
Compound Schema Registry
Silvery Fu1,2, Xuewei (Sylvia) Chen1

1UC Berkeley, 2System Design Studio

Project: https://github.com/abcsys/llmint/

Schema Registry: Today Task: Schema Mapping

Goal: Generalized Schema Evolution

Design Pattern: Task-Specific Language and IR

Schema Transformation Language (STL)

3. Dataflow Assembly

1. Schema Extraction

2. Schema Mapping

Command class Command name Description

Schema
matching

MATCH
Used to determine whether the source and target schemas correspond to the same
entity; if they match, the schema mapping will continue; otherwise, it will abort.

Field
transformation

COPY Directly copies data from the source field to the target field without any transformation.
ADD Inserts a new field into the target schema that does not exist in the source schema.
CAST Converts the data type of the source field to match the expected type of the target field.

DELETE Removes the field from the source schema when it is not required in the target schema.
RENAME Changes the name of the source field to match the name of the target schema.
DEFAULT Assigns a predefined default value to a target field when data is unavailable or null.

MISSING
Used when no appropriate mapping exists to map the source field to a target field,
implying a schema mapping failure.

Value
transformation

SCALE
Adjusts the numerical values in the source field by a specified factor according to the
value in the target field.

SHIFT Modifies the values in the source field by adding or subtracting a constant value.

LINK
Establishes a correspondence between values in the source field and defined values
in the target field, used for fields with enum type.

GEN
Generate a transformation function that defines how to convert values from the
source field to fit the target field’s requirements.

APPLY
Applies a transformation function, either generated or predefined by the developer, to
the value of a source field to derive the value of the target field.

{from: triggered, to: motion, transformation: RENAME triggered TO motion}
{from: battery_percentage, to: None, transformation: DELETE battery_percentage}
{from: None, to: sensitivity, transformation: ADD sensitivity TYPE integer}
{from: sensitivity, to: sensitivity, transformation: DEFAULT sensitivity TO 2}
{from: enabled, to: enabled, transformation: COPY}

Source
schema

Target
schema

Precision Recall F1

STL Base STL Base STL Base

Philips Hue Vivint 0.91 0.73 0.98 0.83 0.94 0.78

SimpliSafe Vivint 1 0.2 0.8 0.2 0.89 0.2

SimpliSafe Philips Hue 1 0.8 0.9 0.67 0.95 0.72

● STL defines a collection of schema mapping commands
○ Schema matching commands assess compatibility between whole schemas
○ Field transformation commands directly match and modify schema fields
○ Value transformation commands convert field values to fit new schema specifications

● STL streamlines schema evolution with fine-grained task decomposition
○ STL decomposes schema mapping into unambiguous sub-tasks via task-specific commands
○ As an IR, STL separates mapping gen from dataflow assembly, simplifying both tasks

● STL improves schema mapping accuracy from 78% to 94%

● Enable data consumers to auto-adapt to schema changes by producers.
● Challenge: Must ensure accurate mapping of fields and values.
● Challenge: Must avoid model calls in the data path due to perf. and cost.

● Extract schema definitions from the data producer and data
consumer and represent them in the STL.schema format.

Source
Schema:

…

Target
Schema:

…

Model Call

System
Prompt

STL
spec

LLM

Commands

Mappings
{...}
{...}
{...}
…

From
Extract Send to

AssemblyCOPY
ADD
…

Field

SCALE
SHIFT

…

Value

Generate and
invoke

subset of
commands

MATCH
…

Schema

Model call take STL
specification and
generates STL

commands to invoke

● Perform schema matching, field transformation, and value
transformation consecutively over extracted schema definitions.

Generated mappings
are sent to assembly
stage to get compiled
to dataflow operators

● ~20% to 70% higher
mapping accuracy
(20 runs, mapping
granularity)

● Baseline: single
model call with a
high-level prompt

● Compile schema mappings / STL commands to dataflow operators
● Update and patch the consumer's pipeline with the dataflow

Diagram courtesy of Confluent:
https://docs.confluent.io/cloud/curre
nt/sr/fundamentals/index.html

kind: “Motion sensor”
name: “v1”
description: “Philips Hue”
fields:

- name: “motion”
type: “boolean”
description: >

True if motion is detected.
required: true

- name: “enabled”
type: “boolean”
description: >

True when the sensor is
activated, false when
deactivated.

required: true
- name: “sensitivity”

type: “integer”
description: >

Motion sensitivity.
default: 2
min: 0
max: 4

kind: “Motion sensor”
name: “v2”
description: “Vivint”
fields:

- name: “triggered”
type: “boolean”
description: >

Indicates whether the sensor
has been triggered.

required: true
- name: “enabled”

type: “boolean”
description: >

Indicates whether the motion
sensor is enabled (True) or
bypassed (False).

required: true
- name: “battery_percentage”

type: “integer”
description: >

Measure the current battery
level of the motion sensor.

required: true

MapExtract Assemble
P

C
C

Source
Schema

(v2)

Target
Schema

(v1)

Mappings
in STL

Dataflow
operators

data
producer

data
consumer

data
consumer

Problem:
SE breaks at

name, type, unit,
.., changes!

RENAME

COPY

DELETE
MISSING

