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Abstract
Cellular operators today know both the identity and location
of their mobile subscribers and hence can easily profile users
based on this information. Given this status quo, we aim to de-
sign a cellular architecture that protects the location privacy
of users from their cellular providers. The fundamental chal-
lenge in this is reconciling privacy with an operator’s need
to provide services based on a user’s identity (e.g., post-pay,
QoS and service classes, lawful intercept, emergency services,
forensics).

We present LOCA, a novel cellular design that, for the first
time, provides location privacy to users without compromis-
ing on identity-based services. LOCA is applicable to emerg-
ing MVNO-based cellular architectures in which a virtual
operator acts as a broker between users and infrastructure
operators. Using a combination of formal analysis, simula-
tion, prototype implementation, and wide-area experiments,
we show that LOCA provides provable privacy guarantees
and scales to realistic deployment figures.

1 Introduction
Providing users with location privacy is an important part of
the larger challenge of online privacy. Unfortunately, today’s
cellular architecture offers little location privacy: network
operators know the identity of a user and the geographic lo-
cation of the access point to which that user connects and
hence can trivially track a user’s location in time. There is
mounting concern over this situation as cellular providers
are reported to routinely share their users’ location pro-
files [28, 29, 62, 66, 105]. Moreover, 5G is likely to require
smaller cell sizes [19] thus exposing much finer-grained loca-
tion information and exacerbating the privacy problem.

Hiding a user’s location from their network operator is chal-
lenging because connecting to an access point fundamentally
reveals the user’s location. One approach to improving pri-
vacy is to hide the user’s identity from the network operator
using so-called “blindly signed tokens” [23, 78, 86]. However,
as discussed in §3, this approach comes at the cost of prevent-
ing network operators from providing identity-based services.
These are services whose correct execution depends on the
user’s identity, such as post-pay [22], QoS prioritization [1]
and lawful interception [3]. Such services are an essential part
of today’s networks and hence it is unlikely that operators
can/will abandon them in exchange for improved user privacy.
Thus, our question is whether we can enable location privacy
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Figure 1: LOCA’s overall architecture.

(i.e., ensuring that network operators cannot easily track or in-
fer a user’s location) without compromising on identity-based
services.

Privacy and identity-based services might seem to be fun-
damentally at odds. However, we see a way forward via mo-
bile virtual network operators (MVNOs) such as Google Fi
and Cricket [30, 49]. MVNOs are service providers that do
not own radio infrastructure but instead provide user-facing
services (sales, billing, etc.) while relying on business agree-
ments with some number of traditional mobile network op-
erators (MNOs) to provide the radio infrastructure. In this
scenario, users pay MVNOs for service and MVNOs settle
with MNOs on behalf of users. In other words, with MVNOs
in the picture we can decouple infrastructure operation from
user management and the MVNO acts as a broker between
the user and the infrastructure operator.1

As shown in Fig. 1, our insight is that the existence of a
broker between the user and operator enables us to reconcile
privacy with identity-based services by strategically hiding
different pieces of information from each party: the broker
(i.e., MVNO) knows the user’s identity but not her location,
while the operator (i.e., MNO) knows the user’s location but
not her identity. With this arrangement, the broker can still tell
the operator what identity-based services are to be applied to
the user without revealing the user’s identity, and the operator
can implement the required services without knowing the
identity of the user on whose behalf they are implemented.

However, hiding information in this manner is challenging
for four reasons. First, in order to hide the user’s identity
from the operator, we must hide not just her identity but also
her trajectory across multiple cell towers. This is because
the operator could still infer the user’s identity based on the
sequence of towers she has visited, a form of privacy loss we
refer to as trajectory leakage (§3.3).

Second, in order to hide the user’s location from the bro-
ker, we must also hide the identity of its operator from the
broker. This is because the locations of an operator’s cell

1In this paper, we use the terms MVNO and broker interchangeably; we
do the same with the terms MNO and operator.



tower deployments are public knowledge and hence can re-
veal a user’s location [81]. The emergence of operators with
small footprints, such as private and enterprise 5G networks,
underscores the importance of this [13, 38, 52, 97].

The last two challenges arise because of this need to hide
the identity of the operator from the broker. Brokers will al-
ways want to ensure that only authorized operators service
their users. Since our approach hides the operator’s identity
from the broker, we now need a solution that allows the bro-
ker to verify the legitimacy of an operator without revealing
the operator’s identity. Lastly, when it comes time to settle
payments, the operator should be able to claim payment from
the broker without revealing what users it has served (since
doing so would otherwise reveal user locations).

We design a privacy-preserving protocol that addresses the
challenges above. Our contribution lies in developing new
techniques (e.g., aggregate claims) and synthesizing them
with existing ones (e.g., blind signatures, zero-knowledge
proofs) into an end-to-end Location-Oblivious Cellular Ar-
chitecture (LOCA). To our knowledge, LOCA is the first
system to enable location privacy for users while also support-
ing a provider’s operational goals such as usage-based billing,
QoS and service levels, lawful intercept, and so forth.

We evaluate the privacy and scalability of our protocol
through formal analysis, simulation, prototype implementa-
tion, and wide-area experiments. We recognize that LOCA
does introduce certain complexity and system overheads.
However, our evaluation shows that these overheads are mod-
est and within reach of what can be practically supported
today. An important part of our contribution is thus in expos-
ing the architectural complexity and performance tradeoffs
that might be necessary to achieve our privacy goals.

Our work is based on certain assumptions about user and
operator incentives. We assume that privacy concerns will
influence some users in their selection of providers which will
incentivize some operators to adopt the proposed techniques.2

In addition, a growing number of jurisdictions have enacted
policies that require providers to protect user privacy and, as
discussed in §3, our architecture makes it easier for a provider
to ensure compliance with these legal requirements. We do not
assume that this motivation will apply to all users or operators:
since our architecture can co-exist with the existing cellular
infrastructure, we envision it will be applied to (by) the subset
of users (providers) that are motivated by location privacy.

Finally, we recognize that there are many ways in which a
user’s location may be revealed through their online activities
(e.g., posting timestamped photos). We do not claim to prevent
all forms of location leakage. Our focus is only on preventing
the leakage of location information that today occurs every
time a user connects to the cellular network.

In summary, the contributions of this paper are: (1) a new
approach to preserve user location privacy while providing

2Such market dynamics are already emerging in other contexts such as
the smartphone market [10, 57, 85].

identity-based services; (2) the detailed design and implemen-
tation of a protocol (LOCA) based on this approach, and an
evaluation of its performance and scalability; and (3) a formal
analysis of the privacy provided by LOCA. Looking forward,
we view LOCA as a first step towards privacy-preserving cel-
lular infrastructure with room for improvement along multiple
dimensions. We discuss these limitations extensively in the
paper to motivate efforts on addressing these issues.

2 Background
The cellular ecosystem: MNOs and MVNOs Traditionally,
the two main participants in a cellular network are the user
with her device (called User Equipment, or UE) and the Mo-
bile Network Operator (MNO). The MNO owns and operates
cellular infrastructure and also provides user support services
such as sales, billing and customer care. The user typically
enters into a contractual agreement with one MNO which
serves as her “home” provider. The user then consumes cellu-
lar services from her home provider or visited MNOs that her
home provider has roaming agreements with.

In recent years, we’ve seen the rise of Mobile Virtual Net-
work Operators (MVNOs). MVNOs are service providers
that do not own radio infrastructure, but instead provide user-
facing services (sales, billing, etc.), often focusing on serving
specific underserved market segments [72, 91], while rely-
ing on business agreements with some number of MNOs
to provide use of their radio infrastructure. In other words,
the MVNO acts as a broker between the user and the infras-
tructure operator. In this scenario, the user contracts with
an MVNO, and the MVNO in turn contracts with MNOs.
Two well-known MVNOs in the US are Google Fi [49] and
Cricket [30]. MVNOs can be involved in cellular operations
to varying degrees, ranging from fully offloading to MNOs to
operating their own core networks.
Identity-based services: These are services whose correct
execution depends on the user’s identity. An example of
such services is lawful interception, a function that allows
law enforcement agencies to selectively wiretap individual
users [3, 4, 39]. In most countries, operators are legally re-
quired to support lawful interception. Additional examples
of identity-based services include: (i) post-pay, which relies
on identity-based accounting to charge a user based on her
service consumption; (ii) QoS prioritization, where the net-
work’s treatment of a user’s traffic depends on details of the
user’s subscription plan and past usage; (iii) deep packet in-
spection (DPI), where traffic is filtered based on the user’s
identity for purposes such as parental controls.
Location privacy in cellular networks: Location privacy, as
defined in [17], is “the ability to prevent other parties from
learning one’s current or past locations”. In the cellular con-
text, this means that neither MVNOs nor MNOs should be
able to learn a particular user’s current or past locations. The
exception is when location information must be revealed for
legal purposes like emergency services and forensics.



3 Approach and Design Rationale
In this section, we briefly discuss the goals and assumptions
that motivate LOCA’s approach.

3.1 System Assumptions and Threat Model
System model: LOCA assumes a broker-centric architec-
ture like today’s MVNOs. This architecture involves three
entities: (i) users, (ii) brokers, and (iii) operators. Operators
own and operate cellular infrastructure. Brokers act as inter-
mediaries between users and operators: a user subscribes to
services from her broker, and the broker represents the user to
operators, including handling settlements with each. LOCA
requires brokers to authenticate their users.3 The user need
not be aware of the specific operator her device is attached to.
Threat model: We adopt a common threat model among
privacy preserving systems that seek to prevent inadvertent
information leakage between participants [25, 34, 54, 61, 79].
We assume brokers and operators are semi-honest (i.e., honest-
but-curious) and non-colluding: they follow the protocol but
will attempt to extract user location information from the pro-
tocol execution, and that brokers and operators do not collude.
We also assume that operators may attempt to overbill bro-
kers by lying about session usages or what users they serve4.
Attacks based on out-of-protocol information or collusion are
out of scope but discussed in §5.
Incentives: One might ask why brokers and operators would
implement the changes we propose. We believe that adopting
our system is beneficial to them for both financial and legal
reasons: as users are becoming more privacy-conscious [50,
74,104], brokers that offer an opt-in location-oblivious service
will be more attractive to customers. Second, doing so may
soon become mandatory: regulations like GDPR recommend
the privacy-by-design approach, which continues to place
increasingly strong requirements on manipulating PII [16, 98,
107,108]. By implementing a design such as ours, brokers and
operators reduce their risk of inadvertently infringing privacy
regulations. We explicitly assume that these benefits will
outweigh the benefits of selling location data or implementing
ad-hoc approaches to enforcing regulations, and thus we focus
on the technical feasibility of a location-oblivious cellular
architecture that also supports operational goals like usage-
based billing and customized service levels.

3.2 Goals
Consider a user U, operator O, and broker B. We say that U’s
location privacy is violated when O and/or B know both U’s

3For MVNOs who by default offload all cellular operations, they can still
support LOCA users by deploying their own authentication servers.

4One might ask whether we need to protect against over-billing if the
operator is semi-honest. The reason we do so is because, as we’ll see, once
we have privacy, it becomes much easier for an operator to overbill since
the broker cannot tell which users were serviced by the operator and hence
cannot check the operator’s billing claims. Hence, an operator can follow the
protocol and yet overbill with impunity. To avoid this, we assume operators
may overbill and design our protocol to prevent this.

Arch Operator (O) Broker (B) ID-based SVC
Today UID, Location, Trajectory UID, OID Full
PGPP Location, Trajectory OID Partial
LOCA Location UID Full

Table 1: Comparison of today’s MVNO architecture, PGPP and
LOCA in terms of information revealed to participants and support
for identity-based services (ID-based SVC); U/OID: U/O’s identity.

identity and location. Today’s cellular protocol trivially re-
veals both U’s identity and her location. By protocol we mean
the messages – their syntax and semantics – exchanged be-
tween U, B, and O as defined by the standard. Today, protocol
messages carry U’s identity, and the identity of the tower that
U attaches to reveals U’s location. Hence simply implement-
ing the protocol allows an operator to track U’s location with
no special effort. In contrast, we are interested in modifying
the existing cellular protocol standard to protect user privacy.
3.3 Approach
In research, the state of the art is the recently proposed PGPP
protocol [86] which tries to provide location privacy by hiding
U’s identity from O and B. In PGPP, users are identified by
a “blindly signed token” [23, 78] which they obtain during
a registration phase prior to consuming service.5 I.e., a user
prepays for a certain quota of service (e.g., some number
of minutes of connectivity at a specified data rate) and in
return obtains a blindly-signed token. When connecting to
the network, the user presents this token via which the broker
can authenticate the user without learning her identity.

To our knowledge, PGPP is the first system that tries to pro-
vide location privacy for cellular users. However, as we detail
in §8, PGPP faces two drawbacks. First, PGPP does not easily
allow operators to support identity-based services, which are
widely deployed in today’s networks. Second, a user’s trajec-
tory across towers is still visible to operators and hence the
protocol is vulnerable to “trajectory-based location leakage”
in which the operator can learn the user’s identity by corre-
lating her trajectory with other out-of-band information.6 In
designing LOCA, we wished to avoid these limitations which,
as we will see, leads to an altogether different approach.

In summary, our goal in LOCA is to design a cellular pro-
tocol that protects the location privacy of users by achieving
the following properties: no party in the protocol (broker,
or operator) should simultaneously know both the identity
and the location of a user; the protocol should also not re-
veal the user’s trajectory to either broker or operator. Finally,
the protocol should support identity-based services includ-
ing post-pay and lawful intercept. In this work, we propose
LOCA, a new cellular protocol that achieves these stronger
privacy guarantees while supporting identity-based services.

We briefly comment on the scope and limitations of LOCA

5Such a token is blindly signed by the broker who can later verify the
signature without being able to link it back to the original signing request.

6For example, consider a user that regularly travels between their home
and office location: the operator could narrow down the identity of the user
by correlating this trajectory with residential information in billing records.



as presented in this paper. Our goal is to safeguard users’
location privacy at the protocol layer. This raises the bar
relative to today’s protocols but isn’t sufficient to safeguard
against violations that might occur outside the protocol, at
other layers. For example: at the application layer, a user’s
identity might be revealed by inspecting their packets [14,
88], or physical-layer characteristics (e.g., signal patterns)
might be exploited to track a specific device [33, 47]. Such
attacks are possible but (to our knowledge) not exploited today.
However, if cellular protocols evolve to protect privacy, such
app/physical layer leakages could become a more important
issue. Fortunately, the research literature provides solutions
to such attacks [43, 56, 60, 103, 110, 114] that we believe
can coexist with protocol-layer solutions like LOCA. We
elaborate on this in §5.2 but leave an in-depth exploration to
future work.

There is an obvious tension between guaranteeing location
privacy and offering identity-based services: connecting to a
cellular tower fundamentally reveals a user’s location, while
customizing service to a user requires knowing the user’s
identity. Our insight is that we can extend broker-centric ar-
chitectures to create a situation in which the broker knows
the user’s identity but not their location, while the operator
knows the user’s location but not their identity; neither broker
nor operator knows the user’s trajectory.

How do we achieve this? First, to hide U’s location from B,
we hide the identity and location of the operator O from B.
Recall that U attaches to the network (and hence to B) via O’s
infrastructure and hence, if B cannot tell where O is located,
then it cannot tell where U is located either. Hiding O’s loca-
tion is not sufficient: we must also hide O’s identity from B,
as knowing O’s identity might be sufficient to narrow down
O’s location (and hence U’s location). An operator’s tower lo-
cations are public knowledge and, moreover, we’re seeing an
increasing deployment of small-scale cellular networks due
to the emergence of private and enterprise 5G networks, as
well as various forms of community networks [13, 38, 52, 97].

As we will describe in §4, we hide O’s identity from B by
having O obtain an unlinkable token from B during an offline
registration process.7 O later uses this token (denoted Ô) as its
identifier when interacting with B. By the properties of blind
signatures, B can verify that Ô is a pre-authorized operator
but cannot link Ô to O. In addition, O hides its IP address
from B by using anonymous communication solutions.

The above suffices to hide U’s location from B. The other
half of our arrangement is to hide U’s identity from O. This
is easily achieved since O does not need to know U’s identity
to service U; since B knows U’s identity, B can tell O what
services are required (rate limits, filtering rules, etc.) thus en-
abling identity-based services without revealing U’s identity.
Thus, U simply uses a temporary pseudonym (denoted Û) in
her interactions with O. Finally, by periodically changing U’s

7The use of such a token is similar to PGPP but used by O instead of U
which we will see leads to a very different set of considerations.
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Figure 2: An overview of LOCA’s protocols.

temporary pseudonym and randomizing attachment timing,
we limit O’s ability to track a particular user’s trajectory.

As summarized in Table 1, the above approach offers U
location privacy while still supporting identity-based services.
However it gives rise to a new challenge: how does O receive
payment for its services to U? In today’s architecture, B di-
rectly settles with O based on the service that U received. We
wish to preserve this direct billing system between O and
B. Yet, our protocol intentionally hides O’s identity from B.
To address this issue, we devise a solution that allows O to
reveal its true identity only when claiming payment from B.
Our solution leverages zk-proof techniques to design a novel
aggregate claiming procedure via which (i) O claims payment
for an aggregate of the user sessions it has serviced, and (ii)
B can verify the correctness of O’s claim without revealing
the identity of the users that O serviced.

4 Design
At a high level, the process of obtaining cellular services can
be broken down into four phases or steps: (i) registration,
during which the various parties (U, B, O) enter into pairwise
contractual relationships: U signs up with B for service, and B
with O as an operator for its users; (ii) attachment involves the
protocol by which U discovers and connects to a tower in O’s
infrastructure, (iii) mobility involves the handover protocols
via which U is migrated from one tower to another as needed,
and (iv) settlement refers to the norms and processes via which
B pays O for the service that O has provided B’s users.

Of the above, attachment and mobility are defined by to-
day’s 3GPP standard while registration and settlement are
out-of-band processes. Our goal is to implement LOCA with
minimal disruptions to today’s protocols, and without involv-
ing any new entities in the registration or settlements process.

Next, we describe LOCA’s operation in these phases, an
overview of which is given in Fig. 2.We briefly summarize
how each phase is typically implemented in today’s networks
and then present the changes that LOCA introduces. Finally,
we elaborate on how identity-based services work in LOCA.

4.1 Registration

Today: In today’s networks, when U signs up with a broker
B, they exchange shared secret keys (SSKs) that will be used
for mutual authentication during the attachment process. In
5G, B also shares its public key (PKB) with U so that U can
encrypt her identity in later attachment requests.
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LOCA: With LOCA, B and U continue to exchange PKB and
SSK. Like today, these keys will be used for mutual authenti-
cation between U and B (§4.2) and to hide U’s identity from
O. The main change LOCA introduces is in the registration
process between B and O. When B and O sign up with each
other, LOCA requires that they participate in a blind signature
protocol [23, 78] as a result of which O obtains unlinkable
tokens (denoted as Ô) that are blind-signed by B. When Ô
is later presented to B, the blinding process ensures that B
can verify the signature but cannot link Ô to O. Thus blind
tokens allow B to authenticate O without learning O’s identity.
LOCA uses a standard blind-signing protocol [23] (summa-
rized in Appendix A). In addition to blind tokens, B and O
also exchange a shared hash function H that will be used in
our attachment and settlement processes as described later.
4.2 Attachment
Today: Attachment today involves three main steps. First,
O broadcasts its identity on the radio control channel that U
listens on to discover O. Next, after discovering O, U sends
an attachment request to O who forwards the request to B for
authentication. In 5G, U uses an encrypted identifier (termed
SUCI [2]) in this attachment request. Finally, once U has
been authenticated, B responds to O authorizing service. B’s
response includes U’s permanent identifier (termed SUPI [5]).

Thus today’s attachment process reveals O’s identity to U
in the first step. In the second step, B learns O’s identity (and
hence U’s location) from both the contents of the attachment
request and the act of receiving it from O (which reveals O’s
IP address). Finally, O learns U’s identity via the authorization
response it receives from B.8 Thus today’s attachment reveals
U’s identity and location to both B and O.
LOCA: We describe LOCA’s attachment process with an
emphasis on how we prevent (i) B from learning O’s identity
and (ii) O from learning U’s identity. As mentioned in §3.3,
we achieve the former by having O interact with B as Ô (O’s
unlinkable tokens) via anonymous communication channels.
LOCA achieves (ii) by encrypting U’s identity (with PKB) and
never exposing it outside of B. As shown in Fig. 3, LOCA’s
attachment process consists of the following five steps.
(i) Operator discovery. Instead of its actual identity, O broad-
casts the hash of its token (i.e., H(Ô)) on the control channel.
(ii) User preparation. U sends an attachment request to O
(formatted as a NAS message [7]). This request includes B’s

8Prior to 5G, U’s permanent identifier (IMSI) was included in the initial
attachment request, allowing O to directly discover U’s identity. Since 5G,
U’s attachment request uses an encrypted temporary identifier over the air to
defend against IMSI catchers [93]. Nonetheless, O still learns U’s permanent
(SUPI) identifier from B’s authorization response (step 3).

identity, U’s identity (IMSI) plus a nonce, and H(Ô). The last
two – (IMSI+nonce) and H(Ô) – are encrypted by B’s public
key and serve as a temporary identifier for U which we denote
as Û . We assume that B has a large user group so that its
identity leaks little information on U’s identity. The nonce
ensures that Û is different every time U attaches to the same
O which helps prevent O from tracking U’s trajectory (§4.3).
(iii) Operator preparation. On receiving U’s attachment re-
quest, O forwards the request to B over an anonymous com-
munication channel and uses its unlinkable token Ô to identify
itself. Typical solutions for anonymous communication are
Tor [99] and VPN [80] with different performance/security
trade-offs, which we will discuss in §6.3. This anonymous
channel can be set up offline, prior to attachment, whenever
O changes token Ô. Thus B does not see O’s true identity nor
the IP address from which Ô sends the request. The latter is
necessary as several studies have shown that IP addresses can
often be geo-located with high accuracy [26].
(iv) Broker authorization. On receiving the attachment re-
quest, B first verifies the Ô token thus ensuring that the re-
quest comes from an operator that B has previously authorized
during the registration phase. Next B decrypts the request,
and authenticates U via today’s challenge-response protocol
based on the shared secret key SSK [6]. In addition, B veri-
fies that Ô is indeed the operator to which U wants to attach;
B can verify this by validating H(Ô) (using the shared hash
function established when O registered with B) and thus pre-
vents replay or hijacking attacks. Once B has authenticated
and verified the request, it looks up the parameters associated
with U’s service plan (as today): e.g., rate limits, QoS param-
eters, whether to intercept U’s traffic, and so forth. B then
crafts a response authorizing the attachment (including the
proper service parameters, security parameters that allow U
to authenticate the network, etc), signs it, and returns it to Ô.
(v) Access attachment. B’s response authorizes Ô to service
U as per the parameters from B. Beyond this point, Ô (i.e.,
O) serves U as in today’s networks. We elaborate on how
O provides identity-based services to U in §4.4. Note that
O can still perform functions like establishing radio bearers
that require binding U’s identifier to temporary identifiers like
GUTI and RNTI; O simply uses Û instead of U.
4.3 Mobility
Today: In current networks, mobility is implemented via a
handover process, where O initiates U’s migrations by direct-
ing U to switch from a tower T1 to another T2. This approach
ensures a seamless mobility experience for U because U’s IP
address remains unchanged after the migration. However, as
O initiates U’s migrations, O trivially observes U’s trajectory
across handovers, jeopardizing U’s location privacy.
LOCA: Trajectory leakages are inevitable if O fully controls
U’s mobility like today: although LOCA already hides U’s
identity from O during attachments, O can still track Û’s
trajectory and use that to infer U’s identity, making LOCA
vulnerable to trajectory analysis. To mitigate this fundamental



issue, we leverage a user-driven mobility approach proposed
in [77]. In this approach, U initiates migrations across towers
by simply detaching from T1 and then attaching to T2. U then
relies on modern transport protocols like MPTCP [82] and
QUIC [71] to maintain connections despite changing IP ad-
dresses. Prior work has shown that this user-driven approach
does not degrade service even when reattaching on a per-
tower basis [77]. LOCA adopts and extends this approach to
minimize trajectory leakages with two techniques: (i) periodic
reattachment and (ii) randomized attachment timings.

First, U will detach and reattach periodically (not at every
tower) with a new temporary identifier. Thus, O cannot triv-
ially track U across new sessions based on U’s identifiers.
The reattachment frequency is a configurable parameter that
bounds the length of U’s trajectory that is visible to O where
length might be measured in time (e.g., valuable for a mostly
stationary user), in towers, or some combination thereof.

Even with periodic reattachment, O may still attempt to
infer U’s trajectory by doing a timing analysis over her de-
tach and attach events. In particular, such analysis would be
effective in a naive implementation that uses a fixed interval
between when U detaches from T1 and subsequently attaches
to T2. To address this issue, we have U wait for a randomized
but bounded duration of time before issuing her attachment.
When possible, we can also leverage make-before-break at-
tachments9 in which U may attach to T2 before detaching
from T1 thus increasing the time window over which U can
randomize their attach/detach events which makes inference
harder. Together with periodic reattachment, this randomiza-
tion of U’s attachment times limits O’s ability to correctly
infer U’s trajectory, because U’s (re)attachments are obfus-
cated by the periodic (re)attachments from other nearby users.

We recognize that user-driven mobility introduces some
complexity as well as dependencies on newer transport stacks,
however this tradeoff is fundamentally necessary if we are to
prevent trajectory leakages, and supporting these techniques
incurs a minimal impact on the user’s performance (§6.3).
As we will detail in §5.1.3, the obfuscation effect of our ap-
proach depends on the specific configurations, i.e., reattach-
ment frequency and attachment time window; as well as the
deployment scenarios, i.e., the number of nearby users and
the length of U’s trajectory. Overall, under realistic deploy-
ment scenarios and configurations, the probability that O can
correctly infer U’s trajectory is negligible.

4.4 Identity-based Services
LOCA ensures that operators and brokers can continue to pro-
vide critical identity-based services, including allowing law
enforcement agencies to locate specific users when required.

The key reason LOCA can support identity-based services
is that brokers continue to know the identity of their users.
This enables B and O to collaborate on identity-based services.

9The support for make-before-break, so-called dual active protocol stack
(DAPS) handovers has been introduced in 5G 3GPP specifications [8,45,95].

For instance, during attachment, B can select the service level
associated with U’s plan and indicate that to O in its autho-
rization response – e.g., via the QoS Class Identifier (QCI)
parameter [109]. O then simply enforces the QCI for the dura-
tion of its session with Û without knowing U’s true identity.

To realize services such as lawful interception, law enforce-
ment agencies work with B and O. As today, O runs a lawful
interception (LI) system — e.g., installing an interception
gateway [96]. A law enforcement agency notifies B of the
user whose communication it wants to intercept. B passes on
this notification to O during the attachment process, and then
O’s LI systems report the required information to the agency.

Emergency services (e.g., 911 calls) work in a similar man-
ner. A law enforcement agency knows U’s identity and needs
to learn U’s location. The agency reaches out to B; B looks
up U’s current temporary identifier Û , and asks Ô (via their
anonymous communication channel) to reveal Û’s location
to law enforcement. Thus, the agency can collect U’s current
location without violating LOCA’s privacy guarantees (i.e., O
does not know U’s identity while B does not know O’s iden-
tity or location). The same approach can be used to recover
U’s past locations based on the records logged at B and O.

4.5 Settlements

Today: In today’s MVNO networks, B pays O based on U’s
service parameters and the resources consumed, as reported
by O to B.While differing in the details, existing settlement
processes all require that B knows which users/sessions were
serviced by O, thus potentially violating user location privacy.
LOCA: To settle O’s payments while preserving U’s location
privacy, LOCA’s settlement process contains two phases: a
reporting phase, where U and O report session usage to B;
and a claiming phase, where O claims settlement from B.
Reporting phase: In LOCA, we define a session as the user-
operator association that starts when U completes the attach-
ment process with Ô and ends when U detaches from the same.
At some point after a session ends, U and Ô independently
send traffic reports to B. Note that O continues to hide its
identity and location when sending its report to B. U reveals
its identity to B but also sends its reports over an anonymous
channel because its IP address can reveal its whereabouts.
The traffic report from U lists the sessions in which U partici-
pated; Ô does the same for its sessions. Each entry in the list
contains a session identifier (SID), usage metrics (e.g., bytes,
duration), and QoS metrics (e.g., packet loss rate). In addition,
O appends a nonce to each session in its report. These nonces
are generated from the shared hash function H known to both
O and B, and taking secret inputs that are only known to O.
We call these inputs “embedded secrets”, and as we will see,
O later uses these secrets to claim its settlement from B.

B then compares the reports from U and Ô, generates bills
for U and publishes a session table to start the claiming phase.
The table includes the usage calculated based on the reports
from Ô and U, for all sessions during the last billing cycle.



O: operator, B: broker; 𝑭: claiming function 
Procedures: 
  Setup: 

1. B performs (PK, VK) = VerifierSetup(𝑭)

2. B keeps verifier key VK and sends the prover 
key PK to O

  Per billing cycle: 
3. B publishes a session table ST
4. O generates (z, 𝝅) = VCProve(F, ST, Secrets, PK) 
5. B verify the claim (z, 𝝅) with VCVerify(ST, z, 𝝅)

ZK-Proof-based Verifiable Computation:
VerifierSetup(F)

- B compiles 𝑭 into an arithmetic circuit C
- B performs zk-SNARK preprocessing on C, 

generates PK and VK, and returns (PK, VK)
VCProve(F, x, w, PK)

- O computes z = 𝑭 (x, w)
- O uses zk-SNARK to generate a ZK-proof 𝝅 

based on (x, z) as the primary input, w as the 
witness, using PK, and returns (z, 𝝅)

VCVerify(x, z, proof, VK)
- B uses zk-SNARK to verify the proof with (x, z) 

as the primary input, using VK

LOCA: Aggregate Claiming Protocol

Figure 4: A summary of the aggregate claiming protocol.

When generating statistics in the session table, B can consider
factors other than reported usages such as QoS metrics.
Claiming phase: Every billing cycle, O reveals its identity
and claims settlement from B but does so without revealing
which sessions O has serviced. To achieve this, we must
solve three problems: (i) No over-claims. How does B verify
that O is claiming only the sessions O actually serviced?
(ii) No mis-claims. How do we ensure that O can claim the
sessions but no one else? (iii) Session oblivious. How does
O claim settlement without revealing to B which sessions it
is claiming? We combine zero-knowledge proofs with the
above mentioned “embedded secrets” to address (i) and (ii);
and “aggregate” claims to address (iii).

Embedded secrets serve as the basis for O proving its ses-
sion ownership to B. However, naively having O reveal its
secrets fails the session oblivious requirement because B now
knows what users O has serviced. This leads to our aggregate
claiming protocol that fulfills all three requirements:
Aggregate claiming with ZK-proof: First, we observe that
in order to generate O’s payments, B does not need to know
individual session ownership; instead, it only needs to know
the session ownership in aggregation, i.e., the aggregate us-
ages for payments for a specific O. Based on this insight, our
aggregate claiming mechanism works as follows: the claim-
ing begins with B publishing a session table readable to all
Os. O then reveals its identity and claims its payment from B:

Intuitively, O’s claim takes the form: “I have sessions that
add up to X bytes.” Because the number of different sessions
that could add up to X is large, it is difficult for B to infer
whether an individual session is part of O’s claim or not, thus
obfuscating the session ownership. In §5.1.2, we show that the
expected number of session combinations that add up to the
same X grows exponentially w.r.t. the total number of sessions
in the table via both theoretical and empirical analysis.

Note that this naive aggregate claiming suffices if we as-

sume O will not overbill B. However, it is important to realize
that without additional mechanisms (like the zk-proof that fol-
lows), O can more easily overbill B without being detected in
LOCA than in today’s (non-privacy preserving) architecture
simply because B does not know what users O serves.

Hence, since naive aggregate claiming allows O to overbill,
we extend our solution such that O can prove its claim by
showing that O knows the embedded secrets corresponding
to its claim. For this, we leverage proof-based verifiable com-
putation [102], a cryptographic tool that uses zero-knowledge
proof to enable one party to prove to another that it has run
a computation z = f (x,w), where f is the function, x is the
public input, w is the prover’s private input and z is the out-
put, without revealing any information about w. Proof-based
verifiable computation systems have two components: (i) a
zk-SNARK backend [84] that proves and verifies satisfiabil-
ity of arithmetic circuits, and (ii) a compiler frontend that
translates program executions to arithmetic circuits. Such an
arithmetic circuit is also referred to as “a set of constraints”.

Fig. 4 describes LOCA’s aggregate claiming protocol. First,
B performs VerifierSetup, where B compiles a claiming func-
tion F into an arithmetic circuit, and uses zk-SNARK to pre-
process the circuit and generate prover key PK and verifier
key V K. This verifier setup step needs to be performed only
once, after which B keeps V K and sends PK to each partici-
pating O. The claiming function F takes two inputs: a session
table with at most N sessions as the public input, and a set
of (at most K) secrets as the private inputs. F computes the
hashes of the provided secrets, iterates all the sessions in the
session table, adds a session’s usage to the aggregate usage
if one of the precomputed hashes matches the nonce of that
session, and finally returns the aggregate usage.

Next, once per billing cycle, each O performs VCProve,
which involves two steps: (i) O executes the claiming func-
tion F with the session table and its embedded secrets, which
returns the aggregate usage z for O’s sessions. (ii) O passes to
zk-SNARK the session table, its secrets, the computed aggre-
gate z and the prover key PK, to generate a zero-knowledge
proof π, which allows O to prove to B that it has secrets for
sessions that add up to z, without leaking any information
about individual session ownership. O then sends a claim
including the aggregate usage z and proof π to B.

For each O’s claim, B performs VCVerify, where B uses
zk-SNARK to verify the proof π with the session table, the
claimed aggregate z and the verifier key V K. If the verification
passes, given the soundness property of the zk-SNARK proof
system [84], B can confidently approve O’s claim and generate
O’s payment according to the claimed aggregate usage and
other factors such as O’s reputation. The duration of a billing
cycle is configurable: longer cycles lead to larger session
tables, which in turn indicates stronger privacy protections
(§5.1.2) at the cost of more expensive operations (§6.2).
Session group: The design presented above assumes a single
session per token, which may not scale to large deployments:



O generates a proof every billing cycle, and proving with zk-
SNARK is expensive [111]. In our setup, as we will show in
§6.2, the time complexity to prove a circuit for the claiming
function F is O(K∗N), where K is the maximum number of
sessions O can claim and N the total number of sessions in
the session table. Such proving time would be prohibitively
long when there are a large number of sessions to claim.

To address this scalability challenge, we introduce the no-
tion of a session group, which includes all the sessions that
are associated with the same unlinkable token. By grouping
multiple sessions into a single session group, we can reduce
the number of entries in the session table. To support session
groups, we made the following extensions to our protocol:

• Attachment: We allow O to use a single token and the
corresponding anonymous communication channel for mul-
tiple sessions as the same session group.

• Reporting: We allow O to send a traffic report containing
all the sessions of the session group.

• Claiming: We allow B to publish a session group table
with one session group for each row. O claims session
groups the same way as it claims sessions before.

The size of the session group is tunable in LOCA and de-
termines how many sessions each token is used for. Tuning
the group size allows LOCA to explicitly trade off between
privacy and scalability: (i) a smaller session group is better
for privacy, because it minimizes indirect location leakages
(detailed in §5.3), which occur when a user of a session within
a session group has her locations leaked, in which case users
of other sessions within the group also suffer a privacy loss;
(ii) larger session groups are desirable in terms of scalabil-
ity of zk-SNARK, as it takes longer to actually generate a
session group (with users’ attachment), while proving cost
remains the same, as N is the same, so zk-SNARK proving
becomes relatively faster. Fortunately, modern zk-SNARK is
fast enough that a balance between privacy and scalability can
be achieved: as we will show in our evaluation (§6.2), LOCA
can scale to large deployments with sufficiently small session
groups and thus introduces only minimal privacy loss.

5 Privacy Analysis

Safeguarding location privacy requires fulfilling three proper-
ties: (i) O does not knows U’s identity, (ii) B does not know
U’s location, and (iii) neither B nor O knows U’s trajectories.
To our knowledge, LOCA is the first protocol to meet these
requirements. In this section, we analyze the conditions and
assumptions under which LOCA meets these requirements.
We show that LOCA achieves all three properties under the as-
sumptions of our threat model which are that participants are
semi-honest and do not collude (§5.1). We then briefly con-
sider attacks beyond our threat model and show that LOCA
offers substantial protection even when participants use out-
of-protocol information (§5.2) or collude (§5.3).

5.1 Semi-honest and Non-colluding
We first analyze LOCA’s privacy properties under our threat
model of semi-honest and non-colluding participants (§3.1).

5.1.1 Hiding U’s identity from O
LOCA hides U’s identity from O. Specifically, U’s identity is
encrypted using B’s public key. B is thus the only party that
can decrypt and observe U’s identity in plaintext. B also never
exposes U’s identity to O, even after U successfully attaches.

5.1.2 Hiding U’s location from B
LOCA hides U’s location by (i) hiding O’s identity and loca-
tion when O interacts with B on behalf of U and (ii) hiding
which users were serviced by O when O reveals its identity
to claim its settlement. Next, we show how LOCA achieves
(i) via the security properties of existing cryptographic con-
structs (i.e., anonymous communication and blind signature)
and achieves (ii) via aggregate claiming; we establish the
latter property via formal analysis and empirical simulations.

For (i), LOCA leverages anonymous communication such
that two parties can communicate without revealing their
identities to one another. Similarly, LOCA builds on a blind
signature scheme that allows a participant to authenticate
another without learning its identity. Taken together, these ex-
isting cryptographic constructs allow operators to register and
report sessions to brokers without revealing their identities.

Discussing the security of aggregate claiming requires
more care. We break this process down into two halves (i) the
security of the claiming mechanism itself, (ii) the information
leaked by revealing the aggregate value to B. The former fol-
lows directly from the security of our zero-knowledge proof
construction. We do not discuss this further. Instead, we focus
on the impact of B learning the aggregate value of the claimed
sessions. Specifically, we show that B has an exponentially
small likelihood to correctly infer what sessions/users O has
serviced based on the aggregate value.10Our core intuition
is simple. Let us assume that for N session groups with a
uniform distribution of session group usage from 1 to m, op-
erators will claim the aggregate usage of K session groups,
which sum to aggregate value S. The total number of possible
session group combinations grows exponentially as a function
of N. In contrast, the number of possible claimed values only
grows linearly (m∗N). In expectation, there will consequently
be exponentially many possible session group combinations
that could have summed to S. We formally prove that this
result holds as long as the ratio between K (the number of
session groups belonging to an operator) and the total number
of session groups N falls within a specific range. We identify
this range formally below, and show through simulation that
these bounds can be further improved and are wide enough to
support realistic deployment scenarios.
Theoretical proof: We formulate the aforementioned prob-
lem as follows. Consider arrays X and Y , one of size N −K,

10The general reasoning extends to when B analyzes multiple claims from
different operators but we don’t get into the details in this paper.



and one of size K, where each cell contains a value from 1 to
m drawn from the discrete uniform distribution. Let S be the
sum of all elements in Y . We derive a bound on the expected
number of possible subsets of elements in X that sum to S.

Theorem 5.1. Considering two independent arrays X and Y ,
consisting of N−K and K iid random variables from U{1,m},
there exists L(m),U(m) such that the expected number of sub-
sets in X, whose sums are equal to the sum of Y , is exponential
w.r.t N, if L(m)≤ K

N ≤U(m). Note that L(m),U(m) depend
on m, and 0 < L(m)≤U(m)< 1, ∀m ∈ Z>0

The proof, at a high level, works by (i) deriving the closed-
form distributions of the sum and the subset sum of an ar-
ray of discrete uniform variables similar to prior theoretical
work [20], (ii) expressing the expected number of matched
subsets with these two closed-form distributions, and finally
(iii) reducing to an exponential lower bound for the expression.
More details of the proof can be found in the appendix.

The reductions in step (iii) are highly conservative. Hence
the proven feasible range of ratio [L(m),U(m)] is narrow, and
the exponential bound is small. We confirm through simula-
tion that this bound holds analytically for a significantly wider
range and encompasses many real-world scenarios:
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Figure 5: Exponential bounds for different K/N ratios with m = 5.
Empirical simulations: In these experiments, our goal is to
understand within what range of ratio, the number of matched
subsets grows exponentially w.r.t N. For each ratio K/N, we
scale N while increasing K proportionally according to the
ratio and estimate the expected number of matched subsets
for the (K,N). More details about our simulation setup are in
Appendix B. Now that we have estimates for multiple (K,N)’s
of the ratio K/N, we fit the results with an exponential curve
of N by performing linear fittings on the logs of the estimates:

R = a∗bN → log(R) = log(b)∗N + log(a)
The slope of the fitted linear curve is thus the log of the expo-
nential base. Our fitted linear curves closely match the logs
of estimates with an adjusted R-squared value of over 0.99,
which suggests a significant exponential relation between our
estimates and N. Fig.5 shows the exponential bounds of differ-
ent K/N ratios for uniform distribution with m=5. Compared
with the theoretical results, the empirical results suggest much
larger exponential bounds over a wide range of ratios: expo-
nential base over 1.1 for ratios from 1/150 to over 1/2. We
observe similar behavior with other values of m and with other
non-uniform session group usage distributions.
5.1.3 Hiding U’s trajectory
LOCA hides U’s trajectory from O via (i) periodic reattach-
ment and (ii) randomized attachment timing. The former pre-
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Figure 6: The longest trajectories beyond which the likelihood of
correct inference is less than 1% for different NUs and W/Ps.

vents O from directly observing U’s trajectory, and the later
makes accurate timing-based trajectory inference infeasible:

With periodic reattachments, O is unaware of which attach-
ments belong to U and hence O can only infer U’s trajectory
by correlating between detachment and subsequent attach-
ment. By randomizing attachment timing, any detachment
that arises within a time window before and after (with make-
before-break handovers) an attachment is equally likely to
correlate with that attachment. We call this set of detachments
“candidate detachments”, and since all users periodically reat-
tach, there is a lower bound on the number of candidate de-
tachments. Lastly, to recover U’s trajectory, O has to select
the correct detachments for all of U’s attachments along the
trajectory, which becomes exponentially harder for longer
trajectories. Modelling all these factors, we can analyze the
difficulty of trajectory inference in LOCA: denoting time win-
dow as W , the reattachment period as P, the number of nearby
users as NU , the number of candidate detachments as ND, the
number of attachments in U’s trajectory as N, we can derive
the likelihood of O correctly inferring the trajectory Prob:

ND ≥ 1+NU ∗ W
P

, Prob ≈ (
1

ND
)N

This formulation tells us why accurate trajectory inference is
infeasible: (i) since Prob decays exponentially w.r.t N, even
with a ND of 2 (only one alternative candidate detachment),
O has a less than 1% likelihood of inferring a trajectory with
more than 6 attachments; (ii) The ratio between the time
window and re-attachment period (i.e., W

P ) is configurable, and
a larger ratio increases ND and thus the inference difficulty.
Fig.6 shows the longest trajectories that O can infer with a
likelihood larger than 1% for different NUs and W

P s. For W
P

larger than 0.03, O is unable to infer long trajectories (N > 4),
even if the number of nearby users is small (NU = 40).

We’ve shown that LOCA safeguards user location privacy
at the protocol layer and under the assumptions of our threat
model. We believe this raises the bar relative to the status quo
however, as discussed earlier, LOCA would still be vulnerable
to attacks that exploit either: (i) out-of-protocol information
or (ii) information from other participants via collusion. We
will next discuss such attacks, their impact, and potential mit-
igation strategies, but leave an in-depth study to future work.
5.2 With out-of-protocol information
Next, we show that (i) as a protocol-layer solution, LOCA
does not prevent attacks based on out-of-protocol information,
(ii) the impact of these attacks on LOCA is minimal and, (iii)
mitigation strategies for these attacks can coexist with LOCA.



Attacks: B and O can compromise U’s location privacy by
exploiting out-of-protocol information. Here we enumerate
some attacks that violate each of the three privacy properties:
(i) If O has access to a resident directory near its cell towers,
it can nail U down to a smaller user group. O might also
learn U’s identity by inspecting U’s data traffic. (ii) If B is
capable of network monitoring, it might learn O’s identity by
conducting a traffic analysis, where it observes traffic at each
operator and correlates that with incoming traffic it receives.
(iii) O might track U’s trajectory by profiling U’s physical-
layer characteristics, such as its signal patterns and strengths.
Impact: LOCA’s design limits the impacts of out-of-protocol
attacks on user’s location privacy: (i) Attacks that allow O to
uncover Û’s identity only incur per-hop leakages: U’s identity
remains unknown to O when she reattaches with a different
Û . (ii) Attacks that allow B to uncover Ô’s identity only incur
per-token leakages: O’s identity remains unknown to B when
O switches tokens. This means that locations of users who
are served by O with a different token from the revealed one
remain unknown to B. (iii) Lastly, inter-operator attachments
can minimize impacts of attacks that allow O to track U’s
trajectory. Firstly, instead of having her entire trajectories
leaked, U suffers only per-operator leakages. Secondly, as U
moves in and out of O, it is challenging for O to link all of
U’s trajectories within its footprint, because O is unaware of
U’s locations when U connects to other operators.
Mitigation: LOCA can coexist with countermeasures de-
signed for different out-of-protocol information. For instance,
for attacks based on traffic characteristics, end-to-end encryp-
tions of U’s traffic can help counter packet inspections by O;
and communication systems that are robust to traffic analysis
like Vuvuzela [101] could be adopted for communications
between O and B. For attacks based on physical-layer signals,
one could use defense mechanisms such as randomizing trans-
mission coefficients [89] and injecting artificial noises [56].
5.3 With collusion
In the following, we show that (i) there are forms of collusion
that lead to violations of user location privacy, and (ii) except
for direct collusion between brokers and operators that serve
the user, other forms of collusion only incur minimal leakages.
Attacks: Collusion between B and O reveals both U’s identity
and location. Note that this is the case for any MVNO-based
architecture where B knows U’s identity (for offering identity-
based services) and O knows U’s location (as it provides
connectivity). Therefore, we focus on showing what other
forms of collusion also impair user location privacy. For O,
colluding with participants other than B does not provide it
with extra information on U’s identity or trajectories. For B,
however, it can gain additional knowledge regarding U’s loca-
tion by colluding with (i) other users or (ii) other operators.
The former is due to the use of session groups. Specifically,
B knows that sessions in a session group belong to the same
O, hence that users of these sessions have visited the same
location at a similar time. Therefore, if some users who share

session groups with U reveal their locations to B, then B
knows U’s location via such collusion. We call these “indi-
rect location leakages”. The latter is due to operators sharing
the session table in the claiming phase. Specifically, B now
effectively has a “smaller” session table consisting of only
sessions from non-colluding operators, which is detrimental
to the privacy guarantee provided by aggregate claiming.
Impact & Mitigation: While brokers gain extra user location
information via collusion with other users or operators, the
actual impacts are minimal and can be further reduced with
different mitigation strategies. First, the impact of indirect
location leakages is bounded by the size of session groups,
which in turn depends on how fast the zk-SNARK backend is.
Fortunately, even with a single-core backend, aggregate claim-
ing can scale to large deployments with a session group that
lasts as little as 20 s (§6.2). One could adopt faster backends
like distributed zk-SNARK [111] to further reduce the size
of session groups and hence leakages. Secondly, since the ob-
fuscation effect of aggregate claiming is exponential w.r.t. the
size of the session table (§5.1.2), a smaller table still grants
sufficient protections. One could use a longer billing period
to ensure a large enough session table even with collusion.

6 Implementation and Evaluation
In this section, we present the implementation of our LOCA
prototype (§6.1) and investigate the two key questions regard-
ing the feasibility of LOCA: (i) can LOCA scale to realistic
deployment sizes? and (ii) how much overhead does LOCA
introduce compared to existing cellular protocols? We answer
the first question by performing a scalability analysis of the
privacy building blocks (§6.2); and the second by conducting
a performance analysis with wide-area experiments (§6.3).

6.1 Implementation
We prototyped LOCA as an extension to the CellBricks
system [21] which is itself built from open source cellu-
lar platforms (Magma [41] and srsLTE [92]). We extended
the operator and broker modules with the following: (i) the
token generation and verification procedures implemented
with rsablind [32]; (ii) the anonymous communication chan-
nel between the operator and broker implemented with Tor-
socks [51,99] and NordVPN [80] and (iii) the claiming proce-
dure implemented with Pequin [83,102] that has a single-core
libsnark [69] as the zk-SNARK backend. In total, our exten-
sion includes 478 LoC in C (for claiming), 144 LoC in Go (for
unlinkable token), and 16 LoC shell scripts (for anonymous
communication and various setup). We prototyped LOCA
with these languages as they were used in the original im-
plementations that we extended. We built a testbed with two
x86 machines: one as the user’s device and the other as the
operator’s cell and core. We connect each machine to an SDR
device (USRP B205-mini [40]) for radio connectivity. Lastly,
the broker’s service is deployed on AWS instances [15].

As an opt-in service, LOCA can be incrementally de-
ployed and adopted starting with a small number of LOCA-



compatible users, brokers, and operators: users can have par-
tial privacy by signing up with brokers that support LOCA and
by using LOCA-based operators when available and falling
back to legacy ones otherwise. We leave an evaluation of the
privacy benefits under incremental adoption to future work.
6.2 Scaling analysis
LOCA must be able to scale to a large number of operators
serving many users. Therefore, we evaluate whether the three
privacy building blocks that we adopt can scale to large de-
ployments, on the order of today’s large MVNOs.
6.2.1 Blind signature
Blind signatures are used for generating and verifying unlink-
able tokens. We measure a blind signature generation through-
put of 522/sec and a verification throughput of 17202/sec on a
2.6GHz Intel I7-8850H CPU. These single-core throughputs
are significant: generating 50 tokens for 10 operators per sec-
ond. Moreover, brokers can easily achieve higher throughput
with more cores or machines, hence we conclude that scaling
blind signature operations will not be a problem.
6.2.2 Anonymous communication
For anonymous communication schemes in LOCA, an opera-
tor must have sufficient network capacity to send attachment
requests to brokers. We measure the average network through-
put of a Tor circuit to be 4.2 Mbps uplink and 6.1 Mbps down-
link (consistent with Tor’s reports [73]). Such throughput can
support ≈ 400 attachment requests per second. Operators can
easily scale up the throughput by establishing multiple Tor
circuits with the same token. Alternatively, operators can use
other anonymous communication schemes that have higher
network throughput, such as VPNs (§6.3).
6.2.3 Aggregate Claiming with zk-SNARK
zk-SNARK has a long setup and proving time [111]. Given
our aggregate claiming protocol is based on zk-SNARK, we
evaluate whether the protocol can scale to large deployments.
Since the generated keys are reused across billing cycles, zk-
SNARK setup is performed offline only once, which excludes
the setup time from the performance critical path. Hence we
focus on the zk-SNARK proving time, which is invoked by
each operator at every billing cycle to claim its session groups.

As noted in §4.5, LOCA allows claiming sessions in groups
with a configurable size: smaller session groups offer stronger
privacy guarantees as they minimize indirect location leak-
ages. However, due to the slow zk-SNARK proving, operators
may need to use large session groups so that they can claim
session groups faster than the rate of session group creation
and not develop a backlog of unclaimed sessions, at the cost
of some privacy loss. To evaluate the amount of such privacy
loss, we answer the following question: how small can ses-
sion groups be while allowing operators to claim them fast
enough? Specifically, we would like to obtain a lower bound
for the average duration of a session group T 11. As we will

11One can calculate the average number of sessions in a group as T∗r,
where r is the deployment-dependent rate of attachments for an operator.

show next, even a single-core zk-SNARK implementation
is fast enough to support session groups of small T , hence
aggregate claiming will not be a scalability bottleneck.

As noted, we let K represent the maximum number of ses-
sion groups an operator can claim and N represent the maxi-
mum number of session groups in the broker’s session group
table. If we denote P(K,N) as the time it takes for zk-SNARK
to prove the circuit of the claiming function parameterized by
K and N, we have the following lower bound for T :

T ≥ P(K,N)

K
To obtain the lower bound, we evaluate the proving time of
our implementation for the claiming procedure P(K,N). As
mentioned in §4.5, proof-based verifiable computation has a
compiler frontend and a zk-SNARK backend. Therefore, to
evaluate P(K,N), we need to answer two questions: (i) for
a given K and N, how many constraints will the claiming
function be compiled into? and (ii) how long will zk-SNARK
take to prove these circuits of different sizes?

To answer the first question, we compile claiming functions
with different Ks and Ns, and find the following formula that
closely matches the numbers of constraints:

# of constraints = K ∗ (128∗N +35394)
Terms in this formula are tied to the logic of the claiming func-
tion. As mentioned in §4.5, the claiming function contains
two steps: (i) calculating hashes of the K provided secrets, and
(ii) iterating through the N rows in the session table, checking
whether the hash matches with one of the K precomputed
hashes and adding it to the aggregate if so. Therefore, step (i)
generates 35394∗K constraints, where 35394 is the number
of constraints for computing a single SHA256 hash, consis-
tent with prior work [65]; step (ii) contains an outer loop of N
and an inner loop of K, which gets unrolled by the compiler
into 128∗K ∗N constraints. Therefore, for a large enough N,
the number of constraints scale almost linearly with K ∗N.
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Figure 7: Proving time under varied number of constraints.

To answer the second question, we evaluate the proving
time of compiled circuits with different numbers of constraints
with a single-core libsnark backend on a 2.5GHz Intel 8259CL
CPU. As shown in Fig 7, consistent with prior work [84,
111], the proving time increases linearly with the number of
constraints: about 38 seconds per 1 million constraints.

Since we have shown that (i) the number of constraints of
the claiming circuit increases linearly w.r.t K ∗N, and (ii) the
proving time is linear w.r.t the number of constraints, we know
that the zk-SNARK proving time increases linearly w.r.t K ∗N,
i.e., P(K,N) = O(K ∗N). The constant factor c depends on
the specific compiler frontends and zk-SNARK backends. For
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Figure 8: Average attachment latency of Magma baseline (BL),
CellBricks (CB), LOCA-VPN and LOCA-Tor.

our implementations, c ≈ 128∗38 us = 4.894 ms. Therefore,

T ≥ P(K,N)

K
≈ c∗K ∗N

K
= c∗N

This means that the lower bound on the duration of the session
group grows linearly w.r.t. N. As stated earlier, we are mostly
interested in cases of large Ns (i.e., larger numbers of smaller
session groups) as these lead to stronger privacy guarantees
(§5.1.2). Fortunately, even with only the single-core libsnark
backend, the lower bound of T for large N is reasonably small.
As an example, the largest circuit that we evaluated (K=64,
N=4096) has proving time P(64,4096)=1369 s; this trans-
lates to a lower bound of T=P(64,4096)/64=21.4 s. The
asymptotic expression of T = c∗N = 4.864 ms∗4096 ≈ 20 s
matches with the measurement. The gap is due to ignoring
the 35394∗K term, which will reduce as N goes even bigger.

Therefore, with N = 4096, the smallest session group that
a single-core zk-SNARK can support has a duration of 20 s.
This means that users who attach more than 20 s apart cannot
reveal any information about each other’s location, even if one
user’s location were leaked to the broker. We do not evaluate
circuits with more than 35M constraints due to the scaling
limit of the libsnark implementation. Recent work [111] on
distributed zk-SNARK allows faster proving of much larger
circuits, the evaluation of which is left to future work.
6.3 Performance analysis
Lastly, we would like to understand the performance that
users receive with LOCA. Procedures like token generation
and aggregate claiming happen off the critical path of users
receiving services, thus do not affect user experience. Instead,
we focus on the attachment procedure, since LOCA’s attach-
ment is both more complex and more frequent than today’s
protocols. We thus measure the additional latency overhead
that LOCA adds to the attachment procedure.

We replicate the wide-area test setup from CellBricks [77]:
the user equipment and the operator’s cell and cellular core are
always located in our local testbed, and we run experiments
with the subscriber database (in the case of Magma) and the
broker hosted on AWS EC2 [9]. This matches deployment
practice where certain core network components are run in
the carrier’s datacenter. For each setup, we repeat the same
attachment request using different cellular implementations
100 times and report the average performance.

Fig.8 shows the attachment latency after removing the time
spent in lower radio layers (i.e., RRC layer and below) for
different placements of the subscriber database and broker.
We compare four schemes: (i) unmodified Magma (baseline,
denoted BL, that captures today’s cellular architecture), (ii)
CellBricks (denoted CB), LOCA’s attachment protocol with

(iii) VPN (denoted LOCA-VPN) and (iv) Tor (denoted LOCA-
Tor) as the anonymous communication channel.

We make two observations from these results. First, the
choice of anonymous communication scheme introduces a
tradeoff between trust assumptions and attachment latency:
LOCA-VPN requires trusting the VPN provider but achieves
faster attachments than LOCA-Tor. In fact, LOCA-VPN is
only 5 to 15 ms slower than CellBricks and still faster than
today’s attachment (i.e., Magma). The reason we outperform
Magma’s attachment latency is because today’s attachment
procedure requires two round trips to the cloud, while Cell-
Bricks optimized this process to a single round-trip; since we
build on CellBricks, we inherit this performance gain.

Our second observation is that even the slower LOCA-
Tor is sufficiently fast for periodic reattachments: prior work
[77] shows that attachment latencies of up to 500 ms have
a minimal impact on application performance, even when
users reattach on a per-tower basis. Hence LOCA-Tor, with a
constant 400 ms latency due to the overhead of Tor [73], can
support frequent reattachments with minimal disruptions.

7 Discussion
Viewing LOCA as a first step towards privacy-preserving cel-
lular infrastructure, we next discuss two notable areas for im-
provement and potential directions to achieving them: (i) sup-
porting beyond semi-honest and non-colluding participants,
and (ii) improving non-privacy-related aspects of LOCA.
7.1 Beyond semi-honest and non-colluding
As stated in §3.1, there are both financial and legal reasons
for brokers and operators to be semi-honest and not collude.
However, relaxing these assumptions can certainly facilitate
adoption. We next discuss directions towards such relaxation.
Semi-honest: LOCA suffers from privacy leakages in the face
of various active attacks, e.g., those based on out-of-protocol
information (§5.2), which restricts it to semi-honest partici-
pants. We see two orthogonal directions towards supporting
more aggressive participants. First, one could adopt specific
defense mechanisms for different attacks (e.g., traffic analy-
sis, device fingerprinting) that have been proposed in prior
work [43, 56, 60, 103, 110, 114]. LOCA, as a protocol-layer
solution, can coexist with these mechanisms. Second, instead
of averting attacks, one can detect these attacks and punish
the misbehaving participants. The detection mechanism can
involve multiple parties. For instance, operator over-reporting
usage can be detected by brokers cross comparing the oper-
ator’s reports with the ones from users. For the punishment
mechanism, a promising approach is to build up a reputation
system [77], where misbehaviors are factored into partici-
pant’s reputation scores. Participants with poor reputation
then receive degraded treatments: e.g., a broker can decline to
authorize an operator in the registration phase (§4.1). Such an
approach is appealing in the cellular context, where brokers
and operators need to remain operational for long enough to
see a profit, allowing their track records to be built up.



Non-colluding: As elaborated in §5.3, except for direct collu-
sion between brokers and operators that serve the user, other
forms of collusion only incur minimal leakages in LOCA. An
interesting question is then whether we could relax this re-
quirement of no broker-operator collusion. Intuitively, preserv-
ing location privacy with arbitrary collusion seems unattain-
able: if a broker colludes with all the operators, it easily knows
both the user’s identity and all of her locations. Instead, we be-
lieve it is both feasible and interesting to investigate whether
one could provide partial privacy guarantee if only a subset
of operators collude with brokers. Under such a scenario, the
coverage of non-colluding operators forms a region where
little location information is revealed. Such a region is re-
ferred to as a mix zone and widely studied for location privacy
in non-cellular contexts [17, 18, 53], and future work could
leverage the insights of these work for cellular privacy.

7.2 Beyond privacy
Another area for improvement is the design and evaluation on
non-privacy-related aspects of LOCA, such as performance
and operational support. For performance, in §6.3, we mea-
sure LOCA’s attachment latency to be less than 500 ms even
with slower anonymous communication channel (i.e., Tor),
which was evaluated in [77] to have minimal performance im-
pacts to applications like voice calls, video streaming and web
browsing. It would be interesting to evaluate on more chal-
lenging applications such as video conferencing. Moreover,
besides reducing trajectory leakages (§5.1.3), make-before-
break handovers are expected to have better performance as
well, the evaluation of which in LOCA is left to future work.

For operational support, LOCA supports tasks like identity-
based services by having brokers offload these tasks to autho-
rized but identity unknown operators (§4.4). However, there
might be tasks that require knowledge of the operator’s iden-
tity, such as recording misbehaving operators (for the afore-
mentioned reputation system) and performing on-site inspec-
tions. To support these tasks, one potential approach is to in-
volve a trusted third party when generating unlinkable tokens
(§4.1). The goal is that upon legitimate requests, this third
party can later assist in revealing the operator’s identity for a
token. One promising direction towards achieving this goal is
to extend the registration phase with cryptographic constructs
like secure multi-party computation (MPC) [35, 48, 113].

8 Related Work
Cellular: There has been extensive prior work on mitigating
privacy violations by third parties other than network oper-
ators [11, 46, 58, 63, 68, 87, 93, 94, 100]. Our work instead
focuses on protecting a user’s location privacy from the net-
work operator itself. To our knowledge, PGPP [86] is the only
prior work that systematically studies this issue. As discussed
earlier, PGPP adopts a different approach based on hiding
users’ identities from the network operator, which however
compromises the network’s ability to provide identity-based
services and does not address the issue of trajectory-related

leakages. One advantage of PGPP is higher tolerance for col-
lusions, as it hides user’s identity from both operators and
brokers. However, it also assumes semi-honest participants
who will not actively thwart its privacy mechanisms.

CellBricks [77] is a new cellular architecture that aims to
democratize cellular access by enabling users to easily lever-
age small-scale operators. LOCA borrows the idea of user-
driven mobility, although we use it for privacy reasons while
CellBricks requires it to give users the ability to dynamically
select an operator of their choice. CellBricks does not address
the issue of location privacy and hence is similar to 3GPP
protocols in this regard. In fact, we note that the importance
of hiding O’s identity from B is greater under the CellBricks
vision of larger numbers of smaller-scale operators.
General location privacy: There is extensive prior work
on location privacy in non-cellular contexts [17, 36, 67, 76,
90, 106, 112]. These reveal four general methods for protect-
ing location privacy: (i) regulatory strategies – government
rules to regulate the use of personal information; (ii) privacy
policies – trust-based agreements between individuals and
whoever is receiving their location data; (iii) anonymity – use
a pseudonym and create ambiguity by grouping with other
people. (iv) obfuscation – temporal or spatial degradation
of the location data. Regulatory strategies and privacy poli-
cies are orthogonal to computational countermeasures like
techniques adopted in LOCA. In the cellular context, neither
obfuscation nor anonymity is desirable: obfuscation is not
feasible, because a user’s location data is generated by the in-
frastructure, the temporal or spatial resolution of which is not
determined by the user; anonymity is the approach adopted
by PGPP [86] which, as discussed earlier, compromises on
identity-based services. LOCA exploits the unique role of
brokers and adopts a novel approach to preserving location
privacy while supporting identity-based services. LOCA’s ap-
proach of strategically hiding different pieces of information
from each party has been investigated for preserving privacy
in other contexts as well, such as Apple’s private relay [31].
Applications of LOCA’s privacy building blocks: Blind
signatures have been applied for e-voting [59, 64, 75]. Anony-
mous communication has been used in social networking
and web browsing [44, 55, 99]. Proof-based verifiable com-
putation has been used in outsourced computing [24, 27, 70].
LOCA synthesizes these building blocks to support cellular
procedures like attachment and aggregate claiming.

9 Conclusion
We presented LOCA, a novel cellular architecture that pro-
vides location privacy while supporting identity-based ser-
vices such as usage-based billing, QoS, and lawful intercept.

We view our work as a first step towards enabling privacy-
preserving communication infrastructure and hope that future
work will extend our design to address additional threat mod-
els and reduced overheads, as well as explore the applicability
of LOCA’s design to other access technologies.
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Appendix

A Unlinkable token

 O: operator, B: broker 

 Procedures: 
1. B publishes PKB, O generates a nonce 𝜭
2. O sends 𝜭* = blind(𝜭, PKB) to B
3. B signs 𝜭* with PSKB and responds sig𝜭*
4. O validates (sig𝜭*, 𝜭*) with PKB

5. O obtains sig𝜭 = unblind(PKB, sig𝜭*, 𝜭*) 
  To authenticate: O sends (sig𝜭, 𝜭) to B

LOCA: Unlinkable Token

Figure 9: A summary of how to generate and use unlinkable tokens.

Fig.9 summarizes how O obtains tokens. The protocol starts with B publishing its public key PKB and O generating a nonce θ

(i.e., the token). To get B blindly-sign the θ, O first blinds θ using PKB and sends the blinded token θ∗ to B, requesting B to sign
the token. O reveals its identity to B who can decide whether to accept this request. Next, B signs θ∗ using its private key PSKB
and returns the blind signature sig∗

θ
to O which O can validate using PKB.

Next, O obtains the unblinded signature of the token using PKB, sig∗
θ
, and θ∗. To authenticate itself to B, O sends θ and the

unblinded signature sigθ to B. B can then verify the token’s authenticity with sigθ as a normal digital signature. Note that B
cannot link θ to O since θ was blindly-signed and never seen by B (only the blinded θ∗ was).
B Aggregate Claiming
Simulation setup: For each ratio K/N, we scale N while increasing K proportionally according to the ratio and estimate the
expected number of matched subsets for the (K,N). For example, for the ratio K/N=1/10, we run experiments for
(K,N)=(1,10),(2,20), ...,(5,50). For each (K,N), we again make the simplification to not consider subsets that contain any of
the K session groups. By doing so, we can independently sample arrays Xs of length (N −K) and Y s of length K, count the
number of subsets in X that have the same sum as Y for each pair of (X ,Y ), and report the average of all the pairs as the estimate
for (K,N), denoted as R. To ensure that the estimate is accurate, we use a large number of samples for each (K,N), up to 225 so
that the simulation can finish within a reasonable time frame.
Theoretical proof: For this proof, we make use of polynomial coefficients, also named as extended binomial coefficients, which
are natural extensions of the well-known binomial coefficient. For n,m ∈ Z>0 Polynomial coefficients

(n
k

)
m is the coefficient of

xk in the following expansion:

(1+ x+ ...+ xm)n =
k=mn

∑
k=0

(
n
k

)
m

xk

Note that
(n

k

)
m = 0 for k /∈ {0, ..,mn}. Binomial coefficient is the special case where m = 1. An equivalent definition of

(n
k

)
m is:(

n
k

)
m
= ∑

k0≥0,...,km≥0
k0+...+km=n

0·k0+...+m·km=k

(
n

k0, ...,km

)
(1)

It is known that polynomial coefficients are symmetric:
(n

k

)
m =

( n
mn−k

)
m

, and
(n

k

)
m is a non-decreasing function of k for

0 ≤ k ≤ ⌊mn
2 ⌋ and a non-increasing function for ⌈mn

2 ⌉ ≤ k ≤ mn [42].
Prior work has shown that the sum of N iid random variables from the discrete uniform distribution of {0, ...,m} (U{0,m}),
denoted as SN , has the following closed-form distribution expressed with polynomial coefficients [20]:

P(SN = y) = ∑
a0≥0,...,am≥0
a0+...+am=N

0·a0+...+m·am=y

P(a0, ...,am) (ai stands for the number of elements equal to i)

= ∑
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(
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m

(according to definition (1))



Lemma B.1. The distribution of sums of N iid random variables from U{1,m} has the following closed-form expression:
PN(y) = ( 1

m )
N
( N

y−N

)
m−1

Proof. The proof is similar to the proof above for sums of N iid random variables from U{0,m}, with some minor adjustment:

PN(y) = ∑
a1≥0,...,am≥0
a1+...+am=N

1·a1+...+m·am=y
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(align with the format of (1))
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(according to definition (1))

Lemma B.2. The distribution of subset sums of N iid random variables from U{1,m} has the following closed-form expression:
QN(y) = ( 1

2m )
N

∑
N
k=0

(N
k

)
mk

( N−k
y−(N−k)

)
m−1

Proof. Subset sums of U{1,m} can be equivalently treated as sums of elements Xi that has the following distribution:

P(Xi) =


1
2 , if Xi = 0
1

2m , if Xi ∈ {1, ...,m}
0, otherwise

Therefore, we can calculate the probability of a subset sum by multiplying the probability of having different numbers of zeros
with the probability of adding up to the sum with the remaining non-zero elements:
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Lemma B.3. Here we define a "head" function H(hN;N, p)(0 ≤ h ≤ 1) and a "tail" function T (tN;N, p)(0 ≤ t ≤ 1), where:

H(hN;N, p) =
hN

∑
k=0

(
N
k

)
pk; T (tN;N, p) =

N

∑
k=tN

(
N
k

)
pk

Then we can prove the following: if h < p
1+p , H(hN;N, p)≤ (bH)

N , with bH < (1+ p). Similarly, if t > p
1+p ,

T (tN;N, p)≤ (bT )
N , with bT < (1+ p).

Proof. Here we show the proof for the head function, the proof for the tail function is very similar. The idea is to rewrite the
head function to follow the format of a binomial distribution, so that we could use tail bounds for binomial distributions to



provide a lower bound. Specifically:

H(hN;N, p) =
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= (1+ p)NF(hN;N, p′)

where F(hN;N, p′) refers to the probability of having at most hN successes in a Binomial trial B(N, p′). For F(hN;N, p′), it’s
known that if hN

N = h ≤ p′, we have the following tail bounds [12]:

F(hN;N, p′)≤ exp[−N f (h, p′)] with f (h, p′) =

{
2(h− p′)2, with Hoeffding’s inequality
D(h||p′), with Chernoff bound

where D(a||p) is the relative entropy between a Bernoulli(a) (a-coin) and a Bernoulli(p) (p-coin):
D(a||p) = (a) log a

p +(1−a) log 1−a
1−p . For either of this, f (h, p′)> 0 for h < p′. Therefore, for H(hN;N, p), if h < p′ = p

1+p , we
have:
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≤ (1+ p)N exp[−N f (h, p′)]
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Lemma B.4.
1

m2 +m+1
< 1− ln(m)

ln(m+1)
, ∀m ∈ Z>0

Proof. This is equivalent as showing

h(m) = (m2 +m+1)ln(m)− (m2 +m)ln(m+1)< 0, ∀m ∈ Z>0

Taking derivative, we have
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2

)

Therefore, because (i) h(m) monotonically decreases for m ≥ 2, and (ii) h(1),h(2)< 0, we have h(m)< 0,∀m ∈ Z>0

f [n] is said to be exponential w.r.t n iff:

∃M ∈ R>0,c ∈ R>1, lim
n→∞

f [n]
cn = M

Therefore, a sufficient condition for f [n] to be exponential is that

∃M ∈ R>0,c ∈ R>1,N0 ∈ Z, f [n]≥ M · cn, ∀n ≥ N0

With this we could prove the following lemma:



Lemma B.5. For any integer K ≥ 1, hK [n] = an −∑
K
i=1 bN

i is exponential w.r.t n, if a > 1 and a > maxi:i∈{1,..,K} bi

Proof. hK [n] can be rewritten as hK [n] = ∑
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i . We can prove that 1
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i are exponential for all bi’s. Specifically, we
can show that.

∀c ∈ {x ∈ R | max(bi,1)< x < a},M ∈ R>0,∃N(a,c,M) ∈ Z,
1
K

an −bn
i > Mcn, ∀n ≥ N(a,c,M)

This because 1
K an −bn

i > Mcn ⇔ 1
k (

a
c )

n > M+( bi
c )

n. By having n ≥ N(a,c,M) = ⌈log a
c
[k(M+1)]⌉, we have

1
k (

a
c )

n > M+1 > M+( bi
c )

n. Therefore, hK [n] = ∑
K
i=0

1
K an −bn

i is obviously exponential:

∀c ∈ {x ∈ R | max( max
i:i∈{1,..,K}

bi,1)< x < a},M ∈ R>0,∃N(a,c,M) ∈ Z, hK [n]> KMcn, ∀n ≥ N(a,c,M)

We are now ready to prove the main theorem, which, in the context of LOCA, states that with the usage of each session as a
uniform distribution of {1, ...,m}, a bTelco’s number of sessions as NB and the total number of sessions a broker receives from
all bTelcos as NA, if NB

NA
meets certain requirements (depending on m), the expected number of session subsets that have the same

aggregate usage as the bTelco’s NB sessions grows exponentially w.r.t the total number of sessions, NA.
Next, we prove that a lower bound of this expected number, considering subsets consisting of only the remaining NA −NB
sessions, is already exponential w.r.t NA:

Theorem B.6. Considering two independent arrays X and Y , consisting of NA −NB and NB iid random variables from U{1,m},
there exists L(m),U(m) such that the expected number of subsets X, whose sums are equal to the sum of Y , is exponential w.r.t
NA, if L(m)≤ NB

NA
≤U(m). Note that L(m),U(m) depend on m, and 0 < L(m)≤U(m)< 1, ∀m ∈ Z>0

Proof. We prove this theorem by showing a valid L(m),U(m) pair. We denote this expected number as E(m,NA,NB), and derive
its closed-form expression by using the distributions of sums and subset sums, which were computed in Lemma B.1 and Lemma
B.2. Specifically, for a random array B, the probability that its sum equals to y is PNB(y), and the expected number of subsets in A
that add to y is 2NA−NB QNA−NB(y):

E(m,NA,NB) = 2NA−NB
mNB

∑
y=NB

PNB(y)QNA−NB(y)

= 2NA−NB
mNB

∑
y=NB

(
1
m
)NB

(
NB

y−NB

)
m−1

(
1

2m
)NA−NB

NA−NB

∑
k=0

(
NA −NB

k

)
mk

(
NA −NB − k

y− (NA −NB − k)

)
m−1

( B.1, B.2)

= (
1
m
)NA

mNB

∑
y=NB

(
NB

y−NB

)
m−1

NA−NB

∑
k=0

(
NA −NB

k

)
mk

(
NA −NB − k

y− (NA −NB − k)

)
m−1

= (
1
m
)NA

NA−NB

∑
k=0

(
NA −NB

k

)
mk

mNB

∑
y=NB

(
NB

y−NB

)
m−1

(
NA −NB − k

y− (NA −NB − k)

)
m−1

By using identities of polynomial coefficients [42], we can transform the last term as:

mNB

∑
y=NB

(
NB

y−NB

)
m−1

(
NA −NB − k

y− (NA −NB − k)

)
m−1

=
mNB

∑
y=NB

(
NB

(m−1)NB − (y−NB)

)
m−1

(
NA −NB − k

y− (NA −NB − k)

)
m−1

(symmetry)

=

(
[NB]+ [NA −NB − k]

[(m−1)NB − (y−NB)]+ [y− (NA −NB − k)]

)
m−1

(Vandermonde)

=

(
NA − k

(m+1)NB −NA + k

)
m−1

Therefore, we have a closed-form expression for E(m,NA,NB):

E(m,NA,NB) = (
1
m
)NA

NA−NB

∑
k=0

(
NA −NB

k

)
mk

(
NA − k

(m+1)NB −NA + k

)
m−1



According to the definition of polynomial coefficients:(
NA − k

(m+1)NB −NA + k

)
m−1

≥ 1 if 0 ≤ (m+1)NB −NA + k ≤ (m−1)(NA − k) ⇔ NA − (m+1)NB ≤ k ≤ NA − (1+
1
m
)NB

(2)

Therefore, we could obtain a lower bound for E:

E(m,NA,NB)≥ (
1
m
)NA

{NA−NB

∑
k=0

(
NA −NB

k

)
mk −

NA−(m+1)NB−1

∑
k=0

(
NA −NB

k

)
mk −

NA−NB

∑
k=NA−(1+ 1

m )NB+1

(
NA −NB

k

)
mk

}

= (
1
m
)NA

{
(1+m)NA−NB −H(NA − (m+1)NB −1;NA −NB,m)−T (NA − (1+

1
m
)NB +1;NA −NB,m)

}
According to Lemma B.3, we know that with

NA − (m+1)NB

NA −NB
≤ m

1+m
=⇒ NB

NA
≥ 1

m2 +m+1
(3)

NA − (1+ 1
m )NB

NA −NB
≥ m

1+m
=⇒ NB

NA
≤ m

2m+1
(4)

We have:

E(m,NA,NB)≥ (
1
m
)NA

{
(1+m)NA−NB −H(NA − (m+1)NB −1;NA −NB,m)−T (NA − (1+

1
m
)NB +1;NA −NB,m)

}
≥ (

1
m
)NA

{
(1+m)NA−NB − (bH)

NA−NB − (bT )
NA−NB

}
with bH < (1+m),bT < (1+m)

Therefore, according to Lemma B.5, we can ignore the head and tail, and E has an exponential lower bound w.r.t NA as long as
the base of ( 1

m )
NA(1+m)NA−NB is larger than 1. Since:

(
1
m
)NA(1+m)NA−NB =

[
(1+m)

1−NB
NA

m

]NA

to ensure base larger than 1, we need

(1+m)
1−NB

NA

m
> 1 =⇒ NB

NA
< 1− ln(m)

ln(m+1)
(5)

Combining constraints (3), (4) and (5), we show an exponential lower bound for E(m,NA,NB) with the following NB
NA

:

1
m2 +m+1

≤ NB

NA
< 1− ln(m)

ln(m+1)

As proved in Lemma B.4, such a range is always valid for any m ∈ Z>0. Therefore, we show that for

L(m) = 1
m2+m+1 ,U(m) = 1− ln(m)

ln(m+1) , E(m,NA,NB) has an exponential lower bound of
[
(1+m)

1− NB
NA

m

]NA

.

We believe one could achieve a much large exponential bounds and/or a wider range for feasible NB
NA

by carefully reexamining the
two reductions that we made:

• Only the remaining NA −NB elements are considered for subsets that have the same sum. This is to simplify the problem so
that we can treat it as a problem involving two independent arrays of length NA −NB and NB. This, however, significantly
underestimates the number of matched subsets, especially when NB

NA
is high.

• The reduction we made in (2):
( NA−k
(m−1)NB−NA+k

)
m−1

≥ 1 is obviously coarse grained.



Lastly, we can prove the other side of the story: if NB
NA

is too large or too small, the expected number of subsets out of NA −NB
elements that have the same sum as the NB elements does not grow exponentially w.r.t to NA:

Theorem B.7. Considering two independent arrays X and Y , consisting of NA −NB and NB iid random variables from U{1,m},
there exists LL(m),UU(m) such that the expected number of subsets in X, whose sums are equal to the sum of Y , can not be
exponential w.r.t NA, if NB

NA
≤ LL(m) or NB

NA
≥UU(m). Note that 0 < LL(m)≤UU(m)< 1, ∀m ∈ Z>0

Proof. Firstly, we show that such a UU(m) exists. We start with the closed-form expression of E(m,NA,NB) that is derived in
the proof above.

E(m,NA,NB) = (
1
m
)NA

NA−(1+ 1
m )NB

∑
k=NA−(m+1)NB

(
NA −NB

k

)
mk

(
NA − k

(m+1)NB −NA + k

)
m−1

≤ (
1
m
)NA

NA−(1+ 1
m )NB

∑
k=0

(
NA −NB

k

)
mk

(
NA − k

(m+1)NB −NA + k

)
m−1

≤ (
1
m
)NA

NA−(1+ 1
m )NB

∑
k=0

(
NA −NB

k

)
mk

(
NA

(m+1)NB −NA + k

)
m−1

(
(

n
k

)
m
≥
(

n−∆

k

)
m
∀∆ ∈ Z≥0)

As noted above
(n

k

)
m is a non-increasing function of k for ⌈mn

2 ⌉ ≤ k ≤ mn [42], therefore, if we have

(m+1)NB −NA ≥ ⌈ (m−1)NA

2
⌉ =⇒ NB

NA
>

1
2( NA

(m+1)NB−NA+k

)
m−1

decreases as k increases from 0 to NA − (1+ 1
m )NB, thus:(

NA

(m+1)NB −NA + k

)
m−1

≤
(

NA

(m+1)NB −NA

)
m−1

(for k ∈ {0, ..,NA − (1+
1
m
)NB})

= dNA(m,NA,
NB

NA
) (with d(m,NA,

NB

NA
) =

[(
NA

(m+1)NB −NA

)
m−1

] 1
NA

) (6)

where:

d(m,NA,
NB

NA
) =

[(
NA

(m+1)NB −NA

)
m−1

] 1
NA

=

[(
NA

[(m+1)NB
NA

−1]NA

)
m−1

] 1
NA

We denote

f (m,
NB

NA
) = lim

NA→∞
d(m,NA,

NB

NA
)

There are two properties of g(m, NB
NA

) that we leverage here: (i) 1 ≤ f (m, NB
NA

)≤ m, this is because
( NA

[(m+1)NB
NA

−1]NA

)
m−1

< mNA and( NA

[(m+1)NB
NA

−1]NA

)
m−1

is a non-decreasing function w.r.t NA; (ii) f (m, NB
NA

) is a non-increasing function w.r.t NB
NA

for 1
2 < NB

NA
< m

m+1 ,

this is because d(m,NA,
NB
NA

) is a decreasing function w.r.t NB
NA

. Moreover, f (m, m
m+1 ) = 1 and f (m, 1

2 ) = m. The later is because,

as shown in [37],
( n

m
2 n

)
m
∼ (m+1)n√

2πn m(m+2)
12

as n → ∞, which indicates that limn→∞[
( n

m
2 n

)
m
]

1
n = m+1. Therefore,

f (m, 1
2 ) = limNA→∞[

( NA
m−1

2 NA

)
m−1

]
1

NA = m. With (6), we now have the following upper bound for E(m,NA,NB) (to simply

notation, we use d for d(m,NA,
NB
NA

)):

E(m,NA,NB)≤ (
d
m
)NA

NA−(1+ 1
m )NB

∑
k=0

(
NA −NB

k

)
mk



Similar to Lemma B.3, we can then bound the term ∑
NA−(1+ 1

m )NB
k=0

(NA−NB
k

)
mk by using tail bounds of binomial distribution.

Specifically, as mentioned in the proof of Lemma B.3:

NA−(1+ 1
m )NB

∑
k=0

(
NA −NB

k

)
mk ≤

{
(1+m)exp[−D(

NA − (1+ 1
m )NB

NA −NB
|| m

1+m
)]
}NA−NB

if
NA − (1+ 1

m )NB

NA −NB
≤ m

1+m
⇒ NB

NA
≥ m

2m+1
(7)

where D(a||p) is the relative entropy between a Bernoulli(a) (a-coin) and a Bernoulli(p) (p-coin):
D(a||p) = (a) log a

p +(1−a) log 1−a
1−p . Here we denote

g(m,
NB

NA
) = (1+m)exp[−D(

NA − (1+ 1
m )NB

NA −NB
|| m

1+m
)]

= (1+m)exp[−D(
1− (1+ 1

m )
NB
NA

1− NB
NA

|| m
1+m

))]

Note that g(m, NB
NA

) is a decreasing function of NB
NA

for NB
NA

≥ m
2m+1 . Moreover, lim NB

NA
→ m

m+1
g(m, NB

NA
)→ 0, and g(m, 1

2 )> 1 for

m ≥ 2. The later is because g(m, 1
2 ) = (1+m)exp[−D(m−1

m || m
1+m ))] is an increasing function with m, thus

g(m, 1
2 )≥ g(2, 1

2 ) = 3exp[−D( 1
2 ||

2
3 ))]> 1.

With (7), we now have:

E(m,NA,NB)≤ (
d
m
)NA [g(m,

NB

NA
)]NA−NB

=

{
(

d
m
)[g(m,

NB

NA
)]

1−NB
NA

}NA

Considering the limit of the base:

lim
NA→∞

[
d(m,NA,

NB
NA

)

m
][g(m,

NB

NA
)]

1−NB
NA

= [g(m,
NB

NA
)]

1−NB
NA lim

NA→∞
[
d(m,NA,

NB
NA

)

m
]

= [g(m,
NB

NA
)]

1−NB
NA [

f (m, NB
NA

)

m
]

With the properties of f (m, NB
NA

) and g(m, NB
NA

) that we mentioned, one could prove that there exists a ratio R(m) such that:

h(m,
NB

NA
) = [g(m,

NB

NA
)]

1−NB
NA [

f (m, NB
NA

)

m
]≤ 1 ∀ NB

NA
≥ R(m)

where h(m,R(m)) = 1

This means that E(m,NA,NB) is not exponential w.r.t NA for NA
NB

≥ R(m)

We could prove that there is a unique R(m) with h(m,R(m)) = 1, and m
2m+1 < R(m)< m

m+1 , with the following properties of
f (m, NB

NA
) and g(m, NB

NA
): (i) both of them are decreasing functions w.r.t NB

NA
; (ii) 1 ≤ f (m, NB

NA
)≤ m, f (m, m

m+1 ) = 1 and

f (m, 1
2 ) = m; (iii) g(m, 1

2 )> 1, and lim NB
NA

→ m
m+1

g(m, NB
NA

)→ 0.

Firstly, because
f (m,

NB
NA

)

m ≤ 1, for NB
NA

such that g(m, NB
NA

)< 1 ⇒ [g(m, NB
NA

)]
1−NB

NA < 1, we have

h(m, NB
NA

) = [g(m, NB
NA

)]
1−NB

NA [
f (m,

NB
NA

)

m ]< 1. Moreover, since lim NB
NA

→ m
m+1

g(m, NB
NA

)→ 0, we know that R(m)< m
m+1



Secondly, for NB
NA

such that g(m, NB
NA

)> 1, we have h(m, NB
NA

) as a decreasing function w.r.t NB
NA

. Moreover, since g(m, 1
2 )> 1,

f (m, 1
2 ) = m, we have h(m, 1

2 ) = [g(m, 1
2 )]

1− 1
2 [

f (m, 1
2 )

m ]> 1. Therefore, we know that R(m)> 1
2 .

Therefore, we have proved a valid UU(m): 1
2 <UU(m) = R(m)< m

m+1 , where R(m) is defined as:

R(m) = arg 1
2<

NB
NA

< m
m+1

h(m,
NB

NA
) = 1

where h(m,
NB

NA
) = [g(m,

NB

NA
)]

1−NB
NA [

f (m, NB
NA

)

m
]

f (m,
NB

NA
) = lim

NA→∞

[(
NA

[(m+1)NB
NA

−1]NA

)
m−1

] 1
NA

g(m,
NB

NA
) = (1+m)exp[−D(

1− (1+ 1
m )

NB
NA

1− NB
NA

|| m
1+m

)]

and E(m,NA,NB) is not exponential if NB
NA

≥UU(m).
Next, we show a valid LL(m) by using a similar approach. We use E to represent E(m,NA,NB) in the follows.

E ≤ (
1
m
)NA

NA−NB

∑
k=NA−(1+m)NB

(
NA −NB

k

)
mk

(
NA − k

(m+1)NB −NA + k

)
m−1

≤ (
1
m
)NA

NA−NB

∑
k=NA−(1+m)NB

(
NA −NB

k

)
mk

(
(m+1)NB

(m+1)NB −NA + k

)
m−1

(
(

n
k

)
m
≥
(

n−∆

k

)
m
∀∆ ∈ Z≥0)

< (
1
m
)NA m(m+1)NB

NA−NB

∑
k=NA−(1+m)NB

(
NA −NB

k

)
mk (

(
(m+1)NB

(m+1)NB −NA + k

)
m−1

< m(m+1)NB )

≤ (
1
m
)NA m(m+1)NB

{
(1+m)exp[−D(

NA − (1+m)NB

NA −NB
|| m

1+m
)]
}NA−NB (

NA − (m+1)NB

NA −NB
≥ m

1+m
⇒ NB

NA
≤ 1

m2 +m+1
)

=

{
m(m+1)NB

NA
−1{

(1+m)exp[−D(
1− (1+m)NB

NA

1− NB
NA

|| m
1+m

)]
}1−NB

NA

}NA

We could prove that for l(m, NB
NA

) = m(m+1)NB
NA

−1{
(1+m)exp[−D(

1−(1+m)
NB
NA

1−NB
NA

|| m
1+m )]

}1−NB
NA , there exists a 0 < S(m)< 1

m2+m+1 ,

which is the LL(m) that we try to prove, that l(m, NB
NA

)≤ 1 for any NB
NA

≤ S(m). This is because (i) l(m, NB
NA

) is an increasing

function of NB
NA

, and (ii) l(m, 1
m2+m+1 ) = m− m2

m2+m+1 (1+m)
m2+m

m2+m+1 > (1+m)
m

m2+m+1 > 1 and lim NB
NA

→0
l(m, NB

NA
) = 0 < 1.

Therefore, we have proved a valid LL(m): 0 < LL(m) = S(m)< 1
m2+m+1 , where S(m) is defined as:

S(m) = arg
0<NB

NA
< 1

m2+m+1
l(m,

NB

NA
) = 1

where l(m,
NB

NA
) = m(m+1)NB

NA
−1{

(1+m)exp[−D(
1− (1+m)NB

NA

1− NB
NA

|| m
1+m

)]
}1−NB

NA

and E(m,NA,NB) is not exponential if NB
NA

≤ LL(m).
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