
dSpace
ComposabIe Abstractions
for Smart Spaces

SiIvery Fu,
SyIvia Ratnasamy

3x IoT devices, 2015-2020

13.6 per person by 2023

Still complex to program
smart spaces!

Programming Smart Spaces
Today: why it's complex?

device-centric APIs
monolithic implementations
if-then-that policies

Programming Smart Spaces
Today: why it's complex?

device-centric APIs
monolithic implementations
if-then-that policies

"The basic technique we have for managing the
complexity of software is modularity" - Barbara Liskov

Programming Smart Spaces
Today: why it's complex?

device-centric APIs
monolithic implementations
if-then-that policies

"The basic technique we have for managing the
complexity of software is modularity" - Barbara Liskov

For smart spaces:

What is the minimal set of abstractions to achieve it?

What is the right modularity?

dSpace:
Modules

A lamp /
smart light bulb

dSpace:
Modules

Digivice

D

Digivice

dSpace:
Modules

Digivice

D

D.mod.power
 .intent: on
 .status: on

Model

Driver
D.drv():

set(lamp, .intent)
.status = get(lamp)

Digivice

Each digivice D has:

Model - D.mod: attribute-values that
capture D's intended states (intent)
current states (status), and events

Driver - D.drv(): code that reconcile
status to intent

dSpace:

Digivice

Modules

Digivice L1

L2.mod.turn_on
.intent: true
.status: false

Digivice L2

L1.mod.power
.intent: on
.status: off

D.mod
Model

Driver
D.drv()

Heterogeneity →
Complexity

Idea: use a universal
digivice to configure a

device-specific digivice

Digivices can have different
 device libraries (driver)
 programming lang. (driver)
 schema (model)

dSpace:

Digivice

Universal Lamps

Modules

D.mod.power
 .intent: on
 .status: off

Model

Driver
D.drv():

switch vendor
case L1: ...
case L2: ... Idea: use a universal

digivice to configure a
device-specific digivice

Heterogeneity →
Complexity

dSpace:

Digivice

Universal Lamps

Modules

D.mod.power
 .intent: on
 .status: off

Model

Driver
D.drv():

switch vendor
case L1: ...
case L2: ... Idea: use a universal

digivice to configure a
device-specific digivice

Compose Digivices with
Mount primitive

Heterogeneity →
Complexity

Mount

Composition

dSpace:

Mount

Digivice

intent

Parent

Child

status
events Mount(A, B) allows B.drv() to:

1. Write to A.mod.intent
2. Read from A.mod.status
B: parent; A: child

Modules

Composition
Universal Lamps

Compose Digivices with
Mount primitive

intent

Parent

Child

status
events

Living Room

Aggregate brightness of
the living room

dSpace:

Mount

Digivice

Modules

Composition

Parent

Child

Living Room

Idea: Introducing a
living room digivice

and mount both
lamps!

Child

Aggregate brightness of
the living room

dSpace:

Mount

Digivice

Modules

Composition

Room

L1

Living Room
Developers of the room:

Don't interact with
physical devices
Program universal lamps

L2

L1.mod.bri
.intent: 0.4
.status: 0.4

Room.mod.bri
 .intent: 0.8
 .status: 0.8

dSpace:

Mount

Digivice

Modules

Composition

Idea: Introducing a
living room digivice

and mount both
lamps!

House

KitchenLiving Room

Digivices
form

control
hierarchy Garden

Raising the level
of abstractions

dSpace:

Mount

Digivice

Modules

Composition

Living Room

dSpace:

Mount

Digivice

Modules

Composition

Living Room

Goal: integrate data processing with digivices

Video processing
ML/object recognition

dSpace:

Mount

Digivice

Modules

Composition

dSpace:

Mount

Digivice

Digidata

Modules

Composition
Living Room

CV.mod
 .in: rtsp://..
 .out: human

Digidata

Model

Driver

Goal: integrate data processing with digivices

Video processing
ML/object recognition

Each digidata T has:

T.mod.in: data input
T.mod.out: data output

Driver T.drv(): data processing
code to transform T.mod.in to
T.mod.out

CV.drv():
frame = capture(.in)
.out = detect(frame)

Living Room
CV.mod

 .in: rtsp://..
 .out: human

Digidata

Model

Driver
CV.drv():

frame = capture(.in)
.out = detect(frame)

CamRoomba

dSpace:

Mount

Digivice

Digidata

Modules

Composition

CV.mod
 .in: rtsp://..
 .out: human

Digidata

Model

Driver
CV.drv():

frame = capture(.in)
.out = detect(frame)

Mounting digidata T to digivice D allows:
D to write T.mod.in
D to read T.mod.out

Living Room

CamRoomba CV

dSpace:

Mount

Digivice

Digidata

Modules

Composition

dSpace:

Digivice

Digidata

Modules

Composition CV.mod
 .in: rtsp://..
 .out: human

Digidata

Model

Driver
CV.drv():

frame = capture(.in)
.out = detect(frame)

Mounting digidata T to digivice D allows:
D to write T.mod.in
D to read T.mod.out

Living Room Process the video
before sending it to CV?

CamRoomba CV

Mount

dSpace:

Mount
Pipe

Digivice

Digidata

Modules

Composition CV.mod
 .in: rtsp://..
 .out: human

Digidata

Model

Driver

Pipe(A, B) writes A.mod.out to B.mod.in

Living Room Write FF.mod.out.url
to CV.mod.in.url

CV.drv():
frame = capture(.in)
.out = detect(frame)

CamRoomba CVFF

dSpace:

Mount
Pipe

Digivice

Digidata

Modules

Composition

Living Room Kitchen

Device moves across rooms

KitchenLiving Room

Device moves across rooms

Allow multiple
parents, but only
one can have
write-access and
the other(s) are
yielded

dSpace:

Mount
Pipe

Digivice

Digidata

Modules

Composition

Yield

dSpace:

Mount
Pipe

Yield

Digivice

Digidata

Modules

Composition

Device moves across rooms
Delegate access to third-party

Living Room Kitchen

House Emergency Control

Must preserve
multi-tree topology
to avoid loops

Allow multiple
parents, but only
one can have
write-access and
the other(s) are
yielded

Policies

Delegation

dSpace:

Mount
Pipe

Yield

Digivice

Digidata

Modules

Composition

Policies Device moves across rooms
Delegate access to third-party

Handle intent conflicts due to physical events

Living Room Kitchen

House Emergency Control

Delegation
Intent reconc.

Must preserve
multi-tree topology
to avoid loops

Allow multiple
parents, but only
one can have
write-access and
the other(s) are
yielded

More details
about policies
in the paper!

Today:
Device-centric
abstractions

Monolithic
architecture

dSpace:
Composable
digivice/data

First-class
primitives:

Mount Pipe Yield

Rich policies:
delegation

intent reconc.

Recap: Programming Smart Spaces

Limited HL
abstraction and

policies

Ad-hoc
composition:
If-then-that

What makes dSpace simple?

Today:
Device-centric
abstractions

Monolithic
architecture

dSpace:
Composable
digivice/data

First-class
primitives:

Mount Pipe Yield

Digis run as
microservices

Recap: Programming Smart Spaces

Rich policies:
delegation

intent reconc.

What makes dSpace simple?

Limited HL
abstraction and

policies

Ad-hoc
composition:
If-then-that

Implement dSpace with Microservices

pod podpod

 kube-apiserver

etcd

kube-scheduler

kubelet

digi
driver

digi
driver

digi
driver

{model} {model}{model}

Implement dSpace with Microservices

pod podpod

 kube-apiserver

etcd

kube-scheduler

kubelet

digi
driver

digi
driver

digi
driver

{model} {model}

dSpace
controllers

dq
{model}

See the paper for details:

10 scenarios in smart home with 9 devices

vs. existing frameworks

User study and performance benchmarks
4/10 scenarios are dSpace only, the rest more (4x) LoC

4.41 MOS (0-5); runtime adds <20% latency overhead

Design Principles, Driver Programming, Runtime Arch., Security etc.
Design and Implementation

Evaluation

< 300 lines of code (LoC; +15%) for all scenarios

github.com/NetSys/dspace

Goal: simplify development of smart space apps

Manage complexity through the (right) modularity:

Digivice, Digidata + Mount, Pipe, Yield

Thank you!

