Rapid Prototyping for loT Applications
with Digibox

Silvery Fu, Hong Zhang, Sylvia Ratnasamy, lon Stoica
UC Berkeley

loT: devices and apps

~7.74 billion connected loT devices g i Ry
"

—
commercial buildings.. | ==

EEN

EEN

EEE
EES

In homes, offices, retail locations, |
|
{

New applications: smart spaces,
logistics, agriculture, urban sensing..

Picture courtesy of Comfy: https://comfyapp.com/

.

loT: devices and apps App framework

E.g. Smart building <> App logic §

Physical . L
infrastructure lo s

loT: devices and apps

Setting up the testbed:
a bottleneck in prototyping
e.qg., research, class, demo

Time, Cost

Physical
infrastructure

Mininet

Bob Lantz, Brandon Heller, and
Nick McKeown, HotNets 2010

A Network in a Laptop: Rapid Prototyping for
Software-Defined Networks

Bob Lantz Brandon Heller Nick McKeown
Network Innovations Lab Dept. of Computer Science, Dept. of Electrical El_\'ﬂinw
Labs

Palo Alto, CA, USA
Han@es saniordiedu brandenn@sianiord.edu

ABSTRACT

Mininet is a system for rapidly me,m Iarge networks
on the consrained resources of a single lsptop. The
Hahiwight spproach of sming OS-leel vitmhenion fou

el iplementaion sugget tht the sy koo o, md.
real ime represents 3 qualilative change in work-
o We shwe supperting case studies culled from ovee

ploe, tweak,and build upoe.
Categories and Subject Desriptors

€21 [Computer Systems Organization]:
Computer. Comumnication Networks —Network com-
munications; B.4.4 [Performance Analysis and
Design Aids]: Simulation

General Terms

Design, Experimentation, Verification

Keywords

Ragid prototyping, software defined networking, Open-
Flow, exmlation, virtualization

Furmissin make dipial o brd copis of o e of s week for

penmieion S s o
Hoowess “10 Ocober 2-21, 910, Mosteey, A, USA.
Cpyrght 2010 ACH 973- 4503040921010 $1000.

Stanford unlvm-y
ISA
nickm@stanford.edu

1. INTRODUCTION

Iuspiration hits late ane night and you arrive at a
‘world-changing idea: o new network architecture, ud-
dress scheme, mobility protocol, or a feature to add to
a router. With a paper deadline approaching, you have
a laptop and three months. What prototyping environ-
ment should you we to cvaluate your idea? With this
question in mind, we sct oat to create a profotyping
workflow with the following attributes:

Flexible: new topologies and new functionality
should be defined in software, using fomiliar lan-
unges and operating systems.

Deployable: deploying a functionally correct pro-
totype on hardware-based networks and testbeds
should require no changes to code or configuration.

Interactive: managing and ruaning the network
should occur in real time, as if interacting with
a real network.

Sealable: the prototyping environment should scale
to networks with bundreds or thousands of
switches on only a laptop.

Realitie peootype belmvior shoud epreent venl
behavior with a high degree of confidence: for ex.
‘ample, applications and protacol stacks should be
usable without modification.

Share-able: self-contained prototypes should be cas-
ily shared with collaborators, who can then run
and modify our experiments,

The currently available prototyping environments

o thet o] o sl spoms oo e
apessive ind the of most resarchers.
Steltors, such a3 [14] o Opoet 18, e sppesk:
ing because they can run on a laptap, but they lack

seatism: the code created in the simalator i not the
S galstt Wl be Sl the il ey
and they are st glance, network
F virtal machinee (VA i nppu.lllu With a VM

Mininet creates a realistic virtual network, running real kernel, switch and application code, on a single machine
(VM, cloud or native), in seconds, with a single command:

-

controllers
switches
hosts

Because you can easily interact with your network using the Mininet CLI (and API), customize it, share it with others, or
deploy it on real hardware, Mininet is useful for development, teaching, and research.

Mininet is also a great way to develop, share, and experiment with Software-Defined Networking (SDN) systems using

OpenFlow and P4.

Mininet is actively developed and supported, and is released under a permissive BSD Open Source license. We
encourage you to contribute code, bug reports/fixes, documentation, and anything else that can improve the system!

Get Started

Download a Mininet VM, do
the walkthrough and run the
OpenFlow tutorial.

Support
Read the FAQ, read the

documentation, and join our
mailing list, mininet-discuss.

Contribute

File a bug, download the
source, or submit a pull
reguest - all on GitHub.

SIGCOMM Test of Time Paper Award

Fdeliy loT: Prototyping Env.

A Real-world testbed
Retzitvt\)/g;ld , Human interaction
Correlated behavior

y | Today: device simulator
y Device H/W capability

7 simulator . . .
7 Individual device behavior
e.g. events, messages

>

Ease-of—setug

loT: Prototyping Env.

Fidelity
A
Retzitvgggld Dig?DOX r Human interaction
< Correlated behavior
R4 Easy to reproduce
e Easy to (re)use
A Device . Scalable
// simulator
>

Ease-of—setug —

Fidelity
A

loT: Prototyping Env.

Key insight:
Real-world Digib . T |
testbed 1J1DOX evice-centric — Scene-centric
< Scene
/7
y 7 </>
e Device :
P /7 SimUlator f‘ oL ’: 5‘:
: lﬁ : N B
E |

Ease-of-setu

Digibox Walkthrough

w/Demo

Digibox
Design
Mock

Scene
Attach

Property

Interactive

Ensemble support
Reproducible
Customizable

Scalable

In the demo: Interactivity

Design Mockup
device
Mock digibox
Scene
Attach
Property 25
Interactive Lamp
Ensemble support CLI: digi
. (alias: dbox)
Reproducible e
C abl Command:
ustomizanle oulirun,

Scalable check/edit/query

https://docs.google.com/file/d/1Ra_RXOsGg2FuPNH6uS7St39Mt2Vsvpi5/preview

Digibox
Design
Mock

Scene
Attach

Property

Interactive

Ensemble support
Reproducible
Customizable

Scalable

l

Model

lamp.power
.intent: on
.status: off

Simulator

get(lamp.intent)
status =...

Goal: Interactivity

Each mock has a model and a simulator
Model: declarative interface, intent & status

Simulator: a piece of Python code

.Simulator subscribes to intent changes and
update the status on the model

Each mock runs in its own microservice ("digi”)
Isolation: separate dev./deployment lifecycle

In the demo:

Design Seene.
Mock Room
Scene
Attach Sensor: "ceiling"
Sensor: "desk"
Property
. Command:
Interactive attach
Ensemble support
Room

Reproducible /\

Customizable

Scalable Ceiling Desk

Ensemble Support

digibox

https://docs.google.com/file/d/1AhxK2XeiBLl_QDL3WoDvtZ89NWdyUAMX/preview

In the demo:

Design Scene
MOCk Room
Scene
Attach Sensor: "ceiling"

Sensor: "desk”
Property
. Command:
Interactive attach

Ensemble support
Room

Reproducible /\

Customizable

Scalable Ceiling Desk

Ensemble Support

Scene: same components as a
mock (model & simulator)

Attach(M, Sc):
allows Sc.sim to write to the
mock's model M

In the demo:

Design seene
MOCk Room
Scene
Attach

Property l
Interactive
Ensemble support l
Room

Reproducible /\

Customizable

Scalable Ceiling Desk

Ensemble Support
Scene composition

num_human:1 Building

d

(4

n

human_presence: than_presence: false
Office Lounge

/Ao

/\ </>

power: on)€

(A

Ceiling Desk Lamp
detected: true

Ceiling Lamp
detected: false

In the demo:

Design Take a
Mock snapshot of
mocks/scenes
Scene
AttaCh
Property A '
Interactive 5
cnsemble support. T
Reproducible Command:
commit
Customizable push

Scalable

Share and Reproduce

digibox

https://docs.google.com/file/d/1Tpsv8Fo3qPggnv5R5U3jvOytoaDou2nA/preview

Digibox
Design
Mock

Scene
Attach

Property

Interactive

Ensemble support
Reproducible
Customizable

Scalable

See the paper for details:

Programming Mocks and Scenes
Creating, programming, and configuring digis
Integrating mocks with app frameworks

Implementation and Scalability
Kubernetes-based runtime
Scaling from a laptop to machine cluster in cloud

Sharing and Reproducing Scenes
Managing mocks and scenes with Git/GitOps
Logging and replaying traces

Digibox Prototyping Workflow

Design
Mack App framework Digibox & Digibox
Scene @ Write app @ Write scenef-------------~ Pull scene
Attach .
Property @ Run app @ Run scene Run scene
Interactive

Ensemble support

Reproducible V
Customizable ® Debug Logging [+ | Replay logs

Scalable

Goal: Accelerate loT app prototyping (sim./testing)

Interactive, ensemble behaviors, reproducible, scalable

Digibox Prototyping Workflow

App framewor k Digibo

& Digibox

Mock, Scene + Attach

N

digi.dev/digi

http://digi.dev

Looking ahead
"Net Apps”

Network Apps

Network Apps

Mininet <> Interacting with network devices
— the physical world
= = = Open Challenges

Prototyping environment:

High-fidelity simulation
Efficient, large-scale simulation
Supporting new applications

Goal: Accelerate loT app prototyping (sim./testing)

Interactive, ensemble behaviors, reproducible, scalable

App framework Digibox a Digibox

Mock, Scene + Attach

Thank you!

digi.dev/digi

