
Fast and Efficient Container Startup at the Edge
via Dependency Scheduling

Silvery Fu1, Radhika Mittal2, Lei Zhang3, Sylvia Ratnasamy1

(1: UC Berkeley, 2: UIUC, 3: Alibaba Group)

Container Technologies are Popular
• Adopted in 2,000+ companies

• 160+ million container images

• 86% of containers are deployed on kubernetes

• Emerging frameworks and use cases in edge computing

Slow Start

Transfer container image
- fetch image from a repository

Decompress and set up

T: task time; S: startup time; R: running time
- T = S + R; S∝R Short tasks

suffer!

Startup Latency
•Profile dependency pulling:
- Trace: 56k, 33TB images
- Amazon ECR, m4.xlarge
- Average image pulling latency is

19.2 seconds

•An image includes all container dependencies,
including binaries, code, configurations files.

Deploying Containers

Scheduling latency Pulling Latency

Booting Latency
< 100ms

>20s

Trace: 56k, 33TB images
Amazon EC2

< 1s

Cloud experiment with
high-speed networks and
powerful machines!

Can we make
container start faster

in an easily-
adoptable way?

Can we avoid pulling images?

Design 1: Image-aware Placement

Image Matching

• Issues:
- binary decision
- image name changes

Can we do better than matching image?

Layer View

•
A layer digest is

content-addressable

Layers are shared
across images!

Design 2: Layer-aware Placement
image:

alphabet

image:
theta

image:
omega

image:
alphabet

image:
alphaLayer Matching

Are the required changes easily adoptable?

k8s layer-aware
Master Node

Scheduler

API Server
CLI

Kubelet

W
or

ke
r N

od
e

Container
Runtime

Local
Image
Store

External Image Store

etcd

Image resolution
Dependency Scheduling

Layer Info

Layer Tracking
Kubelet

W
or

ke
r N

od
e

Container
Runtime

Local
Image
Store

Layer Tracking

+ Better performance
- More API changes
- More overhead

Results

Faster Startup
• Setup:
- 200 nodes
- 32GB image storage
- 80% utilization
- Zipf distribution

• Improvements on avg.
startup latency:
- 1.4x smaller (image)
- 2.3x smaller (layer)

• Smaller compute usage: 1.3x (image) and 2x (layer)
• More spare storage (excluding container images):

○ 1.1x (image) and 1.6x (layer)

Resource Efficiency

Open questions

- in real-world?
(..need categorization of edge workloads)

- What are the implications of resource efficiency
gains and startup latency reductions?

- What are the (other) forms of data locality issues
at the edge?

Open questions

System-wise:
- How to balance dep. scheduling and the other

scheduling policies?
- How much overhead (e.g., on the node-master

communication, the apiserver,)?
- ..

Summary
•Containers and container images are the emerging tools to
facilitate software reuse in deployment.

•Such reuse can lead to substantial dependency sharing
between containers.

•Dependency-aware scheduling exploits such sharing, and is
highly effective in cutting container startup latency.

Thank you!

silvery@eecs.berkeley.edu

