Vendor Model Library Access
Light bulb (L1) GEENI LUX800 Tuyapi LAN
Light bulb (L2) LIFX Mini Lifxlan LAN
Light bulb (L3) Philips Hue Phue BS/LAN
Motion sensor Ring Ring kit Ring-client-api BS/LAN

Camera Wyze WYZECP1 RTSP Stream LAN
Robot vacuum iRobot Roomba 675 Dorita980 LAN

Speaker Bose ST10 Soundtouch VC
Fan | Heater Dyson HP01 Libpurecoollink LAN

Plug Teckin SP10 Tuyapi LAN
Table 2. IoT devices. (BS: basestation; VC: vendor cloud)

Digidata Data Attributes Language/Tools
Scene in: url; out: json OpenCV [53], Tensorflow [51]
Xcdr in: url; out: url FFmpeg [16]
Stats in: json; out: json PySpark [9]
Imitate in: json; out: json Ray [42]

Table 3. Digidata in our evaluation.

report on our experience doing so in §6.2; (ii) we report on
our efforts to implement these same scenarios using 2 pop-
ular IoT frameworks in §6.3; (iii) we conduct a small-scale
programming assignment using 8 developers with no prior
exposure to dSpace in §6.4; and finally (iv) we benchmark
the performance of our prototype testbed under different
deployment scenarios in §6.5. Before presenting our results,
we elaborate on our experimental setup, the IoT devices we
use, and the deployment scenarios we evaluate in §6.1.

6.1 Experimental Setup

Devices and Testbed. Table 2 describes the physical devices
used in our experiments. Most of these devices (8/9) can be
accessed via local RPCs. The GEENI lamps, for instance, can
be accessed via the Tuya IoT platform where one can use
a third-party library (tuyapi) to access the device on LAN.
The one exception is the Bose ST10 speaker. The speaker can
only be accessed via the vendor (Bose) cloud and hence RPC
calls have to be sent to/from the vendor’s server and then
relayed to/from the device. Similarly, Table 3 lists the data
processing frameworks that we encapsulated as digidata.
The digis corresponding to the above devices and frame-

works were built in 1,667 LoC; they interact with physical
devices via device libraries (e.g., LifxLamp digivices uses
lifxlan [41]). We assume that these leaf digis are already
available when a developer wants to implement the scenar-
ios. We expect such software reuse to happen in reality just
as how people reuse device drivers. We thus focus on the
programming efforts required to construct the higher-level
digis that fulfill these scenarios.
We run these devices in our homes; by default, the Ku-

bernetes (version 1.18.2), dSpace runtime, and digis run on a
Lenovo Thinkcentre M720 (Intel Core i5-8400T, 6 cores).
Scenarios. As described below, we consider a series of sce-
narios that incrementally build up in complexity. In what
follows, we refer to “users” that configure/set up the smart

→

↕
mounter

↕

→

syncer

digidatadigivice

↕

yield
policy

⥁⥁⥁⥁

⥁ ⥁

⥁ ⥁

Figure 6. The digi-graph capturing scenario S5, 9, 10.
home application. This user could be the actual home oc-
cupant but could also be a third-party application service
provider that manages the home on behalf of the home oc-
cupant, exposing only a highly simplified UI to the home
occupant. We simply refer to either as “user”.
Scenario 1 (S1): Unified control over lamps in a room. In this
simplest scenario, we have 2 lamps (L1 and L2) in a room
and rather than control each lamp individually, the user
wants to simply specify a “brightness level” for the room.
Later, the user wants to add a lamp L3 to the room while
retaining the same brightness level (which means the room
should automatically lower the power/intensity of L1 and
L2 to reflect L3’s addition). In addition, L3 has configurable
colors and the user should be able to set the room’s ambiance
color as a new configuration option. The lamps come from
different vendors each with different APIs; e.g., Geeni [25]
and Lifx [35] lamps have different luminous intensity and
color schemes.
Scenario 2 (S2): Reconciling intents specified in the physical
vs. virtual world. Building on S1, the user may interact with
their lamp in different ways: manually dimming it via a
physical switch or updating the room’s brightness and any of
these operations may occur concurrently with other actions
in progress. In all of these cases, the room should be able
to reconcile its intent (i.e., target brightness) to these user
actions and updates from the lamps.
(S3): Motion-triggered configuration. Next, the user adds a
motion sensor (the Ring Alarm Motion Detector [6]) to the
room and would like the room to automatically configure its
brightness based on the motion sensor.
(S4):Multi-level abstractions. Next, in addition to configuring
at the room granularity, the user would like the ability to
easily configure her entire home; e.g., setting the “home” in
vacation mode which in turn causes each “room” to enter a
power-down mode.
(S5): Robot vacuum by scene. The user now adds a camera
and the Roomba [43] vacuum cleaner to the room and would
like the camera’s video stream to be processed by an ML
system (we use TensorFlow) and the robot to be controlled
by the output of this ML system; specifically, the robot will
start/pause/dock based on whether a human is in the room.
(S6): Learned automation. In the longer term, rather than
manually specifying their desired configurations (e.g., room
brightness level), users may have their home automation

dSpace: Composable Abstractions for Smart Spaces SOSP ’21, October 26–28, 2021, Virtual Event, Germany

system automatically learn per-user settings using AI/ML
techniques, enabling a seamless user experience.
(S7): Service handover. A user in Room-A listening to news
on Speaker-1 moves to Room-B which has Speaker-2. The
user wants the audio stream to be automatically redirected
from Speaker-1 to Speaker-2.
(S8): Device mobility. Building on the previous scenario, con-
sider what happens when the robot vacuum moves between
rooms. In this case, we want control over the robot vacuum
to be “handed over” from one “room” to another.
(S9): Shared control. So far, the lamps have been configured by
a controller associated with the room. Now the user would
like to introduce an independent power controller that also
configures device settings for energy efficiency. The user’s
policy is that the power controller only takes over when the
room’s status is IDLE.
(S10): Delegation of control. Our user now wants to “yield”
control over the home to a city-run emergency service in
the event of an emergency.
6.2 Using dSpace to implement S1-S10

We briefly summarize howwe implement S1-S10with dSpace
and then quantify the development effort involved.
(S1): Unified control over lamps in a room. This simple sce-
nario exposes three challenges: (i) dealing with heteroge-
neous device APIs, (ii) enabling configuration at a higher
layer of abstraction and (iii) dynamic composition and rec-
onciliation. We address these with a digi-graph in which L1
is mounted to a universal lamp UL1 (L1 → UL1) and like-
wise, L2 → UL2. We then mount UL1 → R and UL2 → R,
where R is a room digivice (and note that R does not have
to deal with the heterogeneity in L1 and L2). Later, we add
L3→ R; in this case, we omit the universal lamp since L3’s
color features are not present in the universal lamp model
(highlighting the fine-grained control that dSpace provides
over whether/when to adopt standardized models). R’s dri-
ver automatically updates L1 and L2’s settings when L3 is
introduced based on the target room brightness level and
without requiring any user action.
(S2): Reconciling intents. This scenario captures the need for
intent reconciliation; in terms of a solution, it requires no
change to S1, other than the correct intent reconciliation
logic in both lamp and room digivices: the lamp allows an
input from the physical world (i.e., manually toggled switch)
to override the intent specified from the room and, once
notified of this change, the room digivice will accept the
lamp’s new intent (i.e., target intensity) and correspondingly
adjust the intents of the other lamps to maintain the same
aggregate brightness.
(S3): Motion-triggered configuration. This is implemented as
an on-model policy/reflex as shown in Fig.3.
(S4): Multi-level abstraction. This scenario demonstrates the
flexibility of implementing multi-level hierarchical compo-
sition and control. We implemented this by writing a new

home digivice and the room digivices are mounted to the
home. The home’s model supports predefined modes; based
on the mode value the home’s driver configures the bright-
ness level of the downstream room; e.g., “sleep” mode sets
the room brightness to 0.
(S5): Robot vacuum by scene. This scenario highlights the
power of rich compositions. To implement this, we pipe the
output of the Camera digivice first to the Xcdr digidata for
transcoding the video stream; then from the Xcdr to the
Scene digidata - the latter fetches the video stream from its
specified URL, performs object recognition, and posts objects
in its .obs attribute. We mount the Scene and Roomba digis to
the Room digivice which reads the objects from the Scene’s
output. Whenever the Room sees humans in the objects, it
will pause the Roomba.
(S6): Learned automation To learn user preferences, we im-
plemented an Imitate digidata that uses Ray’s RLLib [42] and
implements a behavior cloning algorithm that learns and
applies a simple policy [63] of updating the home’s mode
based on the rooms’ occupancy (obtained as in S5). Specif-
ically, the digidata is mounted to the Home, which writes
the list of objects in each room and the Home’s mode to the
digidata’s input attributes. The digidata reads from its input
attribute, learns a policy, infers what the next mode should
be, and writes the mode to its output attribute.
(S7): Service handover We implemented a RoamSpeaker di-
givice that can mount the Room digivices and the Speakers
digivices are mounted to the Room under “expose” mode
(§3.2). RoamSpeaker accesses the source_url, volume, and
mode of the Speakers that are mounted to the Room and
sets the mode of the Speaker (pause or resume) based on the
Room’s occupancy; the latter is obtained as in S5.
(S8): Device mobility This scenario highlights dynamic com-
position that happens: (i) at runtime, (ii) without user inter-
vention but maybe driven by user-define policies and (iii)
the devices being composed depends on the context - i.e.,
the robot must now be composed with the camera in the
new room (and detached from that in the previous room).
We achieve this via a mount policy that specifies a Roomba
should be unmounted from the Room when it is not listed
in the Room’s objects list (provided by the Scene digidata).
(S9): Shared control. dSpace enables S9 by allowing multiple
control hierarchies and we do not program additional digis.
(S10): Delegation of control. We define a yield policy for S10
(it can be found in Appendix B.3) between the Room and an
Emergency controller that it is mounted to.
Complexity of implementation: Table 4 summarizes the
effort involved in implementing the above using dSpace. We
see that most scenarios require only a small amount of code
or configuration to implement and, in total, these changes
add up to only a 15% increase of the codebase given the
leaf digis. Among the higher-level (HL) digis, the Home (51)
and the universal lamp (Unilamp; 43 LoC, shown together
with the Room) require the most code changes, which is a

SOSP ’21, October 26–28, 2021, Virtual Event, Germany Silvery Fu and Sylvia Ratnasamy

Feature: HL abstraction and policies Data-driven policies Access policies
Scenario S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

Leaf/Child digis
GeeniLamp,
PhueLamp,
LifxLamp

Digis in S1 Digis in S1,
MotionSensor Room

Roomba,
Cam, Xcdr
, Scene

Imitate,
Stats

Room,
Speaker All All All

HL digis Unilamp, Room Room Room Home Room Imitate, Stats RoamSpeaker All All All
LoC (%) 5.0% (84) 1.2% (21) 0.06% (1) 2.9% (51) 0.9% (16) 2.7% (50) 1.9% (35) - - -
LoCF (#) 4 0 2 1 0 4 2 10 10 12

Table 4. Implementing smart space scenarios in dSpace. Lines of Code (LoC) takes into account any changes in the driver
code and the model definition (schema). Lines of config (LoCF) takes into account the lines of configurations (in yaml) that
end-users needed to change The percentages of LoC in the table was calculated incrementally (taking into account the previous
scenarios in the codebase). In total, 15% more LoC (258) were added to the leaf digis codebase (1,667 LoC) to implement these
scenarios, as higher-level (HL) digis and policies.

Feature:
HL abstraction

& policies
Data-driven
policies

Access
policies

Scenario: S1 S2 S3 S4 S5, S6 S7 S8, S9, S10
EdgeX - × - × - × ×

HomeOS - × - × - ✓ ×
AWS IoT - × - - ✓ × ×
HASS ✓ × - - - ✓ ×
ST - × - - - ✓ ×

dSpace ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 5. Scenarios that can or difficult to use prior systems
to implement: ’✓’ easy to implement. ’x’ does not support. ’-’:
partial support with missing/difficult to implement features.
HASS: Home Assistant; ST: SmartThings.

result of application-specific logic/configuration rather than
framework-specific plumbing. E.g., the Unilamp digivice
defines setpoint conversions for each vendor-specific digi
lamps (see Appendix B.2).
6.3 Implementing S1-S10 in other frameworks

Wewere curious to understand how existing IoT frameworks
fare in supporting the above scenarios.We thus selected 5 IoT
frameworks including some of the most popular ones (Smart-
Things, Home Assistant), cloud-based services (AWS IoT),
a leading open-source project (EdgeX), and a well-known
research project (HomeOS). We examined their codebase
(when available), API documentation, and code examples. For
each framework and each scenario, we determine whether
the scenario can be supported: entirely, partially, or not at
all. Table 5 summarizes our findings, grouping the scenarios
based on the key capability that they highlight. We present a
detailed discussion of each category in the Appendix C and
here only highlight a few conclusions.

For the HL abstractions and policies, all frameworks have
some (partial) support for S1, S3 and S4 (except EdgeX and
HomeOS), but no or limited support for S2. For instance,
HomeAssistant allows grouping devices such that one can ac-
cess and actuate all devices in the group. However, a group’s
devices have to be of the same type and only a few prede-
fined device types are supported (e.g., the “Light Group” API).
Though Home Assistant also provides a generic “Group” API

that allows grouping devices of different types, one can only
actuate the group with predefined “Service Calls” turn_on
and turn_off. SmartThings and AWS IoT have similar limi-
tations in this regard. To dig deeper, we made a best attempt
at implementing three scenarios – S1, S3, and S4 – in Home
Assistant (HASS) since it is open source.

For S1, we are able to implement it with Home Assistant
though with substantially more code (240 vs. 84 with dSpace)
which is primarily due to workarounds for their Group APIs.
Since Home Assistant’s built-in Group APIs cannot allow the
composition we want in S1, we circumvent it by building a
room “service” that interacts with multiple light device “ser-
vices” (services are components developers build in Home
Assistant). Since Home Assistant does not support composi-
tion as a native API, we expect the users of this “room” to
specify the identifiers of the light services the rooms can set.
Fortunately, though awkward, this can be done at runtime
by reloading the configuration file of the room service. We
use similar ideas to implement the universal lamp service.
Overall this leads to 3x more code relative to dSpace to

implement just S1. The Home digivice (S4) is implemented in
a similar fashion that leads to 4x more code (203 vs. 51 with
dSpace). For S3, Home Assistant allows one to define and
(re)load a configuration file that specifies the automation
rule (condition, trigger, action etc.). Note that such rules are
not embedded and run by the room driver (as in dSpace) but
as part of the Home Assistant runtime.
At a high-level, we find that the difficulty in supporting

our target scenarios with these frameworks stems from three
reasons. The first is the lack of a clean separation between
device state and driver code and the ability to declarative
program device state. E.g., in Home Assistant, the device
“schema” are defined as part of the “driver” codebase and
application modules in these frameworks have to expose
imperative APIs (e.g., Service Calls in HASS and Capabilities
in SmartThings) in order to be invoked. The second reason
is the lack of native support for composing and program-
ming aggregates of devices, which instead required clumsy
workarounds as described above. Finally, writing complex
control loops and automation policies involveswriting plenty

dSpace: Composable Abstractions for Smart Spaces SOSP ’21, October 26–28, 2021, Virtual Event, Germany

Figure 7. Latency breakdown under on-prem setup. FPT:
forward propagation time;BPT: backward propagation time;
DT: device actuation time or data processing time.

of low-level plumbing code since the basic building blocks
in these systems correspond to individual physical devices.
That said, these other frameworks do offer many additional
features that dSpace does not currently provide (e.g., UI/UX
modules, device onboarding). Our analysis has only focused
on features that relate to the expressivity of the framework.
6.4 Programming assignments in dSpace

To further test whether dSpace is easy to programwe conduct
a programming assignment based study with a group of
8 student developers; 3 out of the 8 developers had prior
experience programming IoT devices via simple automation
rules though none had prior exposure to dSpace.
Setup.We create a sequence of programming tasks, starting
from building a simple lamp digivice to a room digivice and
adding a reflex/on-model policy to support motion triggered
brightness. We record the time it takes for the participant to
finish building each task/digi. And after they complete all
tasks, we ask them to fill in a questionnaire on some feedback
questions including soliciting a Mean Opinion Score (MOS).
Results. All users successfully completed the assignment.
On average, users took approximately 16 minutes to com-
plete the assignment, with the most time (42.7%) spent on
implementing the room digivice, followed by adding the re-
flex for motion triggered action (28.6%), reading the docs
(19.3%), and building the simple lamp digivice (12.5%). Over-
all, dSpace received a MOS score of 4.41 (1-5 where 5 being
very easy to use/program). 75% of the developers reported
confusion on whether to use the intent or the status field
when calculating and setting the Room’s brightness level,
though all of them eventually figured it out by iterating
over the code, running the digis, and observing the behav-
iors. 37.5% of developers said they didn’t immediately realize
which attributes can be accessed by the reflex API and 50% of
them reported difficulty with writing correct Jq statements
in the policy field (e.g., one similar to Fig.3). We believe these
issues can be addressed via better documentation and UI/UX.
6.5 Performance benchmarks

MetricsWe measure the performance of our dSpace proto-
type in different environments. Our metrics include: (i) the
time it takes for the intent update in the user’s request to
reach the leaf digi, referred to as the Forward Propagation

Time (FPT) through the digi-graph; (ii) the time for the status
update at the leaf digi to reach the user’s CLI (assuming it is
polling for updates), referred to as the Backward Propaga-
tion Time (BPT); (iii) the time for the physical device or data
framework, interfaced with the leaf digi, to actuate/process
the data. This is referred to as the Device-actuation Time or
Data-processing Time (DT). Finally, the sum of FPT, BPT, and
DT amounts to the time it takes for an intent to be fulfilled,
which we refer to as the Time-to-fulfillment (TTF).
Setup: We deploy dSpace to mimic three anticipated setups:
on-prem, cloud, and hybrid deployment. We use identical
digis, compositions, and policies in each case. In the on-
prem setup, we deployed dSpace on a local laptop in the
home which runs a minikube cluster [37]. In the cloud setup,
we deployed a two-node k8s cluster on EC2 (one for the
master/control-plane and one for the worker). Note that in
the latter setup, all digis will be run on the worker node while
the apiserver/etcd and other k8s controllers on the master
node. In the hybrid setup, we run only the Scene digidata
locally and the other components on the cloud as before.

We benchmark three scenarios: (i) Lamp involves updating
the brightness of a single digi lamp; (ii) Room-Lamp updates
room brightness as in scenario S1; and (iii) Scene-Room in
which the camera generating a video stream is composed
with the scene digidata which extracts objects in each frame
and reports these to the room; finally, the room actuates the
lamp according to the objects observed (akin to Fig.6). We
repeat each experiment 3 times.

We show the latency breakdown for the on-prem deploy-
ment in Fig.7. As expected, we see that: (1) in all scenarios,
the time-to-fulfillment is dominated by the time to actuate
devices and process data (e.g., 83.2% of the total time for
the Lamp scenario), (2) the time spent in dSpace (FPT and
BPT) increases with the number of digis involved in intent
propagation and reconciliation (Room-Lamp and Scene-Room
involve approximately the same number of digis, and twice
as many as Lamp; all scenarios include the latency of commu-
nicating with the API server). These latencies are on par with
those reported for equivalent operations in Kubernetes [34]
and we leave further optimization of these latencies to fu-
ture work. The latencies we observe in the cloud setup show
similar findings and can be found in Appendix D.
Our hybrid deployment exploits our disaggregated mi-

croservices architecture to run only the Scene digidata lo-
cally while keeping other components in the cloud. This
avoids sending the entire video stream to the cloud, enabling
both privacy and performance benefits. In our experiments,
this reduces the bandwidth consumption due to Scene-Room
from 4.3Mbps to a negligible amount and introduces no ad-
ditional latency overhead.
In summary, we find that dSpace’s microservice imple-

mentation is sufficiently performant given that device actu-
ation, data processing, and network communication over-
heads dominate. On the other hand, it still introduces tens

SOSP ’21, October 26–28, 2021, Virtual Event, Germany Silvery Fu and Sylvia Ratnasamy

of milliseconds due to propagating events between contain-
ers/pods and this may become a performance bottleneck for
applications such as real-time robotics. Improving dSpace
for these ultra-low latency use-cases is a topic we leave for
future work (e.g., leveraging low-latency alternatives for our
apiserver/etcd).

7 Discussion and Related Work
Having compared dSpace to specific IoT systems in §6, we
now discuss the broader context of IoT.
Industry solutions. The IoT landscape today includes a
wide range of solutions that one might view as taking one
of three forms: device-centric, app-centric, or infrastructure-
centric. Device-centric solutions are ones in which the vendor
starts with their own device(s) and then offers optional add-
on software and cloud services for these devices. Such ven-
dors are typically device manufacturers such as Philips, LIFX,
Geeni, BOSE, Dyson, and WYZE [5, 15, 21, 25, 35, 40, 49].
dSpace can integrate these device-centric solutions as we
demonstrate in §6. We use the term app-centric to refer to
solutions in which the vendor has built an application and
they expose APIs that allow heterogeneous devices to inte-
grate with this application or service. Such vendors are typ-
ically smartphone companies and/or cloud providers such
as Samsung SmartThings, Apple, Amazon Alexa, Google
Nest, Xiaomi, and IFTTT etc. [7, 11, 27, 31, 44, 50]. Finally,
Infrastructure-centric solutions are ones in which a vendor
offers its infrastructure as a platform on which clients can
integrate different devices and construct and run IoT appli-
cations. All the major cloud providers [13, 14, 26] as well as
Tuya Smart [46] offer such platforms.

The majority of the above are closed or proprietary solu-
tions. However, there are multiple industry consortia and
communities developing open source solutions, including:
EdgeX Foundry [23], OM2M [22], KubeEdge [32], Home
Assistant [29], and OpenHAB [38]; and they typically offer
open source SDKs, device services, communication protocols,
pub-subs, UI/UX, and automation modules.
Research. There is a large body of prior research in IoT
systems closely relevant to dSpace, including: HomeOS [58],
BOSS [57], Brick [52], XBOS [60], Beam [72], and Bolt [62].
Among these pioneering works, HomeOS offers PC-like ab-
stractions for programming devices as peripherals and en-
ables cross-device tasks [58]. BOSS provides common system
primitives and services such as a query language for meta-
data, timeseries analytics, and fault-tolerant control for com-
mercial buildings [57]. Beam proposes inference graphs to
abstract away sensing and inference tasks, thus simplifying
the development of IoT applications [72].
Relation to dSpace. In dSpace, we take inspiration from
all of the above and introduce new concepts and abstrac-
tions to further simplify the construction of sophisticated
smart-space scenarios: first-class and adaptive composition,
flexible and higher-level abstractions, intent reconciliation,

and support for richer policies that enable runtime adapta-
tion, shared control, delegation, and so forth. As we demon-
strate through our system evaluation in §6, the novel features
simplify the development of smart space applications.
Programming frameworks.As a programming framework,
dSpace is inspired by prior research on modular frameworks
in other domains - e.g., Malt [70] and Orion [59] for net-
work management, Click [64] for packet-processing, Spark
and Hadoop [8, 9] for analytics, Ray and Tensorflow [51]
for AI/ML etc. dSpace differs from these in the nature of its
abstractions and features which result from the needs and
challenges of smart spaces.
Limitation and futureworks.There are important aspects
of IoT system design that we do not cover in this paper.
As mentioned in §2.4, current dSpace doesn’t offer UI/UX
support (e.g., a GUI) for non-technophile users. We plan
to provide such support via integrating or porting existing
UI/UX solutions [17, 28]. Besides, we’ve evaluated dSpace
under home automation scenarios and plan to extend our
evaluation to multi-occupancy homes [78] and to beyond
home contexts such as offices, retail locations, and campuses.
Finally, we are exploring techniques to provide safety and
privacy guarantees in dSpace, e.g., protecting users from
unsafe IoT device states via verification and/or enforcing
security policies.

8 Conclusion
This paper presents dSpace, a framework for building smart
space applications. With dSpace, developers can flexibly com-
pose heterogeneous devices into versatile smart spaces that
are exposed to users via high-level abstractions which are
easier to program and customize. dSpace’s main contribu-
tion lies in identifying the design principles and abstrac-
tions for the smart-space domain: high-level abstractions
via hierarchical composition, decoupled digivice vs. digidata,
embedded policies, intent reconciliation, and adaptive com-
position via policy-driven mount and yield. We show how
these abstractions map to the well-known microservices de-
sign paradigm and how this paradigm should be adapted to
the domain of smart-space applications. We validate our de-
sign using real-world IoT devices and scenarios. Compared
to existing smart-space systems, dSpace offers: minimalism,
better modularity, ease of customization via rich composition
and policies, and an open implementation.

Acknowledgements
We thank our anonymous reviewers for their useful com-
ments and feedback, and our shepherd Wenjun Hu who
helped shape the final version of this paper. We are also
thankful to David E. Culler, Amy Ousterhout, Sam Kumar,
Louis Ye, Zhihong Luo, Lei Harry Zhang, Narek Galstyan,
Wen Zhang, Hong Zhang, and Gabe Fierro for the useful
discussions and feedback during various stages of this work.
This work was partly funded by NSF grant 1553747.

dSpace: Composable Abstractions for Smart Spaces SOSP ’21, October 26–28, 2021, Virtual Event, Germany

References

[1] 2020. The eXtensible Building Operating System. https://github.com/
SoftwareDefinedBuildings/XBOS.

[2] 2020. How IoT devices and smart home automation is entering our
homes in 2020. https://www.businessinsider.com/iot-smart-home-
automation.

[3] 2020. Internet of Things (IoT) - Statistics & Facts. https://www.statista.
com/topics/2637/internet-of-things/.

[4] 2020. iPropertyManagement: Smart Home Statistics. https://
ipropertymanagement.com/research/iot-statistics.

[5] 2020. iRobot Ready to Unlock the Next Generation of Smart Homes Us-
ing the AWS Cloud. https://aws.amazon.com/solutions/case-studies/
irobot/.

[6] 2021. Alarm Motion Detector. https://shop.ring.com/products/alarm-
motion-detector-v2.

[7] 2021. Amazon Alexa. https://developer.amazon.com/en-US/alexa.
[8] 2021. Apache Hadoop. https://hadoop.apache.org/.
[9] 2021. Apache Spark. https://spark.apache.org/.
[10] 2021. apiserver. https://github.com/kubernetes/apiserver.
[11] 2021. Apple Homekit. https://developer.apple.com/homekit/.
[12] 2021. artifact. https://github.com/digi-project/sosp21-artifact.
[13] 2021. AWS IoT. https://aws.amazon.com/iot/.
[14] 2021. Azure IoT. https://azure.microsoft.com/en-us/overview/iot/.
[15] 2021. Bose SoundTouch API. https://developer.bose.com/bose-

soundtouch-api.
[16] 2021. A complete, cross-platform solution to record, convert and

stream audio and video. https://www.ffmpeg.org/,.
[17] 2021. Deploy and Access the Kubernetes Dashboard.

https://kubernetes.io/docs/tasks/access-application-cluster/web-ui-
dashboard/.

[18] 2021. docker image. https://docs.docker.com/engine/reference/
commandline/image/.

[19] 2021. Docker security. https://docs.docker.com/engine/security/.
[20] 2021. Dynamic Admission Control. https://kubernetes.io/docs/

reference/access-authn-authz/extensible-admission-controllers/.
[21] 2021. Dyson Pure Cool link library. https://github.com/CharlesBlonde/

libpurecoollink/.
[22] 2021. Eclipse OM2M. https://www.eclipse.org/om2m/.
[23] 2021. EdgeX Foundry. https://www.edgexfoundry.org/.
[24] 2021. Etcd: A distributed, reliable key-value store for the most critical

data of a distributed system. https://etcd.io/.
[25] 2021. Geeni Smart Lighting. https://mygeeni.com/collections/lighting.
[26] 2021. Google Cloud IoT. https://cloud.google.com/solutions/iot.
[27] 2021. Google Nest, build your connected home. https://store.google.

com/us/category/connected_home.
[28] 2021. Home Assistant Frontend. https://www.home-assistant.io/

integrations/frontend/.
[29] 2021. Home Assistant: Open source home automation that puts local

control and privacy first. https://www.home-assistant.io/.
[30] 2021. How To Manage Your Kubernetes Configurations with Kus-

tomize. https://www.digitalocean.com/community/tutorials/how-to-
manage-your-kubernetes-configurations-with-kustomize.

[31] 2021. IFTTT: Everything works better together. https://ifttt.com/.
[32] 2021. KubeEdge: A Kubernetes Native Edge Computing Framework.

https://kubeedge.io/.
[33] 2021. Kubernetes Operator Pythonic Framework (Kopf). https://github.

com/nolar/kopf.
[34] 2021. Kubernetes scalability and performance SLIs/SLOs.

https://github.com/kubernetes/community/blob/master/sig-
scalability/slos/slos.md.

[35] 2021. LIFX Smart Home Light. https://www.lifx.com/.
[36] 2021. Lightweight and flexible command-line JSON processor. https:

//stedolan.github.io/jq/.

[37] 2021. Minikube: Run Kubernetes Locally. https://github.com/
kubernetes/minikube.

[38] 2021. openHAB: empowring smart home. https://www.openhab.org/.
[39] 2021. package informers. https://godoc.org/k8s.io/client-go/

informers.
[40] 2021. Philips Hue. https://www.philips-hue.com/en-us/personal-

mood-lighting.
[41] 2021. Python library for accessing LIFX devices locally. https://github.

com/mclarkk/lifxlan.
[42] 2021. Ray rllib. https://github.com/ray-project/ray/tree/master/rllib/

agents/marwil.
[43] 2021. Roomba Robot Vacuums. https://www.irobot.com/roomba.
[44] 2021. SmartThings. https://smartthings.developer.samsung.com/.
[45] 2021. Things Graph. https://aws.amazon.com/iot-things-graph/.
[46] 2021. Tuya IoT Platform. https://www.tuya.com/.
[47] 2021. Using RBAC Authorization. https://kubernetes.io/docs/

reference/access-authn-authz/rbac/.
[48] 2021. Working with Rules. https://smartthings.developer.samsung.

com/docs/rules/overview.html.
[49] 2021. Wyze. https://wyze.com/.
[50] 2021. Xiao Mi Smart Home. https://xiaomi-mi.com/mi-smart-home.
[51] Martín Abadi et al. 2016. Tensorflow: A system for large-scale machine

learning. In Proc. USENIX OSDI.
[52] Bharathan Balaji et al. 2016. Brick: Towards a unified metadata schema

for buildings. In Proc. ACM BuildSys.
[53] Gary Bradski and Adrian Kaehler. 2000. OpenCV. Dr. Dobb’s journal

of software tools (2000).
[54] Brendan Burns, Brian Grant, David Oppenheimer, Eric Brewer, and

John Wilkes. 2016. Borg, Omega, and Kubernetes. Commun. ACM
(2016).

[55] Z Berkay Celik, Gang Tan, and Patrick D McDaniel. 2019. IoTGuard:
Dynamic Enforcement of Security and Safety Policy in Commodity
IoT.. In Proc. NDSS.

[56] Benoit Dageville et al. 2016. The snowflake elastic data warehouse. In
Proc. ACM SIGMOD.

[57] Stephen Dawson-Haggerty et al. 2013. BOSS: Building operating
system services. In Proc. USENIX NSDI.

[58] Colin Dixon, Ratul Mahajan, Sharad Agarwal, AJ Brush, Bongshin Lee,
Stefan Saroiu, and Victor Bahl. 2010. The home needs an operating
system (and an app store). In Proc. ACM HotNets.

[59] Andrew D Ferguson, Steve Gribble, Chi-Yao Hong, Charles Edwin
Killian, Waqar Mohsin, Henrik Muehe, Joon Ong, Leon Poutievski,
Arjun Singh, Lorenzo Vicisano, et al. 2021. Orion: Google’s Software-
Defined Networking Control Plane.. In Proc. USENIX NSDI.

[60] Gabriel Fierro and David E Culler. 2015. Xbos: An extensible building
operating system. In Proc. ACM BuildSys.

[61] Jerrold R Griggs, Wei-Tian Li, and Linyuan Lu. 2012. Diamond-free
families. Journal of Combinatorial Theory, Series A 119, 2 (2012), 310–
322.

[62] Trinabh Gupta, Rayman Preet Singh, Amar Phanishayee, Jaeyeon Jung,
and Ratul Mahajan. 2014. Bolt: Data management for connected homes.
In Proc. USENIX NSDI.

[63] Ahmed Hussein, Mohamed Medhat Gaber, Eyad Elyan, and Chrisina
Jayne. 2017. Imitation learning: A survey of learning methods. ACM
Computing Surveys (CSUR) 50, 2 (2017), 1–35.

[64] Eddie Kohler, Robert Morris, Benjie Chen, John Jannotti, and M Frans
Kaashoek. 2000. The Click modular router. ACM Transactions on
Computer Systems (TOCS) 18, 3 (2000), 263–297.

[65] Sam Kumar, Yuncong Hu, Michael P Andersen, Raluca Ada Popa, and
David E Culler. 2019. JEDI: Many-to-Many End-to-End Encryption
and Key Delegation for IoT. In Proc. USENIX Security.

[66] Chieh-Jan Mike Liang, Börje F Karlsson, Nicholas D Lane, Feng Zhao,
Junbei Zhang, Zheyi Pan, Zhao Li, and Yong Yu. 2015. SIFT: building an
internet of safe things. In Proc. International Conference on Information

https://github.com/SoftwareDefinedBuildings/XBOS
https://github.com/SoftwareDefinedBuildings/XBOS
https://www.businessinsider.com/iot-smart-home-automation
https://www.businessinsider.com/iot-smart-home-automation
https://www.statista.com/topics/2637/internet-of-things/
https://www.statista.com/topics/2637/internet-of-things/
https://ipropertymanagement.com/research/iot-statistics
https://ipropertymanagement.com/research/iot-statistics
https://aws.amazon.com/solutions/case-studies/irobot/
https://aws.amazon.com/solutions/case-studies/irobot/
https://shop.ring.com/products/alarm-motion-detector-v2
https://shop.ring.com/products/alarm-motion-detector-v2
https://developer.amazon.com/en-US/alexa
https://hadoop.apache.org/
https://spark.apache.org/
https://github.com/kubernetes/apiserver
https://developer.apple.com/homekit/
https://github.com/digi-project/sosp21-artifact
https://aws.amazon.com/iot/
https://azure.microsoft.com/en-us/overview/iot/
https://developer.bose.com/bose-soundtouch-api
https://developer.bose.com/bose-soundtouch-api
https://www.ffmpeg.org/
https://kubernetes.io/docs/tasks/access-application-cluster/web-ui-dashboard/
https://kubernetes.io/docs/tasks/access-application-cluster/web-ui-dashboard/
https://docs.docker.com/engine/reference/commandline/image/
https://docs.docker.com/engine/reference/commandline/image/
https://docs.docker.com/engine/security/
https://kubernetes.io/docs/reference/access-authn-authz/extensible-admission-controllers/
https://kubernetes.io/docs/reference/access-authn-authz/extensible-admission-controllers/
https://github.com/CharlesBlonde/libpurecoollink/
https://github.com/CharlesBlonde/libpurecoollink/
https://www.eclipse.org/om2m/
https://www.edgexfoundry.org/
https://etcd.io/
https://mygeeni.com/collections/lighting
https://cloud.google.com/solutions/iot
https://store.google.com/us/category/connected_home
https://store.google.com/us/category/connected_home
https://www.home-assistant.io/integrations/frontend/
https://www.home-assistant.io/integrations/frontend/
https://www.home-assistant.io/
https://www.digitalocean.com/community/tutorials/how-to-manage-your-kubernetes-configurations-with-kustomize
https://www.digitalocean.com/community/tutorials/how-to-manage-your-kubernetes-configurations-with-kustomize
https://ifttt.com/
https://kubeedge.io/
https://github.com/nolar/kopf
https://github.com/nolar/kopf
https://github.com/kubernetes/community/blob/master/sig-scalability/slos/slos.md
https://github.com/kubernetes/community/blob/master/sig-scalability/slos/slos.md
https://www.lifx.com/
https://stedolan.github.io/jq/
https://stedolan.github.io/jq/
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://www.openhab.org/
https://godoc.org/k8s.io/client-go/informers
https://godoc.org/k8s.io/client-go/informers
https://www.philips-hue.com/en-us/personal-mood-lighting
https://www.philips-hue.com/en-us/personal-mood-lighting
https://github.com/mclarkk/lifxlan
https://github.com/mclarkk/lifxlan
https://github.com/ray-project/ray/tree/master/rllib/agents/marwil
https://github.com/ray-project/ray/tree/master/rllib/agents/marwil
https://www.irobot.com/roomba
https://smartthings.developer.samsung.com/
https://aws.amazon.com/iot-things-graph/
https://www.tuya.com/
https://kubernetes.io/docs/reference/access-authn-authz/rbac/
https://kubernetes.io/docs/reference/access-authn-authz/rbac/
https://smartthings.developer.samsung.com/docs/rules/overview.html
https://smartthings.developer.samsung.com/docs/rules/overview.html
https://wyze.com/
https://xiaomi-mi.com/mi-smart-home

SOSP ’21, October 26–28, 2021, Virtual Event, Germany Silvery Fu and Sylvia Ratnasamy

Processing in Sensor Networks.
[67] Barbara Liskov. 2009. The power of abstraction. Turing Award Lecture

(2009).
[68] Yucheng Low, Joseph Gonzalez, Aapo Kyrola, Danny Bickson, Car-

los Guestrin, and Joseph M Hellerstein. 2012. Distributed graphlab:
A framework for machine learning in the cloud. arXiv preprint
arXiv:1204.6078 (2012).

[69] Matt McCormack, Amit Vasudevan, Guyue Liu, Sebastián Echever-
ría, Kyle O’Meara, Grace Lewis, and Vyas Sekar. 2020. Towards an
architecture for trusted edge iot security gateways. In Proc. USENIX
HotEdge.

[70] Jeffrey C Mogul et al. 2020. Experiences with Modeling Network
Topologies at Multiple Levels of Abstraction. In Proc. USENIX NSDI.

[71] Philipp Moritz et al. 2018. Ray: A distributed framework for emerging
AI applications. In Proc. USENIX OSDI.

[72] Chenguang Shen, Rayman Preet Singh, Amar Phanishayee, Aman
Kansal, and Ratul Mahajan. 2016. Beam: Ending monolithic applica-
tions for connected devices. In Proc. USENIX ATC.

[73] Blase Ur, Elyse McManus, Melwyn Pak Yong Ho, and Michael L
Littman. 2014. Practical trigger-action programming in the smart
home. In Proc. SIGCHI Conference on Human Factors in Computing
Systems. 803–812.

[74] Ke Xu, Xiaoliang Wang, Wei Wei, Houbing Song, and Bo Mao. 2016.
Toward software defined smart home. IEEE Communications Magazine
54, 5 (2016), 116–122.

[75] Tianlong Yu, Tian Li, Yuqiong Sun, Susanta Nanda, Virginia Smith,
Vyas Sekar, and Srinivasan Seshan. 2020. Learning context-aware
policies from multiple smart homes via federated multi-task learning.
In 2020 IEEE/ACM Fifth International Conference on Internet-of-Things
Design and Implementation (IoTDI). IEEE.

[76] Tianlong Yu, Vyas Sekar, Srinivasan Seshan, Yuvraj Agarwal, and
Chenren Xu. 2015. Handling a trillion (unfixable) flaws on a billion
devices: Rethinking network security for the internet-of-things. In
Proc. ACM HotNets.

[77] Eric Zeng, Shrirang Mare, and Franziska Roesner. 2017. End user
security and privacy concerns with smart homes. In Proc. USENIX
SOUPS. 65–80.

[78] Eric Zeng and Franziska Roesner. 2019. Understanding and improving
security and privacy in multi-user smart homes: a design exploration
and in-home user study. In Proc. USENIX Security. 159–176.

[79] Han Zhang, Abhijith Anilkumar, Matt Fredrikson, and Yuvraj Agarwal.
2021. Capture: Centralized Library Management for Heterogeneous
IoT Devices. In Proc. USENIX Security.

[80] Serena Zheng, Noah Apthorpe, Marshini Chetty, and Nick Feamster.
2018. User perceptions of smart home IoT privacy. Proceedings of the
ACM on Human-Computer Interaction 2, CSCW (2018), 1–20.

Appendix

A More on dSpace Deployment
Briefly, digis are built and deployed following standard prac-
tice of modern application development and deployment: i.
developers define model schema, program the driver, and
build a digi image; ii. push the image to a repository; one
can later iii. pull, run, and/or compose the digi. dSpace’s
command-line, dq, provides utilities to automate these pro-
cess as summarized in Table 6.
Digi image:We reuse existing container images and their
tooling for the driver. A digi image is a simple configuration
file that comprises the model schema and a container image
ID pointing to the container image of the driver (e.g., docker.
io/digi/lamp), plus a content addressable hash calculated over

Command Description
dq build KIND Create a new image
dq pull/push KIND Down/upload image
dq run/stop KIND NAME Start/stop a digi
dq mount [-d] [-y] A B Mount/unmount/yield A to B
dq pipe [-d] A.output.x B.input.x Pipe A’s output to B’s input

Table 6. Commands to build, deploy, and compose digis.

the model schema and the container image digest [18]. These
simple approaches combined lead to lightweight digi images
(a few KB) easy to distribute and verified for integrity.

B More Examples on Digi Programming

B.1 Room Digivice: model

1 group: digi.dev
2 version: v1
3 kind: Room
4 control:
5 brightness: number
6 mount:
7 digi.dev/v1/lamps: object

Figure 8. Schema of the Room digivice (Fig.8).

B.2 Universal Lamp

1 from digi import on
2 from digi.view import TypeView, DotView
3 # invoked upon mount or control attributes changes
4 @on.mount
5 @on.control
6 def handle_brightness(model):
7 # chained transformation of model
8 with TypeView(model) as tv, DotView(tv) as dv:
9 # control attribute for room brightness
10 rb = dv.room.control.brightness
11 # if no lamps brightness status set to 0
12 rb.status = 0
13 if "lamps" not in dv:
14 return
15 # count active lamps
16 active_lamps = [l for _, l in dv.lamps.items()
17 if l.control.power.status == "on"]
18 # iterate and set active lamp brightness
19 for lamp in active_lamps:
20 # room brightness is the sum of all lamps
21 room_brightness.status += \
22 lamp.control.brightness.status
23 # divide intended brightness across lamps
24 lamp.control.brightness.intent = \
25 room_brightness.intent / len(active_lamps)
26 # At the closing of the "with" clause, changes on
27 # DotView will be applied to the TypeView and then
28 # to the model.
29 if __name__ == '__main__':
30 digi.run()

Figure 9. Python code implementing a simple Room digivice
that aggregates brightness of lamps, using filters and views.

docker.io/digi/lamp
docker.io/digi/lamp

dSpace: Composable Abstractions for Smart Spaces SOSP ’21, October 26–28, 2021, Virtual Event, Germany

1 group: digi.dev
2 version: v1
3 kind: UniLamp
4 control:
5 power: string
6 brightness: number
7 obs:
8 reason: string
9 mount:
10 digi.dev/v1/lamps: object
11 digi.dev/v1/colorlamps: object

Figure 10. Schema of the Universal Lamp digivice (Fig.10).

Below: Python code implementing a simple universal lamp
digivice that unify across two types of lamps and intent back-
propagation.

1 import digi
2 import digi.on as on
3
4 import digi.util as util
5 from digi.util import put, first_attr, first_type
6
7 """Universal lamp translates power and brightness
8 to vendor specific lamps."""
9
10 converters = {
11 "digi.dev/v1/colorlamps": {
12 "power": {
13 "from": lambda x: "on" if x == 1 else "off",
14 "to": lambda x: 1 if x == "on" else 0,
15 },
16 "brightness": {
17 "from": lambda x: x / 255,
18 "to": lambda x: x * 255,
19 },
20 },
21 "digi.dev/v1/geenilamps": {
22 "power": {
23 "from": lambda x: x,
24 "to": lambda x: x,
25 },
26 "brightness": {
27 "from": lambda x: x,
28 "to": lambda x: x,
29 }
30 },
31 }
32
33
34 # validation
35 @on.mount
36 def h(mounts):
37 count = util.mount_size(mounts)
38 assert count <= 1, \
39 f"more than one lamp is mounted: " \
40 f"{count}"
41
42
43 # intent back-prop
44 @on.mount
45 def h(parent, bp):

46 ul = parent
47
48 for _, child_path, old, new in bp:
49 typ, attr = util.typ_attr_from_child_path(child_path)
50
51 assert typ in converters, typ
52
53 # back-prop logic
54 put(path=f"control.{attr}.intent",
55 src=new, target=ul,
56 transform=converters[typ][attr]["from"])
57
58
59 # status
60 @on.mount("lamps")
61 def h(lp, ul, typ):
62 lp = first_attr("spec", lp)
63
64 assert typ in converters, typ
65
66 put(f"control.power.status", lp, ul,
67 transform=converters[typ]["power"]["from"])
68
69 put(f"control.brightness.status", lp, ul,
70 transform=converters[typ]["brightness"]["from"])
71
72
73 @on.mount("colorlamps")
74 def h(lp, ul, typ):
75 lp = first_attr("spec", lp)
76
77 assert typ in converters, typ
78
79 put(f"control.power.status", lp, ul,
80 transform=converters[typ]["power"]["from"])
81
82 put(f"control.brightness.status", lp, ul,
83 transform=converters[typ]["brightness"]["from"])
84
85
86 # intent forwarding
87 @on.mount
88 @on.control
89 def h(parent, child):
90 ul, lp = parent, first_attr("spec", child)
91 if lp is None:
92 return
93
94 typ = first_type(child)
95 assert typ in converters, typ
96
97 put(f"control.power.intent", ul, lp,
98 transform=converters[typ]["power"]["to"])
99
100 put(f"control.brightness.intent", ul, lp,
101 transform=converters[typ]["brightness"]["to"])
102
103
104 if __name__ == '__main__':
105 digi.run()

B.3 Yield Policy

SOSP ’21, October 26–28, 2021, Virtual Event, Germany Silvery Fu and Sylvia Ratnasamy

1 apiVersion: digi.dev/v1
2 kind: YieldPolicy
3 metadata:
4 name: example-yieldpolicy
5 spec:
6 source:
7 kind:
8 group: digi.dev
9 version: v1
10 name: Room
11 name: lvroom
12 namespace: default
13 target:
14 kind:
15 group: digi.dev
16 version: v1
17 name: EmergencyAppliance
18 name: emerg-app
19 namespace: default
20 condition: >-
21 if (.source.spec.mode.status == \"emergency\")
22 then true else false end

Figure 11. A example yield policy between a Room digivice
and an Emergency appliance digivice.

C Experiences with Other Frameworks
SmartThings: SmartThings allows device grouping and
group-level actions but groups cannot be nested and devices
in the group have to be the same type; it supports composite
devices but they can only be defined/composed statically at
code-level and cannot be nested. In AWS IoT, one can adapt
the workflow model in the Things Graph to "emulate" HL
abstractions and multi-level hierarchy (hypothetically; we
cannot find such examples in the public regime), but user can-
not interact directly with the abstraction (e.g., setting room’s
mode) and does not have mechanisms to back propagate the
intents and handle policy conflicts. Etc.
Like Home Assistant, SmartThings does not support dy-

namic composition natively (neither the composite device
and parent-child smartapp APIs work in our favor), so we ap-
plied similar circumvention as in Home Assistant - creating
a parent service and a child service and have the parent call
the child imperatively. However, in SmartThings, we are not
able to create a universal lamp service and have the room
service to call it. We suspect this is due to the universal lamp
service we created are not allowed to be registered to the
SmartThings runtime (its SDK is semi-open source, so we
cannot confirm what’s going on underneath). We ended up
implementing just the room that directly talked to 3 different
lamps. Nonetheless, we programmed SmartThings using its
nodejs library and also tried out their Groovy library. For
both libraries, similar to the case of Home Assistant, one
needs to write a substantial amount of code to do low-level
plumbing that is not directly related to the application logic.
In SmartThings, this includes setting up the "pages" (as part
of their UI/UX logic) and adding "capabilities" - that for each

device actuation one needs to define a capability to define
the values involved in the action and a routine/function that
executes. Note that we are not saying these extra chores
aren’t useful features, rather we argue there is no way we
write application logic without handling these complexity.
Implementing S1 in Home Assistant: To implement the
aggregated brightness in Home Assistant, we first created
a universal lamp "service" that has all vendor lamp "plat-
forms" registered. For each type of vendor lamp, we wrote a
separate set of setup code as part of the lamp service, plus
their individual event handlers. In each handler, we also need
to explicitly subscribe and invoking other services (this is
also not declarative, e.g., to turn off a light, one calls a SER-
VICE_TURN_OFF). For the room service, we do similar setup
and event handling plumbing.
At a high-level, both HASS and SmartThings share simi-

larities with dSpace in terms of their programming model:
developers write event-driven handlers that update device
states asynchronously in the manner typical of event-driven
programming under a pub-sub model. Yet under this um-
brella term, important implementation differences remain,
e.g., dSpace separates the declarative components (models)
and imperative components (driver) these other frameworks
define device state inline as part of their "driver" codebase.
That said, both frameworks support many other features that
are critical for IoT applications dSpace does not currently
support such as UI/UX modules.
Data-driven policies: All frameworks have support on in-
tegrating data analytics frameworks and data-driven policies,
among which AWS IoT supports dataflow composition na-
tively. For access policies, no frameworks have support for
complex access policies that involve dynamic composition,
shared control, and control delegation, though most frame-
works provide support for access control (e.g., ACLs) and
authorization (e.g., OAuth).

D Performance Benchmarks under Cloud Setup

0 250 500 750
Latency (ms)

FPT

BPT

DT

28.4

22.2

202.9

Lamp

0 250 500 750
Latency (ms)

48.2

49.4

192.1

Room-Lamp

0 250 500 750
Latency (ms)

50.8

43.3

741.0

Scene-Room

Figure 12. Latency breakdown under cloud setup (avg. ping
from on-prem: 9ms). The physical lamp and cameras run on-
prem but the rest of dSpace components are on EC2 cloud.

	Abstract
	1 Introduction
	2 Design Goals and Rationale
	2.1 Goals
	2.2 Challenges
	2.3 Design choices
	2.4 Putting the pieces together

	3 Design
	3.1 Abstractions
	3.2 Composition
	3.3 Multi-hierarchy
	3.4 Adaptive Composition
	3.5 Intent Reconciliation
	3.6 Security and Privacy

	4 Programming and Execution Model
	4.1 Model Specification
	4.2 Driver Programming
	4.3 Driver Execution

	5 Runtime Architecture
	5.1 Apiserver
	5.2 dSpace Controllers
	5.3 Implementation

	6 Evaluation
	6.1 Experimental Setup
	6.2 Using dSpace to implement S1-S10
	6.3 Implementing S1-S10 in other frameworks
	6.4 Programming assignments in dSpace
	6.5 Performance benchmarks

	7 Discussion and Related Work
	8 Conclusion
	References
	A More on dSpace Deployment
	B More Examples on Digi Programming
	B.1 Room Digivice: model
	B.2 Universal Lamp
	B.3 Yield Policy

	C Experiences with Other Frameworks
	D Performance Benchmarks under Cloud Setup

