
Minimum Curvature Variation
Curves, Networks, and Surfaces

for
Fair Free-Form Shape Design

by

Henry Packard Moreton

B.S. (University of New Hampshire) 1979
M.S. (University of New Hampshire) 1983

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

GRADUATE DIVISION

of the

UNIVERSITY of CALIFORNIA at BERKELEY

Committee in charge:

Professor Carlo H. Séquin
Professor Beresford Parlett
Professor Forest Baskett
Professor Lawrence A. Rowe

The dissertation of Henry Packard Moreton is approved:

University of California at Berkeley

1992

Chair Date

Date

Date

Date

Minimum Curvatur e Variation
Curves, Networks, and Surfaces

for
Fair Fr ee-Form Shape Design

Copyright © 1992

by

Henry Packard Moreton

1

Abstract

Minimum Curvature Variation
Curves, Networks, and Surfaces

for
Fair Free-Form Shape Design

by

Henry Packard Moreton

Doctor of Philosophy in Computer Science

University of California at Berkeley

Professor Carlo H. Séquin, Chair

Traditionally methods for the design of free-form curves and surfaces focus on achieving a
specific level of inter-element continuity. These methods use a combination of heuristics
and constructions to achieve an ultimate shape. Though shapes constructed using these
methods are technically continuous, they have been shown to lack fairness, possessing
undesirable blemishes such as bulges and wrinkles. Fairness is closely related to the
smooth and minimal variation of curvature.

In this work we present a new technique for curve and surface design that combines a
geometrically based specification with constrained optimization (minimization) of a
fairness functional. The difficult problem of achieving inter-element continuity is solved
simply by incorporating it into the minimization via appropriate penalty functions. Where
traditional fairness measures are based on strain energy, we have developed a better
measure of fairness; the variation of curvature. In addition to producing objects of clearly
superior quality, minimizing the variation of curvature makes it trivial to modelregular

2

shapes such as, circles and cyclides, a class of surface including: spheres, cylinders, cones,
and tori.

In this thesis we introduce: curvature variation as a fairness metric, the minimum variation
curve (MVC), the minimum variation network (MVN), and the minimum variation
surface (MVS). MVC minimize the arc length integral of the square of the arc length
derivative of curvature while interpolating a set of geometric constraints consisting of
position, and optionally tangent direction and curvature. MVN minimize the same
functional while interpolating a network of geometric constraints consisting of surface
position, tangent plane, and surface curvatures. Finally, MVS are obtained by spanning the
openings of the MVN while minimizing a surface functional that measures the variation of
surface curvature.

We present the details of the techniques outlined above and describe the trade-offs
between some alternative approaches. Solutions to difficult interpolation problems and
comparisons with traditional methods are provided. Both demonstrate the superiority of
curvature variation as a fairness metric and efficacy of optimization as a tool in shape
design, albeit at significant computational cost.

iii

Table of Contents

Table of Contents .iii
List of Figures . vii
List of Symbols . xi
Acknowledgments .xiii
1 Introduction . 1

1.1 Overview . 2
1.2 Minimum Variation Curves . 3
1.3 Minimum Variation Networks. 4
1.4 Minimum Variation Surfaces . 4

2 Curve and Surface Terms and Properties 7
2.1 Geometric Characterization of Curves 8
2.2 Geometric Characterization of Surfaces 12
2.3 Specification . 13
2.4 Computational Form . 14
2.5 Continuity . 16
2.6 Order . 20
2.7 Existence. 20
2.8 Uniqueness . 22
2.9 Sensitivity . 22
2.10 Shape Preservation. 23
2.11 Convex Hull Property . 25
2.12 Linearity. 25
2.13 Symmetry (w.r.t. ordering) . 26

iv

2.14 Invariance Under Transformation. 26
2.15 Locality . 27
2.16 Consistency . 28
2.17 Versatility . 29
2.18 Visual Appearance - Fairness . 30

3 An Abridged History of Curve, Network, and
Surface Design .33

3.1 Curves and Curve Design . 33
3.1.1 Nonlinear Splines: Elastica, MEC, Physically Based Curves, MVC . .35
3.1.2 Interpolating Splines: The Cubic Spline and its Descendants 37
3.1.3 Local Interpolation Methods .40
3.1.4 Bézier Curves and Composition Constructions 44
3.1.5 Shape Preserving Splines .46
3.1.6 Intrinsic Splines. .46
3.1.7 Local Approximating Splines: The B-spline and its Descendants. . . .48
3.1.8 Variable Locality .50
3.1.9 Surveys. .50

3.2 Network Computation. 51
3.3 Surfaces and Surface Design. 55

3.3.1 Patches. .55
3.3.1.1 Coons Patches. .55
3.3.1.2 Bézier Patches. .56
3.3.1.3 B-spline Surfaces. .57
3.3.1.4 Transfinite Interpolants. .58
3.3.1.5 Gregory Patches .59
3.3.1.6 Triangular and n-Sided Patches. .59
3.3.1.7 Subdivision Surfaces and Splines on Arbitrary Networks 61
3.3.1.8 Principal Patches and Cyclides .63

3.3.2 Continuity .64
3.3.2.1 Continuity Conditions and Constructions .64
3.3.2.2 Vertex Enclosure .66

3.3.3 Finite Element Analysis, Minimization, Optimization, and Fairing . . .67
3.3.4 Surveys. .68

4 Minimum Variation Curves .69
4.1 Curve Specification Through Constraints. 69
4.2 Functionals for Minimization. 70

4.2.1 Functionals for Space Curves. .72

v

4.3 Scale-Invariant MVC . 72
4.4 Local Control and Smoothing . 73
4.5 Representation . 75
4.6 Multi-element Segments . 77
4.7 Parametric Functionals . 78
4.8 Computing Partial Derivatives. 79

4.8.1 Numerical Integration. 80
4.8.2 Gradient Descent . 81

4.9 Initialization . 82
4.10 Existence, Uniqueness, and Sensitivity 84
4.11 Results: Test Cases, Curve Quality, and Applications. 85

4.11.1 A Sample Problem: Corner Blending . 86
4.11.2 A Comparison of MVC, MEC and Natural Splines 87
4.11.3 Scale-Independent MVC . 88
4.11.4 MVC vs. MEC Space Curves . 92
4.11.5 Coving Design . 92

4.12 Efficiency. 93

5 Minimum Variation Networks . 103
5.1 MVN Representation and Continuity. 103
5.2 Network Initialization . 104
5.3 Optional Network Constraints .110
5.4 Comparisons. .113

6 Minimum Variation Surfaces . 123
6.1 MV-Surface Construction . 124
6.2 Representation and Computation . 127

6.2.1 Bézier Patches. 127
6.2.2 Parametric Functionals . 128
6.2.3 Numerical Integration. 129
6.2.4 Differentiation. 130
6.2.5 Continuity by Penalty . 132

6.2.5.1 Tangent Continuity . 132
6.2.5.2 Curvature Continuity. 135
6.2.5.3 Continuum Methods . 135

6.2.6 G2 Vertices . 137
6.2.7 Symmetry—a time saving constraint . 137

vi

6.3 Initialization. 140
6.4 Surface Analysis Methods . 144
6.5 Examples & a Comparison of Functionals 150

6.5.1 Spheres .150
6.5.2 University of Washington Data Sets .150
6.5.3 Three Handles .151
6.5.4 Flexible MVN .152
6.5.5 Minimum Topological Shapes .152
6.5.6 Expressive Power and Aesthetics .159

6.6 Efficiency . 163
6.7 Summary . 167

7 Conclusions .169
Bibliography. .171
Appendix A Test Curve Definitions and Results 185
Appendix B Test Network and Surface Definitions and

Results .205

vii

List of Figures

Figure1.1. A suitcase corner. ..3

Figure1.2. The blend of two pipes..5

Figure2.1. The Frenet Frame..9

Figure2.2. Surface Geometry. ..11

Figure2.3. Interpolating and Approximating Curve...13

Figure2.4. An Interpolating Curve..14

Figure2.5. Increasing Tension in a Curve...15

Figure2.6. Multi- and single-valued curves..16

Figure2.7. A C1 Piecewise Parametric Curve..17

Figure2.8. A G1 Piecewise Parametric Curve..18

Figure2.9. A Minimum Energy Curve..21

Figure2.10. Monotonicity Preservation..23

Figure2.11. Convexity Preservation..24

Figure2.12. Variation Diminishing Curve...24

Figure2.13. The Convex Hull Property...25

Figure2.14. The Effect of Affine Invariance...27

Figure2.15. Local vs. Global control..28

Figure2.16. Consistency..29

Figure3.1. Draftman’s Spline and Ducks..34

Figure3.2. A Spring Curve..35

Figure3.3. The Wilson-Fowler Spline...38

Figure3.4. Uniform vs. Chord Length Parameterization..40

Figure3.5. Osculatory Interpolation..41

Figure3.6. Akima’s Local Method for Determining Function Slope................................42

Figure3.7. Catmull-Rom Spline Interpolation..43

Figure3.8. Quartic Bézier Subdivision...44

viii

Figure3.9. Curves from Curvature Integration...47

Figure3.10. Biarc Interpolation...48

Figure3.11. A Quadratic B-spline...48

Figure3.12. A Curve Network..52

Figure3.13. Piper’s First Derivative Computation..53

Figure3.14. Opposite Edge Method..54

Figure3.15. Linear Coons Patch Construction..56

Figure3.16. Quadratic Tensor Product Bézier Patch Construction...................................57

Figure3.17. Quadratic Triangular Bézier Patch Construction...58

Figure3.18. A Gregory Patch..60

Figure3.19. Two Generations of a Subdivision Surface...61

Figure3.20. Four Steps in the Isolation of Singular Points...62

Figure3.21. Patch-patch Continuity..65

Figure3.22. Rectangulation...66

Figure4.1. Specification Through Geometric Constraints..70

Figure4.2. The Wicket..71

Figure4.3. Curve Deformation and Smoothing..74

Figure4.4. Schematic View of Curve Representation...77

Figure4.5. Parabolic Line Minimization...81

Figure4.6. Tangent Initialization...82

Figure4.7. Curvature Initialization..83

Figure4.8. End Point Tangent Construction..84

Figure4.9. Multiple MVC Curves from One Specification..85

Figure4.10. Blending the Corners of a Box..86

Figure4.11. MVC vs. MEC and Natural Splines..87

Figure4.12. Curvature Plot—MVC and Scale-Independent MVC...................................88

Figure4.13. Planar S-shaped Curves, MVC vs. SI-MVC...89

Figure4.14. A Curve from Antipodal Tangent Constraints...90

Figure4.15. An SI-MVC Figure-8. ...91

Figure4.16. A simple space curve for comparing MVC with MEC.................................92

Figure4.17. Space Curve Curvature and Torsion Plots...93

Figure4.18. Curvature Profiles of the Simple Space Curve (Fig.4.16)............................94

Figure4.19. Jörg Peters’ Helical Data — The Initial Curve...95

Figure4.20. Jörg Peters’ Helix — The MEC Curve..96

Figure4.21. Jörg Peters’ Helix — The MVC Curve...97

Figure4.22. Coving Design...98

ix

Figure4.23. Log Plots of MVC Convergence...100

Figure4.24. Log Plots of MVC Convergence (cont.)..101

Figure5.1. Tangent initialization...106

Figure5.2. An Approximate Radius of Curvature...107

Figure5.3. A Set of Tangent Directions and Approximate Normal Curvatures..............108

Figure5.4. A Least Squares Curvature Solution...111

Figure5.5. Normal Curvature vs. Tangent Direction..112

Figure5.6. Optional Network Continuity Constraints, G0 versus G2.............................112

Figure5.7. Optional Network Continuity Constraints, G1 versus G2.............................113

Figure5.8. University of Washington Data Sets..114

Figure5.9. Octahedron..115

Figure5.10. Sphere6...116

Figure5.11. Capsule..117

Figure5.12. Franke4...118

Figure5.13. Torus...119

Figure5.14. TetraThing..120

Figure5.15. Cylinder Blending...121

Figure6.1. A Klein bottle..125

Figure6.2. The Blend of Two Pipes..126

Figure6.3. Difference vectors...133

Figure6.4. A Curvature Continuous Suitcase Corner...136

Figure6.5. Construction of a G2 Vertex..138

Figure6.6. The Construction of a tetraThing..139

Figure6.7. Unique Patches Composing tetraThing...140

Figure6.8. Symmetry—Convergence vs. Iterations/Time..141

Figure6.9. Examples of Interpatch Symmetries..142

Figure6.10. Examples of Intrapatch Symmetries..142

Figure6.11. The Control Points of a Bézier Patch...143

Figure6.12. Terminators Exposing Discontinuities..145

Figure6.13. Cross Section of Half Cylinders of Differing Radii....................................146

Figure6.14. Surface Analysis—First Order. ...148

Figure6.15. Surface Analysis—Second Order..149

Figure6.16. Surfaces Interpolating The 8 Corners of a Cube...151

Figure6.17. Octahedron..153

Figure6.18. Sphere6..154

Figure6.19. Franke4..155

x

Figure 6.20. Torus. ...156

Figure 6.21. Capsule. ...157

Figure 6.22. Three Handles..158

Figure 6.23. Flexible Frame Comparison ..159

Figure 6.24. Flexible Frame Comparison (cont.)...160

Figure 6.25. MVS Sculptures. ...161

Figure 6.26. One Constraint — One Patch — One Surface ..162

Figure 6.27. TetraThing. ..163

Figure 6.28. Optimization Overview ...164

Figure 6.29. Sphere—# Iterations vs. Log(functional) ..166

Figure 6.30. OnePatch—#iterations vs. Log(functional)...167

xi

List of Symbols

principle direction, maximum curvature

principle direction, minimum curvature

principle curvature, maximum

principle curvature, minimum

normal curvature

curvature vector

unit vector pointing toward light source

unit normal vector

unit binormal vector

unit tangent vector

arc length differential

area differential

MVC functional

MVS fucntional

partial derivative of with respect tou

partial derivative of with respect tou

the first four derivatives of

cross product of and

ê1

ê2

κ1

κ2

κn

κ

l̂

n̂

b̂

t̂

sd

Ad

κd
sd

2

sd∫
κ1d

ê1d

2 κ2d

ê2d

2

+ Ad∫
Su u v,() S u v,()

Su S u v,()

f ' t() f '' t() f ''' t() f
4()

t(), , , f t()

a b× a b

xii

Gn nth order geometric continuity

Cn nth order parametric continuity

a scalar valued function

an arc length parameterized, vector valued function

a vector valued function of arbitrary regular parameterization

a bivariate vector valued function

f t()

C s()

C u()

S u v,()

xiii

Acknowledgments

The work presented in this thesis was supported and contributed to by many people in
many ways, often unknowingly. I would like to recognize some of these people here. My
thesis advisor, Carlo Séquin has provided much of the inspiration for this work through his
infectious fascination with geometry. His always thorough review of my writings have
been a great aid. I would also like to thank the other readers of my thesis. They have
contributed greatly to both its english and its technical content. Beresford Parlett caught
one major error, noting in red ink, “...this is why people ask for proofs!” Both Forest
Baskett and Larry Rowe impressed me with their ability to catch errors many preceding
eyes had missed. In his role as my manager, Forest has also been very generous with his
support of my project. This support was initiated, at least in part, by several forward
thinking people at Silicon Graphics Inc., Jim Clark, Ed McCracken, and Glen Mueller.

In addition to my readers, I had the advice of several valuable consultants. Jim Demmel
provided advice concerning the nature of finite precision arithmetic. John Canny patiently
helped me work through some of the problems I encountered in differential geometry. Jim
Winget was generous with his time and his extensive knowledge of finite element
analysis. Finally, Tony DeRose’s interest in my work helped me through that “nobody
cares” period. His students, Stephen Mann and Mike Lounsbery continue to be valuable
colleagues.

My friends and colleagues have been a great source of support and fun throughout the
years. Unfortunately, it is impossible to name each and every person. Ziv Gigus played
Mutt to my Jeff, or was it the other way ‘round? Always interested in listening over coffee
at Roma. Garth Gibson, first squash partner, then Mystery host, and now CMU professor
has been a good friend. Nina Amenta has been a great dinner partner, and even greater
party host. Kathryn Crabtree, CS Division resident archeologist and pleasant lunch
conversationalist, has been a lot of help with “the process”. Terry Lessard-Smith, Bob
Miller and Liza Gabato have ready smiles and have always been willing to help with
whatever problem was at hand. At Silicon Graphics, Melissa Anderson has helped keep

xiv

me in contact with folks there and simply taken good care of me, finding office space,
machines, and helping me deal with a company grown 6-fold in my absence.

The Sydeman clan has shown interest and caring: Bill Sydeman and Catherine Madonia,
Jay Sydeman, Hope Millholland, Michelle Sydeman, and Ann Sydeman. It is Ann in
particular, that I would like to thank for supporting me and staying by me on the roller
coaster ride that is a thesis in the making.

Finally, my parents have given me everything, the foundation to work from and
unwavering support.

1

1
Introduction

The field of computer aided geometric design (CAGD) has formed out of the need to
design and model curved forms. Shapes are typically represented in a piecewise fashion,
composed of primitive elements smoothly joined together to form a larger, more complex
whole. Traditionally methods for the design of free-form curves and surfaces focus on
achieving a specific level of inter-element continuity. These methods use a combination of
heuristics and constructions to achieve an ultimate shape. Though shapes constructed
using these methodologies are technically continuous, they have been shown to be of poor
quality (lacking fairness), possessing undesirable blemishes such as bulges and
undulations.

In this work we present a new technique for curve and surface design that combines a
geometrically based specification with constrained optimization (minimization) of a
fairness functional. The difficult problem of achieving inter-element continuity is solved
simply by incorporating it into the minimization via appropriate penalty functions. Where
traditional fairness measures are based on strain energy, we have developed an alternative
measure of fairness: the variation of curvature. In addition to producing objects of superior
quality, minimizing the variation of curvature makes it trivial to model regular shapes such
as, circles and cyclides, a class of surface including: spheres, cylinders, cones, and tori.

In this thesis we introduce: curvature variation as a fairness metric, the minimum variation
curve (MVC), the minimum variation network (MVN), and the minimum variation
surface (MVS). These three forms are computed to satisfy a set of geometric interpolation
conditions while minimizing a fairness functional that measures the variation of curvature.

2

While interpolating an ordered set of curve specifications, MVC minimize the arc length
integral of the square of the arc length derivative of curvature:

. the MVC functional (1.1)

MVC specifications consist of curve position, and optionally, curve tangent and curvature.
Similarly, MVN interpolate a network of surface specifications while minimizing the
MVC functional along the arcs of the network. These surface specifications consist of
position, and optionally, surface tangent and principle curvatures. Finally, MVS
interpolate the same network of specifications while minimizing the area integral of the
sum of the square of the derivatives of the principle curvatures:

. the MVS functional (1.2)

The resulting models accurately reflect their specifications and are free of unwanted
wrinkles, bulges, and ripples. When the given constraints indicate and/or permit, the
resulting surfaces take on the desirable shapes of spheres, cylinders, cones, and tori.
Specification of a desired shape is straightforward, allowing simple or complex shapes to
be described easily and compactly. For example, a “suitcase corner,” the blend of three
quarter cylinders of differing radii, is formed by specifying just six sets of
constraints(Fig. 1.1) plus three sets of floating vertices ().

This work presents in detail new techniques to compute minimum variation curves,
networks, and surfaces. Numerous examples demonstrating the efficacy of curvature
variation as a fairness metric are provided.

1.1 Overview

In this thesis, we begin with a brief outline of the techniques used to compute the various
minimum variation forms. In Chapter 2, we define the terms and properties used in
discussing the CAGD of curves and surfaces. In Chapter 3, we present an overview of
previous work on curve, network, and surface design and computation. We describe the
bulk of our work in Chapters 4, 5, and 6. These chapters are devoted to the details of the
computation of minimum variation curves, networks, and surfaces respectively. Though
these chapters may be read individually, each chapter builds on its predecessors. The
techniques used in the computation of MVC are reapplied in the computation of MVN,
and MVN themselves are used in the computation of MVS. In each of these chapters we
evaluate minimum variation shapes and compare them with their contemporary

κd
sd

2

sd∫

κ1d

ê1d

2 κ2d

ê2d

2

+ Ad∫

3

counterparts. We conclude the thesis with comments about the utility of minimization
techniques, the value of curvature variation as a fairness metric, and directions for further
research.

1.2 Minimum Variation Curves

In CAD applications, curve design has a potentially conflicting set of requirements. Some
applications demand free-form curves, along with regular curves such as circular arcs. In
some instances curves must meet a set of exact positional, tangent, and/or curvature
constraints. Also in general, a high degree of “fairness” is demanded of all curves. The
concept of fairness is typically associated with the curvature characteristics of a curve; a
fair curve has smoothly varying curvature, with as few inflections and curvature extrema
as possible. The minimum variation curve (MVC) satisfies all these needs.

We cast the problem of computing the MVC as a nonlinear optimization / finite element
problem. The curve is broken into a series of quintic polynomial elements constructed to
satisfy the given geometric constraints and join with G2 continuity. The MVC functional
is minimized using a gradient descent optimization procedure. A heuristically chosen
starting curve greatly accelerates convergence towards minimum variation.

Figure1.1. A suitcase corner.

① specification with surface normal and curvature constraints.② the resulting blend.

① ②

4

1.3 Minimum Variation Networks

Many surface modeling and data interpolation schemes use a mesh or network of curves
as a key component in the construction of a smooth surface [126]. The minimum variation
network (MVN) is a G2 network composed of fair curves (MVCs) that provides an
excellent frame on which to build a smoothly curved surface. In fact the MVN is used in
the computation of a minimum variation surface (MVS). The MVN acts either as a fixed
framework on which to build an MVS or as part of the initialization step in the
construction of an MVS. The MVN is computed using the MVC functional (1.1) and
MVC optimization techniques with the G2 curve continuity constructions replaced by G2

surface continuity constructions. Also, the curve-based specifications are replaced by a
network of surface specifications. Heuristics based on the geometry of the constraint
network are used to establish a starting point for the optimization.

1.4 Minimum Variation Surfaces

In the computer aided design of curved surfaces there is a wide range of requirements.
While it is necessary to model regular shapes such as cylinders, cones, tori, and spheres, it
is also important that free-form shapes can be modeled with ease. Often, it is also
necessary that surfaces meet a set of exact positional, tangent, and/or curvature
constraints. In all cases, surface fairness is of great importance. Like the fairness of
curves, surface fairness is related to the variation of curvature across a surface; a fair
surface has smoothly varying curvature. These requirements are met by MVS.

As with the computation of the MVC, we compute MVS using optimization techniques to
minimize the MVS functional while using constructive methods to satisfy a set of
geometric interpolatory constraints. Unlike the MVC computation, MVS inter-element
continuity is imposed via penalty functions. We have developed penalty functions for
imposing both G1 and G2 continuity.

We treat the problem of creating an MVS interpolating a collection of geometric
constraints as one of scattered data interpolation. The interpolation problem is broken into
three steps (Fig. 1.2); 1) connectivity definition, 2) curve network computation, 3) patch
blending. In accordance with the topological type of the desired surface, the geometric
constraints are first connected into a network of straight edges. Next, an MVN is
calculated for the network of constraints. Finally, an MVS is computed, interpolating the
MVN with at least G1 continuity. In a first approach, the boundaries of the MVS patches
are fixed, interpolating the previously constructed curve network. Alternatively, the
surface calculation may use the MVN as a starting point and modify its geometry during
surface calculation. The latter approach yields even smoother surfaces, but at a

5

substantially higher computational expense. The higher quality surfaces result because the
curves of an MVN resulting from a given constraint set do not always lie in the MVS
resulting from the same set of constraints.

During the modeling process, the connectivity of the geometrical constraints is typically
established as a natural outgrowth of the design process. The techniques described here
are also amenable to true scattered data interpolation, in which case connectivity must first
be derived with some other method, possibly based on some minimal triangulation on the
data points.

Our system is based on triangular and quadrilateral patches. All constraints are located at
corners of these patches. Additional vertices and edges may be added to a network of
constraints so that it has only three- and four-sided openings. These additional vertices are
not constraints and are appropriately positioned by the curve network computation and
patch blending phases of the construction.

Before proceeding with a detailed discussion of these techniques, we must establish a
common set of properties and terms, and review previous attempts at solving these
difficult design problems.

Figure1.2. The blend of two pipes.

Pipes are blended in three steps:① The connectivity of the constraints is established.
② Smooth curves are fit to the constraints.③ Surface patches are fit to the curve network.

➨➨ ➨① ② ③

6

7

2
Curve and Surface

Terms and Properties

Minimum variation curves, networks, and surfaces are designed to solve

many of the problems in CAGD. In this chapter we introduce terms and

identify properties necessary for an understanding of these problems and

necessary to differentiate and evaluate the many solutions found in the lit-

erature.

Curves and surfaces for both design and approximation are characterized by those

properties and attributes that affect their utility when applied to a particular problem. We

will focus on the properties of curves and will include a discussion of surfaces only when

necessary to make important distinctions between the properties of curves and surfaces. In

the sections that follow we identify and define the terms associated with these

characteristics:

2.1 Geometric Characterization of Curves
2.2 Geometric Characterization of Surfaces
2.4 Computational Form
2.5 Continuity
2.6 Order
2.7 Existence
2.8 Uniqueness
2.9 Sensitivity
2.10 Shape Preservation
2.11 Convex Hull Property
2.12 Linearity
2.13 Symmetry (w.r.t. ordering)
2.14 Invariance Under Transformation

8

2.15 Locality
2.16 Consistency
2.17 Versatility
2.18 Visual Appearance - Fairness

2.1 Geometric Characterization of Curves
In describing the geometric character of a curve we consider four quantities: position,
tangent , curvature , and torsion . For the purposes of this discussion, we will assume
that our curve is described using a differentiable vector valued function,

, (2.1)

where u is an arbitrary curve parameter with the restriction that for all u, this
is called a regular parameterization. We will also assume an alternate parameterization
resulting from the inversion of in equation (2.2). This results in what is called an arc
length parameterization.

(2.2)

Under this parameterization everywhere. We will refer to when
discussing a curve with arbitrary regular parameterization, and refer to when
discussing an arc length parameterized curve. Finally, we refer to a curve that is actually
the graph of a function as .

To simplify the following discussion, we describe a sliding orthonormal coordinate system
defined at each point on the curve. This trihedral frame is named the Frenet frame
[52, p19]. The frame is composed of the curve’s tangent , normal , and binormal ,
each of which is defined as follows. The tangent at a point is the direction of the
curve at (Fig. 2.1). In terms of a parametric curve, the tangent is in the direction of
the first derivative of the curve,

. (2.3)

t̂ κ τ

C u() x u() y u() z u(), ,{ }= u a b,[]∈

C' u() 0≠

s u()

s u() C' u() ud

a

u

∫=

C' s() 1= C u()
C s()

y f x()=

t̂ n̂ b̂
t̂ u() C u()

C u()

t̂ s() C' s()=

t̂ u()
C' u()

C' u()
=

9

The binormal to the curve at a point is the perpendicular to the plane the curve lies in
at (Fig. 2.1). The binormal is perpendicular to the first and second derivatives,

. (2.4)

Figure 2.1. The Frenet Frame.

The frame is made up of the curve tangent, normal, and binormal vectors. These vectors, in
turn, define a set of three planes: the osculating plane, the normal plane, and the rectifying
plane.

C u()
C u()

b̂ s() C' s() C'' s()×=

b̂ u()
C' u() C'' u()×

C' u() C'' u()×
=

10

The normal to the curve is perpendicular to the tangent and binormal,

. (2.5)

The coordinate frame we have defined spans three planes: the osculating, normal, and

rectifying planes. The osculating plane is spanned by the tangent and normal, and is

named for the circle it contains that “kisses” the curve (Fig. 2.1). The normal plane is

spanned by the normal and binormal. The rectifying plane is spanned by the tangent and

binormal, and is named for the fact that as it moves along a curve it sweeps out a rectifying

developable surface. When this surface is “rolled out” flat on a plane, the curve that was

used to generate it forms a straight line.

The definitions of curvature and torsion are central to a discussion of a curve’s shape.

Given the functions and a unique curve shape is defined. With respect to the

coordinate frame we just defined, curvature and torsion describe the rate at which the

trihedral frame rotates. These quantities are thus measures of how quickly the curve is

turning or bending. Curvature is an instantaneous measure of how much the curve is

bending in the osculating plane away from the tangent direction. Torsion is an

instantaneous measure of how much the curve is bending away from or out of the

osculating plane, n.b. a curve with is planar. The Frenet-Serret formulas are a

direct result of these definitions [52, p.19]:

. (2.6)

Curvature is equal to the reciprocal of the radius of curvature. The radius of curvature is

the radius of the osculating circle (Fig. 2.1). The center of the circle may also be

established by finding the intersection of curve normal directions as they converge on the

point . The formulas for curvature are:

. (2.7)

n̂ s() b̂ s() t̂ s()×=

n̂ u() b̂ u() t̂ u()×=

κ s() τ s()

τ s() 0=

t'ˆ s() κ s()n̂ s()=

b'ˆ s() τ s()n̂ s()=

n'ˆ s() κ s()− t̂ s() τ s()b̂ s()−=

C u()

κ s()n̂ s() C'' s()=

κ u()n̂ u()
C' u() C'' u()×() C' u()×

C' u()
4

=

11

Note that when a curve is arc length parameterized, the second derivative is equal to
curvature, because of this, the second derivative is often used as an approximation
to curvature. Similarly, the formulas for torsion are

. (2.8)

Figure 2.2. Surface Geometry.

A surface is locally characterized by ① position, surface normal, and ② principal
directions and principal curvatures.

C'' u()

τ s() C' s() C''' s()×−=

τ u()
det C' u() C'' u() C''' u(), ,[]

C' u() C'' u()×
2

−=

① ②

12

2.2 Geometric Characterization of Surfaces

In describing the geometric character of a surface we consider three quantities: position,
surface normal (a vector perpendicular to the tangent plane of the surface), and the
principal directions and principal curvatures , (Fig. 2.2). We assume that our
surface is described using a differentiable vector valued function of two variables,

, (2.9)

where u and v are arbitrary surface parameters with the restriction that
 for all u and v. In other words, the partial derivatives of

must neither become colinear nor vanish. As in the discussion of curves, this is called a
regular parameterization. Surfaces have no simple canonical parameterization analogous
to a curve’s arc length parameterization.

The normal to a surface is computed from the cross product of the first partial derivatives
of the surface,

.

In order to describe the principal directions and principal curvatures of a surface, we must
first define normal curvature. The normal curvature at a point on a surface in a direction
specified by a surface tangent vector is determined from the intersection curve of the
surface with the plane spanned by the surface normal and the given tangent vector. The
principal directions, and , and the principal curvatures, and , at a point on a
surface are the directions and magnitudes of the minimum and maximum of all possible
normal curvatures at that point. The principal directions and curvatures are computed from
the first and second fundamental forms from differential geometry [52],

.

and

.

respectively. Specifically, the principal curvatures are the eigenvalues of the curvature
tensor. The expression for the curvature tensor is

, (2.10)

n̂
ê1 ê2, ê1 ê2,

S u v,() x u v,() y u v,() z u v,(), ,{ }= u v,{ } a b,[]∈

Su u v,() Sv u v,()× 0≠ S u v,()

n̂
Su u v,() Sv u v,()×

Su u v,() Sv u v,()×
=

ê1 ê2 κ1 κ2

E Su Su⋅= G Sv Sv⋅=F Su Sv⋅=

e n̂ Suu⋅= f n̂ Suv⋅= g n̂ Svv⋅=

a11 a21

a12 a22

13

where

.

The principal directions are the eigenvectors of (2.10) relative to the basis .

2.3 Specification

A key aspect of a curve is how it is defined, i.e., what information the designer must
provide to fully define the curve’s shape. Two major classes of curves are interpolating
curves and approximating curves. Interpolating curves are defined by a sequence of
positions that the curve must pass through (Fig. 2.3①). Approximating curves do not
necessarily pass through their defining points, however, the curves do reflect the shape
formed by the sequence of defining control points (Fig. 2.3②).

Curves shapes based on user provided positions represent the simplest form of
specification. Implicit in the specification of a sequence of points is their ordering; a curve
designer may also be required to specify the parametric spacing of the points along the
curve, their parameterization. In addition to interpolated points, curve definitions may

Figure 2.3. Interpolating and Approximating Curve.

An interpolating curve passes through its defining points. An approximating curve passes
near or through its defining control points. The collection of line segments connecting the
control points is referred to as the control polygon.

a11
fF eG−
EG F2−

= a21
eF fE−
EG F2−

=

a12
gF fG−
EG F2−

= a22
fF gE−
EG F2−

=

Su Sv,{ }

interpolation point

control point control polygon

①

②

14

include higher order geometric specifications such as tangent direction, curvature, and
torsion (Fig. 2.4). Curves may also be defined by positions augmented with parametric
derivatives, with respect to the independent curve parameter. Such specifications concern
the method used to represent the curve rather than the intrinsic geometry of the curve.
Finally, curves may have associated shape handles, parameters which are neither
geometric nor parametric in nature, but control the shape of the curve in a predictable
fashion. Tension [193] is a typical shape handle, an increase in tension causes the curve to
decrease in fullness, as though the curve were being pulled more tightly to its defining
control polygon (Fig. 2.5).

2.4 Computational Form
Curves may be represented and computed using a variety of techniques and forms. The
three basic forms are implicit, parametric, and explicit. For example, a unit circle centered
at the origin may be defined in each of these forms.

1. Implicit:

2. The implicit form is particularly useful for point classification (determining whether a point is
inside, on, or outside a closed curve). In general, there is no direct method for computing a
sequence of points that lie on an implicit curve.

3. Explicit:

4. The explicit form, the simplest of curve forms, is useful for curves representing functions. In
the case of the circle, two separate equations are required because it is multi-valued. The
explicit form is commonly used in the approximation of functional data.

Figure 2.4. An Interpolating Curve.

A curve specified by its end positions, tangent directions, and one curvature value.

x2 y2 1−+ 0=

y 1 x2−=

y 1 x2−−=
1− x 1≤ ≤

15

5. Parametric:

6. Finally, the parametric form, sometimes referred to as vector-valued, provides a simple mecha-
nism for the representation of curves. Points on the curve are computed as a vector valued
function of an independent parameter. Because of their flexibility and the ease with which
sequences of points on a curve may be calculated, the parametric form has emerged as the
favored approach for CAD applications.

Curves may be further classified by the type of functions which they employ. Parametric

curves are defined using polynomial, rational polynomial, trigonometric, and exponential

functions. Polynomial and rational polynomial functions are preferred because of the ease

with which they may be computed, only requiring the elementary operations on real

numbers, addition and multiplication for plain polynomials, and division for rational

polynomials. Further, polynomials are easily differentiated, and at least theoretically, may

always be symbolically integrated.

Figure 2.5. Increasing Tension in a Curve.

Tension is varied from a low value (①, ③) to a high value (②, ④) causing the curve to
follow its defining control polygon more closely. (①,②) interpolating curve, (③, ④)
approximating curve.

① ②

③ ④

x usin=
y ucos=
π− u π≤ ≤

or

x
1 u2−
1 u2+

=

y
2u

1 u2+
=

∞− u ∞≤ ≤

16

Finally, curve generation techniques may be classified based on their ability to interpolate
or approximate multi-valued data. A curve that only supports function interpolation and
approximation is referred to as single-valued (Fig. 2.6). Function interpolants are
single-valued, while curve interpolants can be multi-valued.

2.5 Continuity

Because of the limited descriptive power of a single parametric polynomial, multiple
parametric polynomials may have to be pieced together to form a more complicated curve.
The resulting curve is referred to as piecewise polynomial. In order to provide guarantees
concerning the smoothness of such a composite curve, the notion of continuity has been
introduced. Continuity refers to the smoothness of the joints between adjacent polynomial
pieces. Consider the piecewise polynomial curve that is globally parameterized from 0 to
3 (Fig. 2.7). The curve is made up of three polynomial pieces or segments. In order for the
curve to be considered to be first order parameter continuous (C1), the first derivatives of
the segments must be equal at the joints:

. (2.11)

In order for the curve to be second order parameter continuous (C2), both the first and
second derivatives have to be equal:

. (2.12)

Figure 2.6. Multi- and single-valued curves.

multi-valued curve single-valued curve

f t()C u() f t()

t

c'0 1() c'1 0()= and c'1 1() c'2 0()=

c'0 1() c'1 0()= c'1 1() c'2 0()=

c'' 0 1() c'' 1 0()= c'' 1 1() c'' 2 0()=

17

Similarly, to achieve nth order parameter continuity (Cn), the first n derivatives of the
curve segments must be continuous at the segment-segment joints. For a complete
discussion of curve and surface continuity see [47].
A less restrictive form of continuity is that of geometric continuity, denoted Gn for nth
order geometric continuity. It stipulates that curve segments can be made to meet with
parametric continuity under some suitably chosen parameterization, i.e., it must be
possible to reparameterize adjacent segments such that they meet with parametric
continuity. Examining the case of G1 continuity, unit tangent vector continuity is
necessary and sufficient for first order geometric continuity to be achieved. For G2

continuity, the curve segments must have the same curvature at the junction in addition to
tangent continuity. A result of geometric continuity is the availability of extra degrees of
freedom which are useful for controlling curve shape.

Consider a curve made up of cubic Hermite segments. A cubic Hermite segment [59] is
specified by the positions and first parametric derivatives at its end points,

. To form a C1 continuous curve, the positions and first derivatives
must be explicitly shared at segment-segment joints. To form a G1 continuous curve it is
only necessary that the segments share tangent direction, , at these joints (Fig. 2.8).
To accomplish this and to take advantage of all the available degrees of freedom, we
redefine the cubic Hermite segment to be defined by the positions, tangent directions, and
first derivative magnitudes at its end points,

. (2.13)

Figure 2.7. A C1 Piecewise Parametric Curve.

Curve segments join so that the first derivatives are equal at the segment-segment joints.

C u() 0 u 3≤ ≤

C 1()

C 0()

C 3()

C 2() c0 u() C u()= 0 u 1≤ ≤

c1 u 1−() C u()= 1 u 2≤ ≤

c2 u 2−() C u()= 2 u 3≤ ≤

c'0 1() c'1 0()=

c'1 1() c'2 0()=

ci 0() ci 1() c' i 0() c' i 1(),, ,

t̂i u()

ci 0() ci 1() t̂i 0() t̂i 1() mi 0() mi 1(), , ,, ,

18

To map to the traditional Hermite form, we scale the tangent direction by the associated
magnitude producing the appropriate derivative,

. (2.14)

The use of geometric continuity has produced two extra degrees of freedom per curve
segment, . These degrees of freedom may be used as shape handles to further
control the shape of the curve without losing geometric continuity.

As a more concrete measure of the descriptive power of curves exhibiting geometric
versus parametric continuity, we examined the relative degree of the parametrically
continuous curve required to exactly reproduce a geometrically continuous curve. We
found that a degree dk, Ck curve is required to reproduce the shape of a degree d, Gk curve.
Consider a Gk curve composed of curve segments , we may assume without loss
of generality that each segment is parameterized with . Starting at the first

Figure 2.8. A G1 Piecewise Parametric Curve.

Curve segments join such that the tangent directions are equal at the segment-segment
joints.

C u() 0 u 3≤ ≤

C 1()

C 0()

C 3()

C 2()

c0 u() C u()= 0 u 1≤ ≤

c1 u 1−() C u()= 1 u 2≤ ≤

c2 u 2−() C u()= 2 u 3≤ ≤

t̂0 1() t̂1 0()=

t̂1 1() t̂2 0()=
t̂i u()

c' i u()

c' i u()
=

c' i 0() mi 0() t̂i 0()= c' i 1() mi 1() t̂i 1()=

mi 0() mi 1(),

C0…n u()
u 0 1,[]∈

19

joint, between and , we fix the parameterization of the first segment and
reparameterize the second (producing) such that their derivatives match at the joint
where they meet:

The required reparameterization is of the form

; (2.15)

u is replaced by a degreek polynomial in , the parameter of the reparameterized curve.
Since is a degreed polynomial, replacingu with a degreek polynomial, creates a
degreedk polynomial, . The coefficients of (2.15) are calculated by making the
substitution and differentiating ;

(2.16)

Using this system of equations, the are easily found. Since is reparameterized,
the range of is now 0…x, where . Continuity between segments
and is similarly established

(2.17)

C0 u() C1 u()
C'1 u()

C0

1()
1() C'1

1()
0()=

C0

2()
1() C'1

2()
0()=

…

C0

k()
1() C'1

k()
0()=

u βiu'i

i 1=

k

∑=

u'
C1 u()

C'1 u'()
C1 u'()

C0

1()
1() β1C1

1()
0()=

C0

2()
1() β1

2C1

2()
0() 2β2C1

1()
0()+=

C0

3()
1() β1

3C1

3()
0() 6β1β2C1

2()
0() 6β3C1

1()
0()+ +=

…

βi C'1 u'()
u' 1 βix

i

i 1=

k

∑= C'1 u'()
C2 u()

C'1
1()

x() β1C2

1()
0()=

C'1
2()

x() β1
2C2

2()
0() 2β2C2

1()
0()+=

C'1
3()

x() β1
3C2

3()
0() 6β1β2C2

2()
0() 6β3C2

1()
0()+ +=

…

20

Continuing this process creates a series of curve segments that meet with Ck parametric
continuity and which are each parameterized from . A single unified
parameterization can be established by further substitution without affecting the degree of
the result.

Schoenberg [191] introduces a specific instance of a piecewise polynomial function, the
spline. While his definition is of a scalar spline function used for approximation, we
consider a vector valued spline curve:

(2.18)

 is called a knot vector and is composed of knot values . A vector valued function

 of degree d is a spline function if it satisfies two conditions. First, the segments

of which it is composed, are each parameterized , and are polynomials of

degree d. Second, and its derivatives are continuous,

. The notion of a spline curve is used extensively in curve design and has

become somewhat less strictly defined as a curve composed of C∞ segments meeting with
specified continuity, either parametric or geometric.

2.6 Order

Order refers to two distinct characteristics of a curve. First, when referring to a
polynomial or rational polynomial representation, the order of a curve refers to the order
of the polynomials employed. When speaking about rational polynomials, the orders of
the numerator and denominator need not be equal and thus both are stated. Order is the
number of degrees of freedom in a scalar-valued polynomial, thus it is one greater than
degree; a quintic polynomial is sixth order. Second, order also refers to the accuracy of an
interpolation technique. The order of interpolation is the maximum order of a polynomial
that is exactly recreated from sampled data. The order of convergence refers to the rate at
which an approximating curve converges on an analytic curve as the number of samples is
increased.

2.7 Existence

The question of existence of a solution to a problem is widely studied. In the context of
curve design, the question of existence is whether or not a curve generation technique or
algorithm produces a desired result for all input specifications, for only some inputs, or for
no inputs at all. Alternatively, the question may be whether the curve generated is useful,
e.g. is the solution curve of finite length? Most work on formal proof of existence is in the

0…xi

U uo u1 … un, , ,()= ui ℜ∈ ui ui 1+≤ i, , 0 … n, , 1−=

U ui

C u() Ci u()
u ui ui 1+,[]∈

C u() C' u() C'' u() … C
d 1−()

u(), , ,

C u() Cd 1−∈

21

area of solving differential equations. For most constructive curve generation techniques
existence is easily proved, or it is possible to characterize the necessary and sufficient
restrictions on inputs for solutions to exist. In some cases existence may be conditional on
the representation used; a differentiable curve may exist that meets the curve specification,
but that curve may not be in the space of curves covered by the representation used.

Existence proofs for curve generation techniques using iterative methods such as
functional minimization require the derivation of characteristic differential equations and
their subsequent analysis. Correctly characterizing a system based on functional
minimization with all its associated constraints is extremely complex, and proof of
existence is difficult or even impossible. In the absence of an existence proof, it may still
be possible to heuristically identify configurations that lead to unusable solutions, e.g. a
solution curve of infinite length. For example, a minimum energy curve (MEC, (3.1.1))
will run off to infinite length if the angular difference between supports is greater than π
(Fig. 2.9). In order to guarantee that an MEC exists for a given interpolation problem, the
arc length of the curve must be limited. The necessity of this restriction is pointed out by
Birkhoff and deBoor [13] who observe that a “satisfactory” interpolant composed of
circles of infinite radius may be constructed to solve any interpolation problem while
consuming zero energy. Jerome [104] established the sufficiency of limiting the arc length
of the solution curve.

Figure 2.9. A Minimum Energy Curve.

① the curve resulting from clamping end points with tangent directions differing by π.
② the curve where the difference in tangent directions is ε greater than π.

-1. -0.5 0.5 1.

0.5

1.

① ②

∞ ∞

22

2.8 Uniqueness
Once the existence of a solution to a curve generation problem has been established
(empirically or otherwise), it may be desirable to find out if there is more than one solution
to the problem as stated. Again, constructive curve generation techniques normally result
in the calculation of a single curve. Curves based on functional minimization often have
multiple solutions which represent multiple local minima in the energy landscape. It is
often insufficient to characterize the unique solution as that curve for which the functional
is globally minimized. Because in fact, in many cases, the global minimum is not the
desired minimum, e.g. the global minimum of an MEC is a curve of infinite length. If a
unique solution does not exist, it is normally necessary to modify the functional, to add
extra conditions, to change the approach used in calculating the curve, or some
combination of these. In the case of the MEC, the continuum method (described below)
can be used to compute a locally unique solution. The continuum method is a technique
where a continuous family of solutions is found and the desired solution is normally found
at one end of the continuum. We start our continuum with an MEC limited in arc length to
the accumulated chord length of the sequence of points connected one to the next. The
continuum is formed by gradually relaxing the arc length constraint until a stable
configuration or an upper arc length bound is reached. A stable configuration is a curve
shape that is a local minimum of the original MEC functional, free of arc length
constraints.

2.9 Sensitivity
The sensitivity of a curve generation technique refers to how a curve’s shape varies with
its defining data and even the algorithm used to compute its shape. First, is the derived
solution sensitive to the starting point? This applies primarily to curves computed using
iterative techniques such as minimization and is closely related to the issue of uniqueness.
Second, if the specification of a curve is modified continuously, does the solution vary
continuously? Figure 2.9 is an example of high sensitivity to small change, the
specification of curve ① is modified by ε and curve ② results, a curve of infinite length.
Finally, does a small change in specification lead to a small change in solution? During
interactive design, it is important that a curve’s shape respond in a reasonable and
controllable fashion to a user’s actions. A minor modification to a curve’s specification
should not result in a gross change in shape.

23

2.10Shape Preservation

Shape preservation is that aspect of a curve technique which determines how faithfully it

reproduces the shape of its defining data. For example, consider a curve defined by

interpolation points that vary monotonically in some direction, e.g. non-decreasing x and

y. If the curve resulting from monotonically varying points is also monotonic then the

curve is said to preserve monotonicity (Fig. 2.10). Similarly, convexity preservation states

that if the points defining a curve form a convex path then a convexity preserving curve

must also remain convex (Fig. 2.11). Restated, a convexity preserving curve may have no

more inflection points than its defining control polygon.

An even stronger property than convexity preservation and monotonicity preservation is

the variation diminishing property[191]. It states that a curve does not oscillate more often

about any straight line than the piecewise linear interpolation of the data points. An

Figure 2.10. Monotonicity Preservation.

Two curves are fit to monotonically varying data points. The upper curve does not preserve
monotonicity. The lower curve is non-decreasing preserving the monotonicity of the data.

monotonic data

not monotonicity preserving

monotonicity preserving

24

alternative statement of the property is that no straight line should intersect the generated
curve a greater number of times than it intersects the curve’s control polygon. A variation
diminishing curve is always smoother than the data used to define it (Fig. 2.12).

Figure2.11. Convexity Preservation.

Two curves are fit to data points which are convex①, i.e. the control polygon has no
inflections. Curve ② has inflection points and thus is not convexity preserving. Curve③
has no inflections, accurately reflecting the data and thus is convexity preserving.

Figure2.12. Variation Diminishing Curve.

Curve ① smooths the associated defining data, where curve ② does not. There is no line
which intersects curve① a larger number of times than it intersects the control polygon.

① ② ③

① ②

25

2.11Convex Hull Property
The convex hull property states that a curve remains within the convex hull of its defining
points (Fig. 2.13①). Note that this property also only applies to approximating curves
because interpolating curves must go outside the control hull. In Figure 2.13② we see the
broader definition of the convex hull property. Here a piecewise quadratic curve remains
within the union of the convex hulls of the points taken three at a time. Similarly, if the
curve were composed of cubic segments the curve would remain within the union of the
convex hulls of the points taken four at a time.

2.12Linearity
Consider a technique for creating curves that takes as input a series of points and
produces a curve that is swept out by varying the curve parameter u. The technique
used to create is considered to be linear if the following identity holds for all
inputs:

.

Figure 2.13. The Convex Hull Property.

① the curve remains within the convex hull of its defining control points. ② a piecewise
quadratic curve remains within the union of the convex hulls computed three points at a
time.

① ②

pi

Cp u()
Cpi

u()

Cpi qi+ u() Cp u() Cqi
u()+=

26

2.13Symmetry (w.r.t. ordering)

Curves defined by sequences of points may be sensitive to the order in which the points
are processed. A curve fitting technique is symmetric if the order in which the points are
processed has no effect on the shape of the resulting curve, i.e. a curved shape defined by
points should be equivalent to the shape defined by points [24].

2.14Invariance Under Transformation

Invariance under transformation means that a curve should not change shape under a
change of the coordinate system in which the data is described. Furthermore, under certain
transformations of the data, the resulting shape may change in a simple predictable
manner. Considering a transformation T applied to the data defining a curve and to the
curve itself if these produce the same curve:

, (2.19)

then the curve is said to be invariant under that transformation. There are three types of
transformational invariance of particular interest: invariance under similarity
transformations,invariance under affine transformations, and invariance under affine
parameter transformations.First, let us describe a hierarchy of transformations in terms of
the geometric measures they preserve. Rigid body motions preserve both angular and
length measures. Similarity transformations augment rigid body motions with uniform
changes of scale; angular measures and ratios of lengths are preserved. Finally, affine
transformations preserve parallel lines, and the ratios of lengths of parallel lines.

We start by considering function interpolation and approximation. The curve fit to data
from a function should not change shape if the units of measure are changed, i.e. it should
not change shape if scaling is performed along the axes (nonuniform scaling.) It is
generally not required that function interpolators exhibit transformational invariance
under anything more than nonuniform scaling.

Curve modeling techniques used in CAD applications should exhibit invariance under
similarity transformations. It should be possible to apply modeling transformations (e.g.
rotation, scaling, etc.) to a curve without the curve changing shape. There are curve
methods that are invariant under affine transformations, such invariance is not a
prerequisite for CAD utility, in fact it is not always desirable behavior (Fig. 2.14). In
Figure 2.14① affine invariance and a nonuniform scaling results in exaggerated
overshoot. In Figure 2.14② a similar nonuniform scaling results in an oval curve where a
circular curve is appropriate.

p0…pn pn…p0

T C pi t,()⋅ C T pi⋅ t,()=

27

2.15Locality

Consider a curve defined to interpolate a series of points, if the movement of a single point

changes the shape of the entire curve then the technique used to generate the curve

exhibits no locality whatsoever and is considered global. Locality refers to the extent that

one part of a specification is limited to affect only a small, well defined portion of a curve.

For example, if a single point to be interpolated is moved, how does the resulting curve

change shape? If a curve’s shape only changes in the neighborhood of the relocated point,

then the technique exhibits local behavior (Fig. 2.15). For an interactive design process it

is very important to have control over the locality of modification. A designer may

become frustrated if a modification at one end of a curve resulted in an unexpected change

Figure 2.14. The Effect of Affine Invariance.

① demonstrates overshoot as a result of affine invariance. ② demonstrates compression as
a consequence of affine invariance.

not affine invariant

affine invariant

original

original

not
affine

invariant

affine
invariant

①

②

28

at the other end of the curve. Pseudo-local control is exhibited by techniques where
relocation of a control point causes a formally global change in the curve definition, but
the apparent change is quickly attenuated as the curve leaves the neighborhood of the
modification.

On the other hand, it is also desirable to allow larger scale modifications to a curve’s
shape; e.g. a curve with fine detail might require global bending. We refer to those
techniques which provide explicit control over the locality of changes as having variable
locality.

2.16Consistency

The concept of consistency refers to a characteristic of interpolation techniques. In both
function and curve interpolation a consistent technique is one that preserves the shape of a
curve when an interpolation problem is augmented with additional constraints or data
points that match the geometry of the curve. In Figure 2.16① we see an original curve,
defined by six positional constraints. In Figure 2.16②,③ we see two possible results of
adding an additional positional constraint, i.e., a point lying exactly on the curve. In ②, an

Figure 2.15. Local vs. Global control.

The central point of a curve ① is moved. The curve resulting from the technique exhibiting
local control ② only changes shape in those spans adjacent to the relocated point. The
curve resulting from a global technique ③ changes throughout in response to the
modification.

①

②

③

29

inconsistent technique produces a curve of modified shape. In ③, precisely the same curve
is produced. The concept of consistency is most often achieved by techniques which, by
some measure, produce the best curve possible under the given constraints. If a new best
curve were produced by the addition of a new point on the curve then the previous “best”
curve was apparently not the best—a contradiction!

2.17Versatility

In section 2.4 we described the various computational forms that are used to describe
curves. Another aspect of curves and the techniques used to generate them is their inherent
versatility. As we have seen, some curve techniques are only capable of modeling
single-valued curves, while others may be multi-valued. In addition, some techniques may
only be applicable to planar curves, while others may model space curves with piecewise
planar segments, while still others may be true space curves. For example, a quadratic

Figure2.16. Consistency.

Consistency is the property that a curve’s shape remains unchanged when a compatible
constraint is added to an interpolation problem.

inconsistent

consistent

add a point
already on the curve

①

②

③

30

curve is by definition a planar curve. The versatility of a curve technique is also
determined by what types of curves can be represented exactly. For example, circular and
elliptical arcs can only be approximated by polynomial curves, whereas rational
polynomial curves may exactly model conic sections.

2.18Visual Appearance - Fairness

The inherent subjectivity of assessing the appearance of a curve makes the definition of
pleasing appearance and fairness difficult. The difficulty of arriving at a definition is
compounded by the fact that it is application specific. Despite, or perhaps because of this,
a number of definitions have been put forth.

A curve’s shape is completely described by the curve’s curvature and torsion as they vary
along its length. For plane curves this may be reduced to curvature because torsion is zero.
From this observation it should not be surprising that most quantitative measures of curve
quality are stated in terms of curvature and sometimes torsion. The earliest discussion of
fairness this author has found predates CAD and curve design by many years. In Aesthetic
Measure [15], George Birkhoff provides quantitative analysis of various art forms:
polygonal forms, ornaments and tilings, vases, music and poetry. It is in the section
concerning vases that he describes the “Requirements for Regularity of Contour”. This
discussion of the curvature of the outline of a vase remains a preeminent definition of
fairness:

“The following further consideration of the requirements for regularity of contour
is to be regarded as tentative. It is clear that such requirements can never be given
any very satisfactory formulation.

Consider a convex curve made up of arcs of circles of different radii, tangent to
one another at their common end points. Evidently the impression produced is not
that of a single unified curve, especially if the radii are alternately larger and
smaller.

A first obvious requirement, therefore, is that the curvature varies gradually (that
is, continuously) along the curve and oscillates as few times as possible in view of
the prescribed characteristic points and tangents. In particular the curvature
should not oscillate more than once on any arc of the contour not containing a
point of inflection. By inspection of various vase forms like those shown later, it is
found that this condition is satisfied in practice.

A second requirement is that the maximum rate of change of curvature be as small
as possible along the contour. This condition eliminates both unnecessarily large
curvatures along the contour and unnecessarily rapid changes in curvature.

Although the strict application of these two conditions would be very difficult,
still they may be regarded as substantially satisfied when it is not feasible to mod-
ify the curve so as to diminish either the greatest curvature or the rapidity of
change of curvature. The curves of contour actually employed will be found not to
permit of such modification.

31

The eye can follow with ease curves meeting these two requirements, just because
of the small curvature and its small rate of change.”

As mentioned above there are many definitions of fairness; some other definitions of
fairness are paraphrased below:

1. A curve is fair if its curvature plot is continuous and consists of only a few monotone pieces
[59].

2. “A frequency analysis of the radius of curvature plotted against arc length might give some
measure of fairness, the lower the dominant frequency, the fairer the curve [M. Sabin from 70].

3. A fair curve has minimum strain energy [180].

4. A curve is “fair” if it can be drawn with a small number of french curve segments [56].

5. A curve’s curvature plot must be almost piecewise linear, with only a small number of seg-
ments. Continuity of curvature is an obvious additional requirement [56].

6. The curve should be convexity preserving [202].

7. A curve is characterized as fair if its curvature plot is continuous, has the appropriate sign (if
the convexity of the curve is prescribed), and it is as close as possible to a piecewise monotone
function with as few monotone pieces as possible [187].

8. Fairness is measured as the integral of the square of the second derivative of the curve [146].

9. In many design applications a gentle, gradual development of curvature along a curve is much
desired and is often used as a subjective measure of curve fairness [135].

10. A curve is fair if its curvature plot consists of relatively few monotone pieces [57].

11. The properties desired of a fair curve are smoothness, shape preservation, absence of extrane-
ous inflection points and the like, but a curve which satisfies all of these criteria as well as the
original constrains may still fail to be fair.... Fairness measures must depend only on the geo-
metric invariants of the curve and be independent of the curve’s parametrization. A curve’s
shape should minimize either the variation of the radius of curvature or the variation of curva-
ture [182].

12. A plane curve is called fair if the following three conditions are satisfied: (1) The curve is G2;
(2) There are no unwanted inflection points on the curve; (3) The curvature of the curve varies
in an even manner. Expanding on (3): (i) The number of extreme points of the curvature should
be as small as possible. (ii) The curvature of the curve between two adjacent extreme points
should vary almost linearly [27].

These definitions, in particular Birkhoff’s, point to the approaches we have taken. Birkhoff
suggests minimizing the maximum curvature, and minimizing the variation of curvature
overall.

32

33

3
An Abridged History

of
Curve, Network,

and
Surface Design

To better understand the problems encountered in free-form shape design,
we review the approaches that have been developed for curve, network,
and surface design.

3.1 Curves and Curve Design

Much of the work on curve design has been to develop methods that behave naturally in
response to user specifications. A great deal of work has been devoted to the mathematical
modeling of the draftman’s spline. A draftman’s spline is a thin, smoothly bending strip of
wood held in place by weights called ducks (Fig. 3.1). The first recorded work related to
physical splines dates to the 18th century, to a study of elastica by James and Daniel
Bernoulli, and Leonhard Euler. Elastica are idealized thin beams. The Bernoulli brothers
postulated that the work required to bend a thin beam was proportional to the square of the
curvature. In a letter to Euler, Daniel Bernoulli suggested that the shape of the elastica was
such that its squared curvature was minimized. Acting on this suggestion Euler derived the
differential equation of the curve and classified its forms [124].

34

In 1946, Schoenberg introduced the polynomial spline function, a piecewise polynomial
function of degreen whose segments meet with Cn-1 parametric continuity. In 1957,
Holladay introduced the cubic spline for function interpolation and integration. The curve
he developed minimized

. (3.1)

He noted that for curves with modest slopes, the cubic spline provided a good
approximation to the bending of a thin rod.

It is at this point that the development of curves and curve design techniques branches,
with one vein of work building on the cubic spline and the other continuing to pursue
improved approximations ofelastica and other physical approaches. Since the latter
branch is more closely related to MVC, we will first review that work, and return to the
cubic spline and its descendants in section3.1.2. The remainder of this section is broken
down topically as follows:

3.1.1Nonlinear Splines: Elastica, MEC, PhysicallyBasedCurves, MVC
3.1.2Interpolating Splines: The Cubic Spline and its Descendants
3.1.3Local Interpolation Methods
3.1.4Bézier Curves and Composition Constructions
3.1.5Shape Preserving Splines
3.1.6Intrinsic Splines
3.1.7Local Approximating Splines: The B-spline and itsDescendants
3.1.8Variable Locality
3.1.9Surveys

Figure3.1. Draftman’s Spline and Ducks.

x2

2

d
d f x()

2

xd∫

f ' t() 1«

35

These subsections represent a survey of work on curve design and we provide them to
illuminate the prevalent problems in CAGD.

3.1.1 Nonlinear Splines: Elastica, MEC,

Physically Based Curves, MVC

Minimum energy curves, minimum variation curves, and other members of this family
require the solution of systems of nonlinear equations in order to compute their shape, thus
their classification as nonlinear splines.

Even Mehlum [132] developed a technique for generating an approximating curve based
on a spring model using the calculus of variations. In this model, the curve was suspended
by springs attaching the curve to its control points (Fig. 3.2).

Birkhoff et al. [14] presented a theoretical comparison of nonlinear mechanical splines,
elastica, and Wilson-Fowler splines (Fig. 3.3), discussing possible methods for the
computation of mechanical splines and elastica. The mechanical spline is a model of a thin
beam passing through frictionless, swiveling supports; it is a special case of the elastica in
which no tangential forces act on the beam or curve. Glass [78] presents the first algorithm
to compute mechanical splines or minimum energy curves (MEC) as they have become
widely known. His algorithm uses numerical techniques to compute discrete points on the

Figure 3.2. A Spring Curve.

An approximating curve is calculated by simulating the effect of springs attaching a rod to
a series of anchors or control points.

36

curve. Mehlum [133] developed techniques for the computation of MEC, producing a
piecewise circular arc approximation of arbitrary precision. Mehlum uses these methods
in the Autokon system for curve and surface design [131]. Woodford [211] improved on
Glass’s algorithm for computing discrete MEC. Lee and Forsythe [118] discuss the
variational and differential properties of open and closed MEC. Malcolm [125] further
improves the computation of discrete MEC. Jerome [104] discusses the necessary and
sufficient conditions for the existence of a minimum energy curve. Fischer and Jerome
[65] discuss the stable and unstable equilibrium of MEC. Stable equilibrium of MEC refer
to local minima of the energy functional, a configuration where the curve holds its shape
with no constraint on its arc length. Golomb and Jerome [79] present theoretical results
establishing conditions for equilibria, uniqueness, and regularity. Horn [101] thoroughly
studies a specific MEC segment, defined by two points on a baseline with a vertical
tangent constraint specified at each point. The resulting curve resembles a croquet hoop.
Horn computes closed form expressions for the energy, arc length and maximum
curvature of his subject curve.

Ohlin [149, 150] introduces the concept of consistency (2.16) and discusses consistent
interpolation methods. He finds that, given requirements of second order continuity,
invariance under similarity transformations, and consistency, there are very few
acceptable interpolation methods. For function interpolation, Holladay’s cubic spline is
the only consistent solution. For curve interpolation, the available methods belong to a
continuous family of curves that include MEC, a Cornu spiral1, and the lemniscate.
Independently he developed a fourth order continuous consistent spline that minimizes the
arc length integral of the square of the arc length derivative of curvature, the MVC. Ohlin
presents an algorithm for the computation of an MVC segment specified by position,
tangent, and curvature at the end points. His algorithm computes discrete positions,
tangents, and curvatures on the MVC and fits them with a piecewise quintic polynomial
curve. Ohlin also outlines the advantages of MVC over MEC:

1. higher order continuity.

2. it caters to our human preference for circles.

3. curvatures at the extreme points may be estimated by the splining method, as well as the direc-
tions. (sic)

4. curvature and/or directions can be prescribed at all points, end points or interval, without los-
ing continuity of curvature.

5. demanding to keep curvature as constant as possible rather than as small as possible will
reduce the likelihood of undesired changes of sign in curvature.

6. as we have seen before, a stable solution to MEC does not always exist.

1 A Cornu spiral is a curve with linearly varying curvature. Also known as Euler spiral, linarc, lince, and clothoid.

37

Kallay [114] describes a method based on finite sums and discrete optimization to
compute the MEC in of fixed arc length. Jou and Han [111, 112] discuss the
calculation of discrete MEC subject to arc length and tangent constraints.

In his thesis, Tom Rando [178] discusses the application ofoptimization to Bézier curve
and surface design. With respect to curve design, he minimizes the arc length of the
evolute of a curve segment specified by position, tangent, and curvature at the end points.
This amounts to minimizing the arc length derivative of the radius of curvature,

. (3.2)

He also mentions the possibility of minimizing the arc length derivative of curvature, the
MVC functional.

Finally, Celniker and Gossard [31] describe an interactive design system based on
modeling curves and surfaces using physical simulation. The system uses finite element
methods to compute the shape of curves subject to position and tangent constraints. The
resulting curves converge on the MEC as the number of elements used is increased.

The line of work traced out in this section reflects a search for an optimal/ideal interpolant.
This search began in a largely theoretical realm, ending in the application of these
concepts in an interactive environment. As a further testament to the potential of these
methods, Forrest [71] remarks that Autokon [131] is generally successful in producing
curves acceptable to naval architects, aerodynamicists, and car stylists, from relatively
crude data. Our work continues and parallels this vein; due to the increased speed of
workstations, better solutions to interpolation and design problems are now possible.

3.1.2 Interpolating Splines: The Cubic Spline and its

Descendants

As mentioned in the introduction to section3.1 on page33, the cubic spline was
introduced by Holladay as an approximation of the MEC. The work following his
introduction concerned methods for achieving an improved approximation to the MEC
and reducing or eliminating the unwanted wiggles or oscillations sometimes observed in
cubic splines. First, Asker [5] introduces several approaches that seem to have been lost or
overlooked by later researchers. First Asker introduces a method allowing the stiffness of
the spline to be varied along its length. This scheme provides a method to overcome

ℜ3

1
κ s()

d

sd

2

sd

0

l

∫

38

wiggles. Two versions of variable stiffness are presented. First, stiffness varying in a
piecewise constant fashion results in a C1 cubic spline. And second, stiffness varying in a
piecewise linear fashion results in a C2 quartic spline. These methods are equivalent to the
weighted spline of Salkauskas [186]. The second approach involves the establishment of a
local coordinate system between adjacent interpolation points (Fig. 3.3). This curve has
since become known as the Wilson-Fowler spline [77] and is used heavily by the DoE.
The approach is designed to locally reduce the magnitude of thereby improving the
approximation to the MEC. The Wilson-Fowler spline requires the iterative solution of a
nonlinear system of equations. In addition to improving the approximation to the MEC,
the Wilson-Fowler spline allows for the interpolation of multi-valued data sets, whereas
cubic spline function interpolation is limited to single-valued curves.

Ferguson [64] introduces the parametric cubic spline curve by applying cubic spline
function interpolation to vector valued data. A multi-valued curve defined by ,
where specify the Euclidean space coordinates of the interpolation point and is
the independent curve parameter. The value of u specifies the location of the interpolation
point in the parameter space of the spline. This is analogous to the role of the x-coordinate
in function interpolation. Note that the sequence of must be nondecreasing.

Figure 3.3. The Wilson-Fowler Spline.

Local coordinate systems are formed at each interpolation point of the Wilson-Fowler
spline. The x axis of the coordinate system is aligned with the chord connecting adjacent
points, the y axis is perpendicular to the chord.

y' x()

y x() is cubic

y

x

xy

x

y

x y z[] u, , ,
x y z, , u

ui

39

Schweikert [193] introduces the spline under tension as a means to deal with the spurious

oscillations sometimes observed in cubic splines. The solution to the system he set up

results in a curve described by exponential functions. Cline [37], and Pilcher [163] further

develop splines under tension. In part due to the expense of computing these exponential

curves, Nielson [140] introduces the -spline as a C1 piecewise cubic polynomial

alternative to splines in tension. In addition to providing a similar tension parameter,

-splines extend splines in tension by allowing tension to vary along the curve affording

greater control over curve shape.

Hagen [94] introduced the -spline as a generalization of the -spline; a piecewise quintic

exhibiting G2 continuity. Later, Foley [69] introduced the cubic weighted -spline, a

generalization of C2 cubic splines, weighted splines, and -splines. Extending piecewise

polynomial splines in another direction, Meier and Nowacki [135] describe splines that

minimize:

(jerk or shear) and (load). (3.3)

The result is a smoother, higher degree interpolant; note that “jerk” approximates the

derivative of curvature, and minimizing it approximates an MVC. Similarly, Pottmann

[167] extends -splines adding a third derivative term to the functional for minimization.

Pottmann’s spline results in a G3 continuous interpolant, with G4 continuity achievable

with uniform tension.

Thus far, the works discussed have introduced shape handles and increased continuity. We

now discuss some methods for the automatic setting of shape parameters and for the

automatic parameterization of spline curves; parameterization is an additional means of

shape control. First, consider the problem of parameterization. There are several methods

in wide use for establishing the parameterization of a cubic spline. The two simplest are

uniform parameterization and chord length parameterization. Using uniform

parameterization, interpolation points fall at evenly spaced parameter values. Chord

length parameterization stipulates that the points be spaced parametrically relative to the

Euclidean distances between successive points (Fig. 3.4). Marin [128] describes a

parameterization technique that minimizes an objective function. The resulting

parameterizations reduce overshoot, lower C3 discontinuities, and center oscillations in

the second derivative around zero. The solution is calculated in closed form for the case of

cubic function interpolation; unfortunately, the solution is only calculated as a numerical

approximation in curve interpolation problems. Farin [59:130-134] outlines other methods

for determining improved parameterizations.

ν

ν

τ ν
ν

ν

f ''' t()2 td∫ f
4()

t()
2

td∫

τ

40

Methods for automatically setting shape handles are less well developed. The setting of
shape handles is typically done interactively by the user/designer. Schweikert [193]
discusses conditions necessary for the absence of unwanted inflections, and provides an
explicit formula for setting the tension parameter of a uniformly parameterized cubic
spline to satisfy these conditions. Fletcher and McAllister [67] describe an algorithm for
automatically setting the tensions of a cubic spline function interpolant to remove
unwanted oscillations. Other methods for automatic shape preservations are reviewed in
section 3.1.5.

3.1.3 Local Interpolation Methods

Thus far we have described global methods for computing interpolating curves. In this
section we review local methods for computing smooth interpolating curves. Using local
methods, curves are typically less computationally expensive to calculate, and because
local methods exhibit local control, the resulting curves can be easier to manipulate during
the interactive design process. It is also possible to identify special configurations of
control points which can then receive treatment tuned to the configuration. The primary

Figure 3.4. Uniform vs. Chord Length Parameterization.

A cubic spline is fit to data using uniform and chord length parameterizations. The chord
length parameterized curve is smoother than the uniformly parameterized curve.

uniform
parameterization

chord length
parameterization

u0 0=

u1 1= u2 2=

u3 3=

u4 4= u5 5=

u0 0=

u1 5= u2 9=

u3 14=

u4 24= u5 29=

41

disadvantage of local methods is that they possess curvature plots that are usually less
smooth that those resulting from global and nonlinear splines. Furthermore local methods
are provably inconsistent, with the exception of linear interpolation [198].

The earliest method of local interpolation, still in wide use, is due to Ackland [2]. Often
referred to as osculatory interpolation, this method computes the slopes of a cubic
function interpolant using a parabolic fit at each interpolation point, Fig. 3.5. A similar
method due to Overhauser [151, 22] fits parametric quadratic curves to sets of three
points. The overlapping curves are then linearly blended resulting in a C1 cubic
interpolant guaranteed free of extraneous wiggles. Like the cubic spline, Overhauser
interpolation requires the user to specify the parameterization of the curve.

Akima [4] describes local procedures for the selection of tangent directions used in cubic
function interpolation. This method computes the slope at an interpolation point solely
from the slopes of the surrounding chords. The slope at point is

, (Fig. 3.6).

This has the property that if adjacent chords are of equal slope then the slopes at the three
incident points are set to the chord slope. This requires special handling of the case where

, . The special case just

Figure 3.5. Osculatory Interpolation.

A local cubic function interpolant uses parabolas ① fitted to sets of three points to compute
slopes for the cubic segments ②.

①

②

x3 y3,

t3

t4 5, t3 4,− t2 3, t2 3, t1 2,− t3 4,+
t4 5, t3 4,− t2 3, t1 2,−+=

t1 2, t2 3,= t3 4, t4 5,= t1 2, t3 4,≠, , t3 1 2⁄ t2 3, t3 4,+()=

42

mentioned renders the method sensitive to problems with numerical precision. The curve
resulting from a fixed data set may vary in shape if it has a condition very close to this
special case. For example, if the curve is calculated in single precision, the special case
may be used, whereas if calculated in double precision, the general rule may be used.
Another drawback to this particular special case handling is that it will cause the curve’s
shape to change discontinuously during interactive manipulation.

The Catmull-Rom spline represents a whole class of local interpolating splines. The most
commonly used version is a C1 cubic curve whose first derivatives at interpolation points
are set equal to the scaled chord formed by joining the previous and next interpolation
points. The scaling parameter is typically set to , but may be varied and used as a
shape handle, see Figure 3.7. This form of the Catmull-Rom spline is equivalent to
Overhauser interpolation. The Catmull-Rom spline is generalized by DeRose and Barsky
[48] who weaken the continuity from parametric to geometric, and then use the additional
degrees of freedom to add more shape parameters.

Manning [127] describes an iterative algorithm for a cubic interpolatory curve with G2

continuity. Manning was the first to work out the necessary and sufficient conditions for
curvature continuity as a function of parametric derivatives. Because the curves are
calculated independently of heuristic parameterization, they are free of oscillations due to
unevenly spaced data. Oscillations often result from parameterization methods that do not
adequately account for variations in the spacing of data.

Figure3.6. Akima’s Local Method for Determining Function Slope.

t12

t23

t3

t34

t45

1 2⁄

43

Ellis and McLain [55] offer an alternative to osculatory function interpolation. A cubic

curve is fit to the data surrounding an interpolation point, and the slope of this cubic is

used to specify the slope of the cubic interpolant at the interpolation point. The fit cubic is

computed to pass through the immediately adjacent interpolation points and give a least

squares fit to the next neighboring points on either side.

Ball [7] describes an alternative cubic curve segment specification in some respects

similar to cubic Bézier curves (3.1.4). The Ball curve is specified by its endpoints, the

tangent directions at those points, and a single interpolated point on the interior of the

curve. Higher order generalizations of the Ball curve are described by Said [185].

Forrest [74] describes a generalization of the Bézier segment (3.1.4) from polynomial to

rational curves. In particular he discusses the cubic segment and its flexible use as a space

curve and for the specification of conic sections. Pavlidis [154] describes a curve fitting

technique based on conic curve segments. Pratt [174] also developed an interpolant based

on conic splines, using available degrees of freedom to approximately minimize the

variation of curvature along the curve. Most recently, Pottmann [168] describes a locally

controlled G2 conic spline which interpolates position, tangent, and curvature. The

interpolation points are joined by two conic segments per span.

Figure 3.7. Catmull-Rom Spline Interpolation.

The cubic segments of a cardinal spline are defined by the positions of their end points and
first derivatives equal to the direction and the magnitude of the chord formed by
joining the neighboring interpolation points.

1 2⁄

44

Jordan and Schindler [110] present a locally controlled G2 rational polynomial curve with
a tension shape parameter. Nielson [141] presents a rational (cubic over quadratic) spline
where segments are planar with zero curvature at the end points. This scheme also has a
tension parameter and is trivially G2.

De Boor, et al. [44] describe a planar cubic G2 interpolant exhibiting convexity
preservation and high accuracy. The curve is defined by position, tangent, and curvature at
the end points of each segment. There are restrictions on the specification of curvature that
allow a solution to the interpolation problem. They suggest that position and tangent be
specified and that curvature be used as a shape parameter. Peters [157] develops the
construction of a local quartic G2 space curve that interpolates position, tangent, and
curvature. If either tangent or curvature or both are not specified, methods based on degree
reduction or derivative minimization are used to initialize them.

3.1.4 Bézier Curves and Composition Constructions

In an important development, de Casteljau [45] presents what became known as the Bézier
curve [12]. The importance of this curve lies in the fact that it is widely used in the
construction of local interpolants. His work describes techniques for the calculation of
points on the curve which also provide control polygons for the curve segments on either
side of the calculated point (Fig.3.8). In recent work, Ramshaw [175, 176], using
multi-affine maps, provides an elegant and illuminating description of Bézier and B-spline
curves (3.1.7).

Figure3.8. Quartic Bézier Subdivision.

Computation of points on a Bézier curve and subdivision of a Bézier curve is accomplished
by repeated linear interpolation.

control
points

first half

second half

���
���

���

���
���

���
���

���
���

�

���
���

���
���

���
���

�

curve midpoint

45

In order to compose local interpolants from Bézier segments, conditions for continuity are

required. Farin [61] derives the necessary and sufficient conditions on the control points of

cubic Bézier segments in order for adjacent segments to meet with G2 continuity. Hagen

[93] provides conditions for torsion continuity, noting that this does not imply G3

continuity. Böhm [19] extends Hagen’s conditions to rational Bézier curve segments.

Most recently, Pottmann [166] provides constructions for composing G3 continuous

curves from Bézier segments.

Higashi et al. [98] describe constructions for fair Bézier curves specified by position,

tangent, and curvature. The construction is designed to produce curves with smoothly

varying curvature, MVC-like curves. Schaback [189] describes a construction for a unique

G2 interpolant composed of Bézier segments which preserves convexity. The input is

restricted such that the sum of the angles at the ends of a chord is less than; they offer

no solution in cases where this restriction is violated. Curves are made up of quadratic

segments fitted to convex regions and cubic segments fitted to areas requiring a point of

inflection. Straight lines are used in areas where data points are colinear.

In a new approach to interpolation, Séquin introduced the procedural spline [195]. Cubic

Bézier segments are joined with G1 continuity using rule based, geometrical methods to

find first derivative directions and magnitudes. Like Akima’s work this approach

recognizes special cases such as three colinear points. This work is carried on by Shirman

[197] who describes G2 continuous curves, in some cases using multiple segments

between interpolation points.

Rando [178] discusses the calculation of individual Bézier curve segments based on

minimizing the variation of the radius of curvature,

. (3.4)

This approach is similar to an MVC restricted to a pair of constraint points with a single

intervening curve. An extension to the more general setting of multiple Bézier segments

and multiple constraint sets is straightforward. However, as a functional, (3.4) has the

drawback that it does not allow points of inflection, i.e., where . This constraint

renders the functional unusable in most CAD environments.

90°

1
κ()d

sd

2

sd∫

κ 0=

46

3.1.5 Shape Preserving Splines

Work on shape preservation begins with Schweikert’s splines in tension [193]. Tension is
set to eliminate extraneous wiggles in the interpolating curve. More recently, shape
preservation has been formally defined as monotonicity and convexity preservation.

Fritsch and Carlson [76] present a method for calculating a monotone cubic function
interpolant. They derive the necessary and sufficient conditions for monotonicity and
construct an algorithm that produces smooth monotone curves from monotone input data.
McLaughlin [130] describes a monotonicity preserving interpolation technique that
employs straight lines and parabolas to produce a monotonic interpolant. Schumaker [192]
presents an interactive algorithm that generates a C1 quadratic spline that is convexity and
monotonicity preserving. The algorithm preserves the extra degrees of freedom as shape
handles available to the user. In a series of papers Fletcher and McAllister [68,66,67]
discuss techniques by which bias and tension are used to automatically achieve convexity
preservation. Gregory [89] presents an algorithm for automatic shape preservation. The
algorithm uses a C2 rational cubic representation and solves nonlinear shape consistency
equations to determine the curve. Braibant et al. [21] applies finite element analysis to
B-spline and Bézier curve design satisfying design constraints such as convexity.
Ferguson [63] and later Jones [109] describes a system based on constrained optimization
for achieving convexity of an interpolant. Goodman and Unsworth [80] use a piecewise
cubic and straight line curve to form a curvature continuous interpolant that is locally
convexity preserving; the solution of two nonlinear equations is required per segment.

Roulier [181] presents conditions for cubic Bézier segments of positive curvature. A
segment exhibiting solely positive curvature is free of inflections and is thus convex. Later
work by Roulier et al. [182] on curve fairness and monotonically varying curvature shows
that MVC are naturally convex. Among curve segments specified by geometric
constraints, position, tangent and curvature; if a curve exists with monotone curvature
then the curve minimizing curvature variation will have monotone curvature.

3.1.6 Intrinsic Splines

Intrinsic, or alternativelygeometric splines produce curves from geometrically-based,
parametrically invariant curve specifications. Nutbourne, et al. [148] begin work in this
area with curve design techniques based on curvature profile integration. Using this
method, a designer specifies the curvature over the length of the curve, and the curve is
calculated by integrating the curvature plot (Fig.3.9). Adams [3] presents a similar
method addressing the integration of torsion in addition to curvature. Bolton [23]
describes a system based on biarc interpolation (Fig.3.10). In this method, curve segments

47

are specified by positions and tangents at their end points. The position and tangent values
are interpolated by pairs of circular arcs meeting with tangent continuity. Pal and
Nutbourne [152] discuss a method for computing a curve segment specified by end point
position, and optionally, tangent and curvature. Their approach uses from one to four
linarc segments to satisfy a given constraint set. Pal [153] extends the approach from two
to three dimensions. Schechter [190] describes a more general system where multiple
linarcs are used to compute curve segments specified by point, tangent, and curvature. A
large family of alternate solutions is available from which a designer may select.
Remember that the linarc was one member of the family of consistent curves studied by
Ohlin (3.1.1).

Figure 3.9. Curves from Curvature Integration.

The curve ① reflects the curvature profile ②; it starts as a straight line, curvature
increases linearly to a constant curvature , etc.

κ

s

s 0=

s l=

①

②
1 r⁄

r

1 r⁄

48

3.1.7 Local Approximating Splines: The B-spline and

its Descendants

The B-spline was one of the first splines used in CAGD and several new concepts were
introduced via the B-spline. It is because of its importance to the field in general that a
discussion of work on B-splines is included here. The B-spline is an approximating spline
which exhibits local control. The curve is defined by control points and follows the control
polygon in a predictable and intuitive fashion (Fig. 3.11).

Figure 3.10. Biarc Interpolation.

Biarc interpolation yields a one parameter family of solutions; three solutions to a single
problem are shown.

Figure 3.11. A Quadratic B-spline.

49

Early work on B-splines begins with Schoenberg [191], Cox [42] and de Boor [43] and
was applied to approximation problems. Gordon and Reisenfeld [82] describe the first
application of B-splines to problems of CAGD. In his thesis, Versprille [206] introduced
the nonuniform1 rational B-spline (NURB) to computer aided design applications. The
main advantage of the rational form over the integral form of the B-spline is the ability to
exactly represent conic curves. The rational form of the B-spline is described using the
control points of the integral B-spline augmented with a weight at each control point. The
weight acts as a shape handle with which the curve’s shape can be further controlled.
Increasing the weight associated with a vertex draws the curve closer to the associated
control point. Similarly, decreasing the weight of a control point causes the curve to move
away from that point. Tiller [203] has also discussed the use of NURBS for CAGD.

Barsky [9] introduced the -spline as a uniformly parameterized geometric spline. A
geometric spline satisfies geometric continuity rather than the parametric continuity of a
traditional spline. Uniform parameterization stipulates that the knot values, , be evenly
spaced, . The -spline incorporates two global shape handles, , that
describe the mapping between geometric and parametric continuity. First order parametric
continuity is achieved by matching first derivatives at segment-segment knots ,

. (3.5)

 scales the first derivative of the composite curve on the minus side of the knot,

. (3.6)

Second order parametric continuity is achieved by matching second derivatives,

. (3.7)

 acts as a weighting parameter, as it is increased the curve moves toward the associated
control point. Algebraically, the second derivative on the plus side of the knot is calculated
as

. (3.8)

As described here are global shape handles, Barsky and Beatty [8] describe the
local control of the beta shape handles.

1 nonuniform refers to curve parameterization, curve segment joints may be unevenly spaced parametrically.

β

ui
ui 1− ui− 1= β β1 β2,

ui

C' i 1− ui() C' i ui()=

β1

β1C' i 1− ui() C' i ui()=

C'' i 1− ui() C'' i ui()=

β2

β1
2C''

i 1−
ui() β2C' i 1− ui()+ C'' i ui()=

β1 β2,

50

Cohen [38] introduced LT-splines which were later shown by Joe [106] to be equivalent to
discrete -splines. In a series of papers [105, 106, 107], Joe presents nonuniform

-splines, -spline subdivision or knot insertion, the equivalence of non-uniformity and
, and rational -splines. Pham [162] describes the mapping between a conic-spline

with cubicly varying to a conic B-spline.

3.1.8 Variable Locality

We have described many curve generation methods that exhibit local control. Many of the
methods discussed inherently allow for curve refinement through subdivision, or knot
insertion. In subdividing a curve, control points are added, further restricting the extent of
influence of control points. This allows the portion of the curve influenced by a control
point to be reduced, providing a means for fine tuning curve shape. None of the methods
described thus far provide a mechanism for increasing the portion of the curve influenced
by a given control point. Given this, once detail is added to a curve it is quite difficult to
make more global modifications to a curve’s shape. Forsey [75] describes a curve design
technique based on B-splines that has embedded mechanisms for controlling the locality
of curve modifications. His curves,hierarchical B-splines, define a hierarchy of B-splines.
At each level in the hierarchy, B-splines are defined relative to their parents in the
hierarchy. Also, at each level the B-spline is subdivided increasing the number of control
points and the locality of their effect. Because splines in the hierarchy are defined in a
relative fashion, modifications made at one level of the hierarchy are automatically
propagated to those splines lower in the hierarchy, whose definitions are relative to the
modified segment. Forsey’s approach is a significant improvement in the area of control
of locality, however the hierarchy of curves is restrictive and it is not possible to achieve
arbitrary locality.

3.1.9 Surveys

Brodlie and Böhm have independently compiled excellent surveys of techniques for curve
design and representation.

By Brodlie:

A Review of Methods for Curve and Function Drawing [23].

Methods for Drawing Curves [24].

By Böhm:

On Cubics: A Survey [20].

A Survey of Curve and Surface Methods in CAGD [18].

β
β β
β1 β β

β2

51

3.2 Network Computation

Many surface modeling and data interpolation schemes use a mesh or network of curves
as a key component in the construction of a smooth surface. In many cases the network
computation is not tied to surface computation so that a variety of network computation
methods may be paired up with a single surface modeling technique.

Chiyokura and Kimura [33] describe a system for the blending and filleting of polyhedral
models. Polyhedron edges are replaced by portions of cylinders and cones, vertices are
replaced by more complex surfaces. Rounding operations are specified by radii at the end
points of polyhedron edges. The blending surfaces are computed by first creating a mesh
of quadratic Bézier curves and then spanning them with Gregory patches. The curve mesh
is automatically generated from the blending specification (Fig.3.12). The end points of
the curves making up the edges of the network are constrained to have tangents in the
planes of the original polyhedron faces. These methods are successful in the limited
application of filleting and blending the edges of polyhedral solids. The networks
produced are only tangent plane continuous and result in surfaces lacking fairness. Farin
describes a G1 interpolant that operates ontriangulated data consisting of position and
normal information. A network of cubic curves is constructed under the restriction that the
surface patches meet with tangent continuity [58].

Nielson [142] introduces the minimum norm network (MNN) for C1 bivariate function
interpolation. The MNN is a network of cubic curves that meet at interpolated vertices
with tangent plane continuity while minimizing a linear energy term that approximates
strain energy. The computation of the network requires the solution of a global system of
linear equations. This method applies only to bivariate functions and is not suitable for
modeling.

Piper [164] describes a local constructive technique for the computation of a G1 network
of cubic curves. This construction assumes that both surface position and surface tangent
plane information are provided. The curves are specified by their endpoints (supplied
explicitly) and first derivatives. The direction of the first derivative is established by
projecting the chord, connecting the end points of the cubic, onto the plane specified at the
vertex (Fig.3.13). The magnitude of the first derivative is set equal to chord length plus
one third of the distance that the end of the chord was projected. Similarly, Séquin [195]
computes a G1 cubic curve mesh from a polyhedral model. The surface normals at the
vertices of the polyhedron are computed as a weighted average of the normals of the
incident faces. The weights are proportional to the angle formed by the face’s edges
incident to the vertex. Once the normal is fixed, chord projection is used to establish curve
tangent direction, and the chord length is used for the derivative magnitude.

52

Shirman and Séquin [200] present a construction for a local G1 cubic curve network used

for polyhedral smoothing. Surface normals at vertices are computed as a weighted average

of face normals. The weighting used is either proportional to the area of the incident face

or to the angle formed by the face’s edges that are incident to the vertex. The first

derivatives at the end points of the curves of the network are set using chord projection

and chord length. They also introduce the “opposite edge method” where opposing curves

are constructed to meet with tangent vector continuity. A pleasing spline [198] is fit

through the subject vertex and two of its opposing neighbors. At even order vertices this is

straightforward, and the normal is defined as an average of the normals implied by the

curves intersecting at the vertex (Fig.3.14①). Odd order vertices require the introduction

of a “phantom” vertex at the midpoint of the segment connecting the two “opposite”

vertices (Fig.3.14②). In his thesis, Shirman [198] assesses the relative merits of several

different methods for the construction of G1 cubic networks. He concludes that using the

“opposite edge method” for normal and tangent direction calculation and that using chord

length to set first derivative magnitude are superior among the methods tested.

Figure 3.12. A Curve Network

One corner of a box is blended, the curve tangents are constrained to the planes defined by
the faces at their endpoints.

53

Mann, et al. [126] present a survey of triangular interpolants. They found most

interpolants to be unsatisfactory, and in particular found that the surfaces could be

improved significantly by improving the quality of the curve networks. They adapt a

method by de Boor, et al. [44] to create an improved mesh. It requires that surface

position, normal, and curvature be provided by the designer or a sampled function.

Additionally, the curves of the network must remain planar. Because of this restriction, the

tangent direction is chosen by computing a plane in which the curve must lie. This is

accomplished by taking the cross product of the chord and the average of the normals

specified at the chord’s end points. The tangent direction is along the line of intersection of

the surface tangent plane and the plane containing the curve. While they find this approach

to result in improved curve networks with G2 continuity, they discuss a number of

Figure3.13. Piper’s First Derivative Computation.

First derivative dir ections are indicated by arrows in the surface tangent plane. First
derivative magnitudes are set equal to the chord length plus one third the distance from the
neighboring point to the tangent plane.

54

associated problems. First, for each curve of the network, zero to three solutions exist. If
no solutions exist they must fall back on some other method for curve definition. In the
case where multiple solutions exist, while their shapes are nearly indistinguishable, their
parameterizations vary greatly. The results of using different parameterizations
dramatically affects the quality of the resulting surface. Mann et al. have outlined the
difficulties with the methods described by Piper and Shirman. Both of these lack G2

continuity and fairness. Though possessing G2 continuity, the method resulting from
adapting de Boor et al. lacks fairness.

Nielson [143] proposes an interactive design system using a minimum norm network
(MNN) generalized to ℜ3. In the proposed system, users specify position, surface normal,
and a tension shape handle. This modeling system holds some promise. However, because
it lacks G2 continuity and uses a linear approximation to strain energy, it will probably not

Figure3.14. Opposite Edge Method.

At even order vertices① the “opposite edge method” fits a pleasing spline through pairs of
opposite vertices and the subject vertex, at odd order vertices②, the mid points of edges
serve as curve end points. Note that curves of network② run fr om the vertices (corners) to
the central point, and that the curves from the central point to the sides are only used in the
construction.

①

②

55

exhibit a high degree of fairness. Pottmann [169] presents a generalization of MNN that
results in a C2 function interpolant. This method applies only to bivariate functions and is
not suitable for modeling.

Moreton and Séquin [136] describe an early version of the MVN. G2 minimum energy
networks are described that minimize the MEC functional (4.1), the MVC functional
(4.2), or a weighted combination of the two. The surface continuity construction used in
this early work lacks the component of curvature in the binormal direction (section5.1)
and is generally less compact and less efficient. In section5.1 we describe the
representation and continuity constructions used in the computation of MVN.

3.3 Surfaces and Surface Design
MVS are designed to solve many of the problems encountered in the computer aided
design of curved surfaces. In this section we review work on curved surface design and
representation. To start, Ferguson [64] describes one of the earliest techniques for the
description of general free-form surfaces. A mesh of cubic splines is computed and
blended using tensor product patches with zero length twist vectors. The resulting surface
interpolates a rectangular mesh of data points inℜ3. The remainder of this section is
topically broken down as follows:

3.3.1Patches
3.3.1.1Coons Patches
3.3.1.2Bézier Patches
3.3.1.3B-spline Surfaces
3.3.1.4Transfinite Interpolants
3.3.1.5Gregory Patches
3.3.1.6Triangular and n-Sided Patches
3.3.1.7Subdivision Surfaces and Splines on Arbitrary Networks
3.3.1.8Principal Patches and Cyclides

3.3.2Continuity
3.3.2.1Continuity Conditions and Constructions
3.3.2.2Vertex Enclosure

3.3.3Finite Element Analysis, Minimization, Optimization, and Fairing
3.3.4Surveys

3.3.1 Patches

3.3.1.1 Coons Patches

Coons [40] describes a surface representation based on the blending of boundary curves;
Forrest [72] provides a good overview of Coons’ work. A linear Coons patch is defined by
adding the ruled surfaces formed by opposing curve boundaries and subtracting the

56

bilinear surface formed by the four corners of the patch (Fig.3.15). Using linear Coons
patches to blend a network of curves results in a G0 surface. Toovercome the lack of
tangent continuity Coons describes a patch capable of interpolating cross boundary
tangent information in addition to mesh curves. The Coons biquintic patch is an extension
of a tensor product patch using Hermite blending functions. Gordon [83] generalizes
Coons patches to interpolate an arbitrary continuous functions along mesh lines. Gordon’s
work leads to a body of work on transfinite interpolants (3.3.1.4). Gregory [90] describes a
different generalization of Coons patches that allow for the independent specification of
patch twist vectors (3.3.2.2). This specification removes the constraints on the twist vector
at the expense of a parametric singularity, an increase in degree, and the introduction of
rational blending functions. This work is important since it introduces a mechanism by
which networks of patches can be constructed locally (3.3.1.5). Gregory and Charrot [87]
describe a triangular version of the twist compatible patch.

3.3.1.2 Bézier Patches

Bézier [12] describes the mathematical underpinnings of UNISURF, the modeler used at
Renault. In addition to describing the construction and calculation of Bézier patches
(Fig. 3.16) he touches on several issues which became major research topics in later years:
the vertex enclosure problem (3.3.2.2), patch-patch continuity (3.3.2.1), and free-form
deformations. Earlier, in unpublished work, deCasteljau [45] develops what has become
known as the triangular Bézier patch (3.3.1.6)(Fig.3.17). Included in his work are stable
evaluation algorithms for Bézier curves and Bézier triangles.

Figure 3.15. Linear Coons Patch Construction

57

3.3.1.3 B-spline Surfaces

The use of B-spline surfaces in CAGD was introduced by Gordon and Riesenfeld [82].
Versprille [206], and later Tiller [203], introduce the use of rational B-splines to CAGD.
The rational B-spline is capable of exactly representing quadric surfaces such as spheres
and cylinders. More recent work related to B-spline surfaces has been in the areas of
n-sided patches (3.3.1.6) and arbitrary control meshes (3.3.1.7).

Figure3.16. Quadratic Tensor Product Bézier Patch Construction

① Points on a tensor product patch are computed using repeated bilinear interpolation.②,
③, and④ A patch is subdivided by repeated linear interpolation.

① ②·

③ ④

58

3.3.1.4 Transfinite Interpolants

Introduced by Gordon [83], transfinite surfaces are important because they represent one
solution to the smooth assembly of collections of patches. Since transfinite interpolants
interpolate arbitrary boundary data, it is trivial to smoothly piece together surface patches.
Coons [40] describes the application of transfinite interpolation to the blending of a
rectangular mesh B-spline curves. Gregory and Charrot [87] describe the first published
triangular interpolant. This interpolant matches position and tangent data at triangle
boundaries. Nielson [144] describes a transfinite triangular patch that interpolates both
patch boundary curves and cross boundary tangent functions. A discrete version of the
patch is presented where vertex normals are linearly interpolated along the boundaries.
Using the discrete version of the patch, it is trivial to construct a G1 interpolant over an
arbitrary triangular mesh. Hahn [95] uses transfinite techniques to fill an n-sided hole with
n rectangular patches. Hagen and Pottmann [92] describe a G2 transfinite triangular patch
which, like Nielson’s triangle, can be discretized and used to create a G2 interpolant over
an arbitrary triangular mesh.

Figure3.17. Quadratic Triangular Bézier Patch Construction.

① a Bézier triangle; ② triangular contr ol hull; ③ finding the center point of the patch
thr ough repeated linear interpolation.

① ② ③

59

3.3.1.5 Gregory Patches

Developed by Chiyokura and Kimura [33], Gregory patches were inspired by Gregory’s
[90] modified Coons patches. They use similar rational blending functions to remove the
twist constraints from tensor product Bézier patches (3.3.2.2). The Gregory patch has two
twist vertices at each patch corner. A point on the surface is computed by linearly
blending the twist vertex pairs to form a Bézier patch which varies as a function ofu andv
(Fig. 3.18). These vertex pairs are shown connected by a transparent rod with the twist
vertex position for shown in the middle. Chiyokura [34] further discusses
the application of Gregory patches to irregular mesh interpolation. Gregory patches form
an integral part of the commercial CAD system DesignBase [36]. Shirman and Séquin
[196] describe an extension of Gregory patches providing shape parameters,shear, bulge,
andtilt while maintaining G1 continuity.Chiyokura, et al. [35] extend Gregory patches to
patches with rational boundary curves.

3.3.1.6 Triangular and n-Sided Patches

Non-degenerate triangular patches suitable for computer aided design were introduced by
Gregory and Charrot [87]. Their interpolant is formed from the blend of three separate
triangles satisfying the constraints associated with a single side of the triangle. Farin [58]
describes a triangular interpolant for data inℜ3. First, boundary curves are computed, then
a patch is fitted into each opening, and finally each patch is subdivided in Clough-Tocher
fashion (Fig.3.22), and the boundaries are adjusted to G1 continuity. Sabin [184]
describes three and five sided patches that are easily included into surfaces composed of
biquadratic tensor product patches. Similar to their triangular patch, Charrot and Gregory
[32] describe a pentagonal patch resulting from the blending of five rectangular patches.
The patches are placed at each corner of the opening and blended to form G1 continuous
boundaries. Hosaka and Kimura [102] describe three, five, and six sided patches
compatible with Bézier patches. The methods match quadratic and cubic adjacent patches.
Piper [164] presents a construction for a pair of Bézier triangles to meet with G1 and
interpolate position and tangent specifications at the endpoints of the shared edge. Using
this construction, he describes a scattered data interpolant using a Clough-Tocher splitting
scheme. Hahn [95] describes a method for filling an n-sided hole with rectangular patches.
This approach is a generalization of Charrot and Gregory [32] and uses a transfinite
interpolant to solve the problem for arbitraryn. Jones [108] describes a method for
constructing a collection of rectangular patches meeting with tangent or curvature
continuity in order to fill ann-sided hole, for oddn. For tangent and curvature continuity,
the resulting patches are respectively biquintic, and biseptic. Gregory and Hahn [86]
describe a polygonal patch for filling ann-sided hole in a rectangular patch complex. The
resulting patch is rational polynomial, G2 continuous with surrounding patches, and

S u v,()

u v 0.5= =

60

affords several shape parameters.Loop and DeRose [121] present the S-patch as an
n-sided generalization of triangular and quadrilateral Bézier patches. A Ck algorithm for
joining S-patches with Bézier triangles is also presented.

Figure 3.18. A Gregory Patch

A bicubic Gregory patch control hull; the dual twist vertices are shown connected by a
transparent rod. The vertex in the middle of this rod is positioned for surface parameter
values .u v 0.5= =

61

3.3.1.7 Subdivision Surfaces and Splines on Arbitrary Networks

Catmull and Clark [29] introduced the subdivision surface. Subdivision surfaces are

formed by taking a network of points and recursively subdividing the network to produce

a B-spline-like surface as the number of subdivisions increases (Fig. 3.19). In the case

where the network is restricted to a rectangular mesh, the resulting surface is exactly the

uniform B-spline surface resulting from treating the network as the control points of the

surface. In fact, as the number of subdivisions increases, major portions of surfaces on

arbitrary nets form tensor product B-spline surfaces, it is only in areas around original

vertices of order other than four that irregular behavior occurs. Doo and Sabin [53]

analyze the behavior of subdivision surfaces around extraordinary points (those vertices

of the network that have order other than four.) Their analysis shows that the limiting

surface is G1 and indicates methods that might further improve the behavior of surfaces

near singular points. Beeker [11] describes a system for smoothing polyhedral networks

with four-sided openings and vertices with 3,4, and 5 incident edges. The resulting surface

is composed of bicubic patches joining with G1 continuity. Van Wijk [208] studies the

fitting of tensor product β-spline patches to networks with four-sided faces, and vertices of

order 4 or odd order vertices. Nasri [138] extends these works to surfaces that interpolate

the network control points. This is accomplished by deriving a new network that places

the original control points in the centers of the new network openings. Computing the new

network is very similar to computing the dual of a planar graph. Tan and Chen [201] use

the ideas of Catmull and Clark to construct a network of biquadratic B-spline patches.

Figure 3.19. Two Generations of a Subdivision Surface.

① The original polyhedral model. ② The model after the edges and vertices have been
removed. ③ The model after the edges and vertices of ② have been removed.

① ② ③

62

Starting with the same network specification, they only subdivide those regions containing
or adjacent to extraordinary regions. This approach is taken at each level of the recursive
subdivision, isolating the singular regions with geometric convergence (Fig. 3.20). Ball
and Storry [6] further study the behavior of subdivision surfaces near extraordinary points.
Their results, based on an eigen analysis of the subdivision matrices, show what

Figure 3.20. Four Steps in the Isolation of Singular Points

① The original polyhedron. ②, ③ After one and two levels of subdivision. ④ The regions
representable by tensor product B-splines after two subdivisions. ⑤ The singular regions
after two levels of subdivision. ⑥ Another level of subdivision applied to one of the singular
regions. ⑦ The B-spline regions after the third level of subdivision. ⑧ The remaining
singular region after three levels of subdivision.

① ②

③ ④ ⑤

⑥ ⑦ ⑧

63

conditions are necessary for G1 continuity.Brunet [26] describes an extension of Doo and
Sabin’s method combined with Nasri’s approach that includes shape handles and
automatic methods designed to reduce jumps in curvature between patch boundaries.
Cavaretta and Micchelli [30] provide a thorough analysis of subdivision curve and surface
algorithms. Dyn, et al. [54] present an approach quite similar to Brunet’s, no comparison
is made with earlier work. Höllig and Mögerle [99] introduce a new spline space,
G-splines. This new spline is derived from the work of Goodman [81] and defines splines
on networks composed of four-sided faces. Goodman’s work is similar to that of Van
Wijk’ s β-spline surfaces on restricted networks. Loop and DeRose [122] describe a
generalization of B-spline surfaces that can be applied to models of arbitrary topology.
S-patches [121] are used as the building blocks of the surface. The network of patches is
restricted to one of two types: a network of four sided patches, or a network with exactly
four faces incident to each vertex. Lee and Majid [119] present methods for the generation
of Bézier and B-spline surfaces from polyhedral control networks. This is similar to
Goodman’s approach where shape handles are incorporated into the construction. Finally,
Nasri [139] has generalized his recursive subdivision algorithm to support the
interpolation of both vertex positions and vertex normals.

3.3.1.8 Principal Patches and Cyclides

Martin [129] describes the use of principal patches for geometric modeling. A principal
patch is a patch whose edges fall along lines of principal curvature. Since lines of principal
curvature have zero geodesic torsion, it is simple to form G1 continuous joins between
patches. Martin uses portions of surfaces of revolution and portions of Dupin’s cyclides as
principal patches. In similar papers Böhm [17] and Pratt [173] explore the use of cyclides
in geometric modeling. They derive the Bézier form of a cyclide and provide several
blending examples. Cyclides are particularly interesting because they are optimal MVS
surfaces, i.e the MVS functional is zero for any cyclide.

64

3.3.2 Continuity

3.3.2.1 Continuity Conditions and Constructions

Bézier [12] discusses the necessary and sufficient conditions for tangent continuity
between adjoining patches. He states that the partial derivative vectors of patches should
be coplanar (Fig.3.21)

.

Bézier enforced this condition by using the relation

,

where and vary linearly.

Veron, et al. [205] characterize first and second order continuity between polynomial
tensor product patches in terms of the geometric measures. They then proceed to
characterizenth order continuity in terms of reparameterization. Farin [60] presents
sufficient constructions for all three combinations of triangular and rectangular joins of
polynomial surface patches. Kahmann [113] derives the conditions for second order
continuity between tensor product Bézier patches. Briefly, if the patches meet with G1

continuity, thenG2 continuity may be achieved by setting up the patches such that their
asymptotic directions are colinear across the patch-patch boundary. This construction
holds unless the patch-patch boundary follows an asymptotic direction of the surface.
Kahmann also notes that construction of G2 continuous patch networks is extremely
difficult due to the second order analogue of the twist compatibility problem (3.3.2.2).
DeRose [47] discusses two different, but equivalent, characterizations of geometric
continuity. The first is based on reparameterization, and the second is based on the theory
of differentiable manifolds. Höllig [100] discusses continuity conditions for triangular and
quadrilateral patches. G1 and G2 continuity of Bézier patches is discussed in terms of
β constraints as developed by DeRose [47]. Hahn [96] characterizes Gk continuity in
terms of a connecting diffeomorphism (reparameterization). He considers continuity
between adjacent patches and where several patches meetaround a vertex. Pegna and
Wolter [155] provide alternative conditions for G2 continuity across patch-patch
boundaries. Considering a pair of patches that meet with G1 continuity, they show that
these patches need only have equal normal curvatures in a single direction that crosses the

F u v,()∂
u∂

F u v,()∂
v∂

G w v,()∂
v∂≡

G w v,()∂
w∂

0=

F u v,()∂
u∂ λ v()

F u v,()∂
v∂ µ v()

G w v,()∂
w∂+=

λ µ

65

patch-patch boundary in order to assure G2 continuity. They also list other sufficient
conditions for G2 continuity across patch-patch boundaries: the osculating paraboloids
agree along the boundary, the principal curvatures and directions agree, the Dupin’s
indicatrices and curvature signs agree everywhere, the asymptotic directions agree, and
the second fundamental tensors are identical at all points.Degen [46] discusses
constructions for joining adjacent Bézier patches with G1 and G2 continuity. The G1

construction assumes both a boundary curve and a cross boundary tangent function. This
symmetric approach is also used to form G2 boundaries.

Vinacua and Brunet [207] present a construction for G1 continuity between rational Bézier
patches. DeRose [49] describes the necessary and sufficient conditions for tangent
continuity between tensor product and triangular Bézier patches in both polynomial and
rational forms. Liu [120] discusses conditions for G1 continuity between tensor product
Bézier patches and between triangular Bézier patches; both the polynomial and rational
cases are considered.

Figure 3.21. Patch-patch Continuity

Patches and meeting with tangent continuity.

F

G

u

v

w

F u v,() G v w,()

66

3.3.2.2 Vertex Enclosure

Van Wijk [208] studies the vertex enclosure problem and provides a solution for the

computation of a G1 surface with vertices of order 4 or ordern, wheren is odd.Sarraga

[188] characterizes the vertex enclosure problem and provides a solution to the

interpolation of an unrestricted mesh of cubic Bézier curves meeting with G1 continuity.

The mesh is restricted to vertices of order 3, 4, or 5 with four sided openings.In the first of

a series of papers on smooth interpolation [160], Peters describes rectangulation as a

method of surface construction. In the first step of this method a triangulation is converted

to a rectangulation (Fig.3.22). This transformation allows the construction of a G1

continuous surface composed of bicubic and biquartic patches. Peters [158] presents a

nice classification of methods for solving the G1 vertex enclosure problem. Peters presents

a solution to the odd order vertex problem where the surface normal varies linearly along

the patch-patch boundary. Next, Peters [156] presents a scheme based on patch splitting

for the creation of a G1 surface. The resulting surface is composed of cubic Bézier

patches. Then, he describes an alternative method that exploits a parametric singularity to

solve the vertex enclosure problem [159]. Finally, Peters [161] describes a solution to the

vertex enclosure problem. A G2 compatible, otherwise arbitrary, cubic curve mesh is

interpolated using quartic and quintic tensor product and triangular patches.

Figure 3.22. Rectangulation.

A triangular mesh ① is converted to a quadrilateral mesh ③ by Clough-Tocher subdivision
② and dropping the original edges.

① ② ③

67

3.3.3 Finite Element Analysis, Minimization, Optimization,

and Fairing

Pramila [171] uses finite element techniques to design ship hull surfaces. A linearized

fairness functional is designed to minimize strain energy. Klass [117] describes a fairing

system that corrects surface irregularities by smoothing lines of reflection. Modifications

to lines of reflection are mapped back to modifications to the surface from which they

were derived. Kjellander [116] proposes fairing tensor product surfaces by fairing meshes

of curves. This is accomplished by reducing the strain energy associated with a mesh point

interactively selected by a designer. Nowacki and Reese [145] describe a ship surface

definition and fairing system under development. They propose to minimize the strain

energy of G2 Coons patches by varying their interior degrees of freedom.Hagen and

Schulze [91] describe a system for computing a surface from points inℜ3. Their approach

uses functional minimization to shape generalized Coons patches. Linearized strain

energy is used as the surface objective function. Ferguson, et al. [62] use constrained

optimization to generate B-spline surfaces with convex isocurves. Farin and Sapidis [57]

present a local method for curve and surface fairing. The approach works based on knot

removal and reinsertion. The surface is faired by fairing the curves corresponding to the

rows and columns of the control network. Curves are faired by identifying areas of

undesirable curvature and the associated knot. The offending knot is then removed and

reinserted, resulting in a curve of improved fairness. Nowacki, et al. [147] describe a

surface approximation scheme based on minimization. They minimize the sum of the

strain energy of mesh lines and the potential energy of springs attaching the mesh lines to

data points. Rando and Roulier [177] discuss fairness metrics for curve and surface

design. They observe that fairness metrics should parameterization independent; fairness

metrics should be a function of intrinsic surface geometry. Kallay and Ravani [115]

describe a method based on the minimization of a functional approximating strain energy

for computing the twist vectors of a mesh of bicubic patches with fixed boundaries. Their

approach is applicable to any quadratic functional. Rando and Roulier [179] discuss the

fairing of Bézier patches by iteratively adjusting control points to minimize various

fairness functionals that are designed for specific surface types. Their functionals include:

flattening—tend toward developable surfaces,rounding—tend toward spherical surfaces,

rolling—tend toward cylindrical or conical surfaces. Celniker and Gossard [31] develop

curve and surface elements for performing energy based surface modeling. The surface

element is a rational polynomial and is joined with neighboring elements with G1

continuity. Their modeling scheme computes surfaces that minimize linearized strain

energy while interpolating data points and simulating forces applied to the surface.

68

3.3.4 Surveys

Several authors have compiled excellent surveys concerning various aspects of free-form
surface design.

By Böhm, et al.:

A Survey of Curve and Surface Methods in CAGD [18].

By Herron:

Techniques for Visual Continuity [97].

By Gregory et al.:

Smooth Parametric Surfaces and n-Sided Patches [88].

By Peters:

Local Smooth Surface Interpolation: A Classification [158].

By Mann et al.:

A Survey of Parametric Scattered Data Fitting Using Triangular Interpolants [126].

69

4
Minimum Variation Curves

In this chapter we introduce the Minimum Variation Curve (MVC) as a
strong candidate for use in CAD applications and as a building block in the
construction of MVN and MVS. The MVC has superior fairness, handles
constraints gracefully, and forms circular arcs as a general case of
free-form curve design.

The MVC is computed using numerical optimization and finite element techniques to find
the curve that minimizes a fairness functional measuring the variation of curvature. In this
chapter we discuss the techniques used in this calculation and present trade-offs in the
decisions made.

4.1 Curve Specification Through Constraints
Curves are specified with a sequence of geometric constraints. The points to be
interpolated in sequence are specified, optionally augmented with constraints on tangents,
and/or curvatures. Figure 4.1 illustrates the 3 basic constraint types: positional, tangential,
and curvature, and shows that curvature discontinuities may also be specified. In
Fig. 4.1① we see how three point constraints form a circular arc. Figure 4.1② illustrates
how a tangent constraint is combined with two point constraints to specify a curve.
Figure 4.1③ adds a curvature constraint, providing further control over the curve shape.
Finally, Figure 4.1④ inserts a curvature discontinuity to allow circular curve segments to
be formed.

70

4.2 Functionals for Minimization
In designing the MVC, our choice of functional for minimization was made based on the
need for high quality curves and intuitive interactive behavior. The quality or fairness of
curves has been studied extensively and shown to be closely related to how little and how
smoothly a curve bends. The cubic spline is a linear approximation to an idealized thin
beam at minimum strain energy passing through a series of frictionless, swiveling
supports. The nonlinear curve modeling a thin beam is known as the minimum energy
curve or MEC and is characterized by bending the least while passing through a given set
of points. The MEC functional minimizes the arc length integral of curvature squared

. (4.1)

Figure 4.2① provides an example of the shape formed by an MEC for a simple set of
constraints.The MEC has a few drawbacks. It does not readily form circular or helical
shapes without imposition of arc length constraints, and it is not stable in all
configurations. If the angular difference between tangents at adjacent vertices becomes
greater than , then the curve bulges out, growing to infinity.

Figure 4.1. Specification Through Geometric Constraints.

① three point constraints. ② a point and a point-tangent constraint. ③ a point-tangent
and a point-curvature constraint. ④ a curvature discontinuity.

① ②

③ ④

κ
2

sd∫

π

71

In contrast to the MEC which bends as little as possible, the minimum variation curve
(MVC) bends as uniformly or as smoothly as possible while passing through a series of
points. The uniformity of bending is measured by the magnitude of the rate of change of
curvature, minimizing the functional

. (4.2)

Figure 4.2① illustrates the shape of the MVC. Note that the MVC forms a circular arc in
response to these symmetric constraints. The MVC is more stable, changing shape
continuously with continuous changes in constraints. The MVC also has the property that
it forms circular arcs when constraints allow.

Figure 4.2. The Wicket.

The MEC and MVC resulting from two point-tangent constraints. The MEC has zero
curvatures at its end points with a higher interior curvature. The MVC forms a semicircle;
curvature is constant throughout.

κd
sd

()
2

sd∫

-1. -0.5 0.5 1.

0.5

1.

-1. -0.5 0.5 1.

0.5

1.

MEC MVC
① ②

72

4.2.1 Functionals for Space Curves

In this section we discuss potential modifications of functionals (4.1) and (4.2) when
applied to space curves; though these modifications have not been implemented, they are
included to complete the discussion of functionals. When formulating a functional for
modeling space curves (non-planar curves), torsion becomes a factor. In the context of the
traditional MEC functional based on strain energy, a torsion term must be added to the
functional to account for twisting,

. (4.3)

We are not aware of any other work on curves designed with this functional(4.3).
Analogously, the space MVC functional becomes

. (4.4)

Note that in contrast to (4.2) this expression is composed of the scalar-valued derivatives
of curvature and torsion. The result is a functional that evaluates to zero for helices, which
of course include circles. In comparing (4.2) to (4.4) note that in the former we use the
vector-valued derivative of curvature. (4.2) indirectly captures the torsion term since for a
space curve the derivative of the curvature vector is nonzero even if its magnitude is
constant. The MVC and space MVC functionals are not equivalent, and the latter is
superior in its ability to produce fair space curves. As we see in section 4.11, the MVC
functional produces curves with zero torsion at their end points, while the space MVC
functional will produce curves with constant torsion at their end points. Because of the
substantially increased complexity in computing the arc length derivative of torsion, we
have chosen to use the MVC functional with its lower complexity and indirect measure of
torsion. A thorough investigation of space MVC is slated for future research.

4.3 Scale-Invariant MVC
MVC are invariant under rigid body transformations and uniform scaling. The value of the
MVC functional, however, changes with a change of scale. The precise rate of change may
be determined most easily by incorporating a scale factor into the parametric version of
the functional (section 4.7) and factoring it out. We find that as the scale increases by a
factor of γ, the functional value is reduced by a factor of . The MEC functional has a
similar sensitivity to scaling, in its case the reduction is by a factor of . We may
modify the MVC functional to create an MVC-like functional whose value is independent
of scale (SI-MVC). In designing this new functional we must be sure to preserve the

κ2 τ2+ sd∫

κd
sd

()
2 τd

sd
()

2

+ sd∫

1 γ3⁄
1 γ⁄

73

desirable properties of the MVC functional; its characteristic shapes, parameterization
independence, and discretization independence. By adding terms which are composed
solely of geometric measures we guarantee parameterization and discretization
independence. To insure that the SI-MVC functional has the same characteristic shapes we
must guarantee that if the standard MVC functional evaluates to zero then the SI-MVC
functional must also evaluate to zero. Taking these factors into consideration, we have
designed a functional that incorporates an arc length term to offset the scaling factor,

. the SI-MVC functional (4.5)

We have found that this function is scale independent, but has much slower convergence
than the standard MVC functional. This functional does, however, allow us to investigate
the characteristic shape of various curve topologies which cannot be investigated with the
MVC functional without interpolation constraints. While curves that are topologically
equivalent to a circle actually converge to a circle because the functional tends towards
zero, other curves such as a figure-eight, expand to infinity, taking advantage of the
factor. However, when we use the SI-MVC functional (4.5), the figure-8 curve simply
forms a lemniscate, see Figure 4.15 on page 91.

4.4 Local Control and Smoothing

In this section we explore what modifications of the MVC functional are needed to
support variable locality and a facility for smoothing an existing shape. As described thus
far, the shape of a curve is strictly a function of its geometric constraints and of the MVC
functional. If constraints were removed or changed, the curve would change shape in
response. If all constraints are removed, the curve will seek its zero or reference shape.
The reference shape is the shape that the curve must form in order for the function to
evaluate to zero. As it stands, the reference shape of an MVC is a circular arc. In order to
allow for the specification of a non-circular reference shape, the MVC functional may be
modified to

. (4.6)

In (4.6) the term is the curvature derivative map of the curve’s reference shape; we
see that this new functional is zero when the curve forms the reference shape. In
Figure 4.3① we provide an example of this type of deformation, in the figure, the
reference shape is labeled “initial curve”.

ds∫()
3 κd

sd
()

2

sd∫

1 γ3⁄

κd
sd

κ0d

sd
−()

2

sd∫

κ0d

sd

74

We now discuss how this modified functional may be used to achieve variable locality.
Strictly local control can be achieve with the original functional. Modifications can be
restricted to a region of the curve by fixing the position, tangent, and curvature at the end
points of a region. To make modifications of larger scope, it is necessary to use the shape
of the curve to be modified as its own reference shape. We may now remove the
constraints that were used to define the curve’s shape, and the curve will not change shape
because (4.6) is minimized. We may now apply new constraints to the curve, deforming it
from its reference shape.

Figure 4.3. Curve Deformation and Smoothing.

① a curve is deformed from its initial reference shape by dragging a point near its middle.
② a curve is gradually smoothed from its initial shape to a shape defined solely by tangent
constraints at its end points.

①—Deformation ②—Smoothing

initial curve
initial curve

point dragged

75

Our new functional (4.6) may be further modified to allow for simple smoothing or
relaxation operations. If we multiply the reference shape terms in (4.6) by a scale factor, it
is possible to continuously vary the curve from its reference shape to its shape as defined
by geometric constraints alone. The modified functional is

.

By varying α between 1.0 and 0.0 we vary the curve between its reference shape and its
shape defined solely by geometric constraints. In Figure 4.3 we see examples of
deformation from a reference shape and of the smoothing of a curve from it reference
shape to its shape as defined by the constraints at its end points.

4.5 Representation

Starting with this section we begin describing our method for the computation of a
minimum variation curve. We cast the problem as a nonlinear optimization / finite element
problem. Curve representation plays an important role in making the MVC useful to
applications. The curve is broken into a series of parametric polynomial elements that
satisfy the given geometric constraints, and join with G2 continuity. Among polynomials,
quintic elements are most suitable because they have sufficient descriptive power to
simultaneously satisfy the constraints on position, tangent direction, and curvature.

In considering alternatives, we examined lower order and rational polynomials. Using
lower order polynomials, it is either difficult or impossible to constructively satisfy a
specification, and little savings is gained because the majority of the complexity and cost
is in the evaluation of the functional and its partial derivatives. For example, consider
using a pair of cubic segments to replace a single quintic segment in ℜ3 with fixed
position, tangent, and curvature at its end points. The quintic has 18 degrees of freedom;
after the constraints are applied four degrees of freedom remain. Using two cubics we start
with 24 degrees of freedom and after the constraints are applied 10 degrees of freedom
remain. We must also consider the problem of joining these two segments with G2

continuity, we take on considerable complexity while losing 7 more degrees of freedom,
leaving three DOF with which to optimize the curve. In assessing the trade-off we must
compare the loss of one degree of freedom, with the increased complexity, and with the
loss of expressive power. Ultimately, the conclusion is subjective, little seems to be gained
by lowering the order of the elements, the cost of minimization is approximately the same
and the complexity is increased substantially.

κd
sd

α
κ0d

sd
−()

2

sd∫

76

Rational polynomials are very attractive as curve elements because they are capable of
exactly representing portions of circles, helices, and torus curves. The prohibitive
drawback of the rational form is the dramatic increase in complexity required to evaluate
the MVC functional and its partial derivatives. This increase in complexity is due to the
fact that, in contrast to integral polynomials, rational polynomials increase in order and
complexity as derivatives are taken.

There are several possible representations for a quintic polynomial element (e.g. B-spline,
Bézier). We chose the Hermite form because of the ease with which the geometric
specifications can be mapped to the defining parameters of the Hermite segments. Also,
this form is easily converted into other polynomial representations that are typically used
in geometric modeling systems. Quintic Hermite curves are specified by the position of
the endpoints and by the first two parametric derivatives at these locations. In vector
notation this can be expressed as:

where are quintic blending functions. The computation of is described in [59].
The mapping from the geometric to parametric description of the curve is carried out
using the following equations

(4.7)

(4.8)

where are the position, tangent direction, and curvature vector at one end of the
curve; is the first derivative magnitude and completes the relationship between
curvature and the second derivative. During the minimization the scalar must be

C u()

C 0()

C' 0()

C'' 0()

C'' 1()

C' 1()

C 1()

T
H0 u()

H1 u()

H2 u()

H3 u()

H4 u()

H5 u()

⋅ C 0()H0 u() C' 0()H1 u() … C 1()H5 u()+ + += =

Hi u() Hi u()

Pi pi=

P'i mi t̂i=

P'' i mi
2κi αimi t̂i+=

pi t̂i κi, ,
mi αi

mi

77

constrained to be positive; this is because if became negative then would reverse
direction. We impose this constraint by using rather than in equations (4.7) and
(4.8):

.

A curve is made up of a sequence of vertices connected by quintic elements. G2 curves are
pieced together from these elements by sharing geometric specifications at the common
points. Data structures associated with the vertices hold the point, tangent, and curvature
information, while data structures associated with the elements hold the parameters

 and (Fig. 4.4). Each element is defined by three data structures, a pair
of structures associated with the vertices at the element’s endpoints and one structure
associated with the element itself. By distributing the curve/element specification in this
way, adjacent elements share vertex structures and are guaranteed to meet with curvature
continuity. Note that discontinuities can be introduced by giving adjacent elements
independent geometric specifications.

4.6 Multi-element Segments

As we have described thus far, a single quintic Hermite segment or element is placed
between every two sets of constraints. Because of the limited descriptive power of
polynomial elements, a single element can only approximate the ideal minimum variation
curve. To improve the approximation, multiple elements can be inserted between
constraints. In practice, a single element per constraint pair is normally sufficient.
Depending on the goal of the application, it may not be important that the minimum

Figure 4.4. Schematic View of Curve Representation.

On the left is a G2 joint where incident curves share the full geometric specification. On the
right is a G1 joint where incident curves have independent curvatures.

mi P' i
mi

2 mi

Pi pi=

P' i mi
2 t̂i=

P'' i mi
4κi αimi

2 t̂i+=

αi 0, αi 1,, mi 0, mi 1,,

pi t̂i κi, , mi 0, αi 0,, mi 1, αi 1,, κi 1+ a, pi 1+ t̂i 1+, κi 1 b,+

G2 vertex G1 vertex

vertex struct. vertex struct.element struct.

78

variation curve is accurately approximated, only that its desirable curvature properties be
present. As an example, the Wicket in Figure 4.2 on page 71 is reexamined in the context
of using multiple elements per pair of constraints. The MVC’s characteristics for these
constraints are simply those of a semicircle; MVC functional is 0.0, the arc length is π, and
the curvature κ is 1.0. The Wicket was calculated using one and two elements. The one
element approximation’s maximum and minimum curvatures were 1.00013 and 0.99986
respectively. The two element approximation’s extremal curvatures were 1.0000079 and
0.9999923. The arc length of the two element approximation was within of π. We see
that, in this example a single element produces a good approximation to the MVC and that
a two element solution is extremely close to the theoretical minimum variation curve.

4.7 Parametric Functionals

The MVC curvature functional (4.2) is defined in terms of an integral of a function over
arc length. To evaluate this functional and its gradient in the context of the parametric
piece-wise polynomial curves described in section 4.5, the functional must be converted to
a parametric polynomial form and evaluated in a piecewise fashion. The value of the
functional for the curve as a whole is computed as the sum of the values of the functional
for each element. In the first conversion step the arc length based definition

is changed to an integral of a function of the curve parameterized by t of the form

.

The bounds, , of the integral are set to 0 and 1, since the Hermite representation is
parameterized with t varying from 0 to 1. The differential with respect to s is converted to
a differential in t. Since

then

where

.

Next, the derivative of curvature with respect to arc length transforms to: .
These two steps yield:

. (4.9)

10 6−

κd
sd

2

sd

0

l

∫
C t()

f C t()() td

α

β

∫
α β,

td
sd

1

C' t()
= sd C' t() td=

C' t() C' t() C' t()⋅()
1 2⁄

=
κd
sd

κd
td

td
sd

κd
sd

2

sd

0

l

∫
κd

dt
td
sd

()
2

C' t() td

0

1

∫=
κd
sd

2

sd

0

l

∫
κd
td

2
1

C' t()
td

0

1

∫=

79

Lastly we find the expression for in terms of the parametric derivatives of the curve,
. The expression for curvature is

Taking the derivative with respect to t yields

where

4.8 Computing Partial Derivatives
The optimization process we use requires that we compute the partial derivatives of the
functional. Since the derivative of an integral is equal to the integral of the derivative, we
must find the partial derivatives of the integrand of (4.9). We discuss two methods that can
be used to compute these partial derivatives: 1) analytical or 2) central differencing. All
the examples shown in section 4.11 were computed using analytically computed partial
derivatives. The primary advantage of using central differencing is the ease with which it
may be implemented. Briefly, derivatives are approximated by computing the value of the
subject function while varying the value of the function parameter; Conte and de Boor
[39] is a good reference covering central differencing. The primary advantage of
computing the partial derivatives analytically is the greater numerical precision with
which they can be calculated. The added precision increases the rate of convergence of the
optimization.

κd
td

C t()

κ t()
C' t() C'' t()×

C' t()
3

=

κd
td

v ud u vd−
v2

=

u C' t() C'' t()×= , ud C' t() C''' t()×= , n.b.�� C'' t() C'' t()× 0= ,

v C' t()
3

C' t() C' t()⋅()
3 2⁄

= =

vd 3 C' t() C' t() C'' t()⋅()=

80

It is advantageous to make extensive use of the chain rule and to compute the partial
derivatives using a number of steps. Taking this approach, common subexpressions are
revealed. For example the first few steps in computing the partial derivative of the
integrand of (4.9) are

The process of computing the derivatives appearing in subexpressions continues until the
partial derivative of (4.9) is fully evaluated. The resulting expression tree is too large to
reproduce here. The leaves of this expression tree are the partial derivatives of

 with respect to .

The computation of partial derivatives is accomplished by implementing a suite of
functions which reference and assign values in a block of global variables. Each step in the
chain rule corresponds to a function; the result of each function call is stored in a global
variable for use by subsequent function calls. To guarantee that the variables that a
function requires for evaluation have been initialized, an analysis of the cross references
of the functions and global variables is used to produce an appropriate ordering of the
functions used to evaluate each partial derivative.

4.8.1 Numerical Integration

During the optimization process, the values of the MVC functional and its partial
derivatives with respect to the free parameters are computed. Since the value of the MVC
integral cannot be computed in closed form, we sample the function over a domain to
approximate the integral;

.

κd
td

2
1

C' t()
 ∂

α∂

κd
td

2

∂

α∂
1

C' t()

κd
td

()
2

1

C' t()
 ∂

α∂+=

κd
td

2

∂

α∂ 2
κd
td

κd
td

()∂

α∂=

1

C' t()
 ∂

α∂

C' t()∂
α∂−

C' t() C' t()⋅
=

…

C t() C' t() C'' t(), , α

wif ti()
i

∑ ti α β,[]∈, f t() td

α

β

∫≈

81

Gauss-Legendre quadrature is used to compute the (curvature) integrals. This method
converges quickly as the number of samples or integration points is increased [172].

4.8.2 Gradient Descent

Cast as a multi-dimensional optimization problem, the curve is represented by a point in
 corresponding to itsn degrees of freedom. The MVC functional undergoing

minimization is expressed as . Standard optimization techniques are used to
minimize . Starting from a heuristically established point in , Polak-Ribiere
conjugate gradient descent [172] is used to traverse the space while reducing the objective
function and ultimately arriving at a minimum. This descent method uses a weighted
average of gradients from past iterations,

,

to determine a direction for movement. Once is computed, a one-dimensional
minimization is performed to find the minimum of over . First the line
minimization brackets a minimum, finding three values of such that

, and . Then it uses a
parabolic fit to calculate a new value of, and eliminates either or while
maintaining the bracketing relationship. This second step is repeated until a minimum is
reached when the converge on each other, (Fig.4.5).

Figure 4.5. Parabolic Line Minimization.

Line minimization using a parabolic fit to find a new , here are used as the next
bracketing triple.

ℜn

f x() x ℜn∈,
f z() ℜn

∇̃ ∇f xi()wi∑=

∇̃ ∇̃
f x α∇̃−() α

α
f x α2∇̃−() f x α1∇̃−()< f x α2∇̃−() f x α3∇̃−()< α1 α2 α3< <

α α1 α3

αi

α2 α3α1
α'

f x α∇̃−()

parabolic fit

α α' α2 α3, ,

82

4.9 Initialization

The descent scheme described in section 4.8 starts with an initial curve and iteratively

refines that curve until the optimal curve is achieved. In this section we discuss the

problem of finding a suitable initial curve. In terms of optimization, the problem is to find

an initial point in the “valley” where the minimum point (corresponding to the stable

equilibrium of shortest length) lies at the bottom (see section 4.10). The optimization

requires that initial values be provided for any parameters not explicitly set; , ,

, , , and in equations (4.7), (4.8), and Figure 4.4. Several researchers have

studied the problem of finding an interpolating curve for an ordered set of points (3.1.3).

The rate of convergence of the minimization procedure depends strongly on the initial

curve and, as a result, so does the speed with which solutions may be found. We use our

knowledge of the nature of the MVC functional to choose an initial curve shape that is

close to the solution. The formulas that we use for the initial guess are taken from [28].

The values of and are related to the arc length of the curve and are initialized to

the chord length . The values of and specify the nature of the

parameterization at the endpoints; setting them to 0 causes the curve to be arc length

parameterized at its endpoints. The tangent directions are set to the average of the incident

chord directions weighted inversely in proportion to their length (Fig. 4.6):

. (4.10)

Figure 4.6. Tangent Initialization.

The tangent is computed as the inversely weighted average of incident chords, see eq. (4.10).

mi0 mi1

αi0 αi1 t̂i κi

mi0 mi1

pi pi 1+− αi0 αi1

ti

pi 1− p−
i

pi 1− p−
i

2

pi p−
i 1+

pi p−
i 1+

2
+= t̂i

ti

ti

=

83

A number of schemes have been put forth for heuristically assigning tangent directions.
These include a strict average of chord directions, and a weighting in proportion to the
length of the chord. If we consider the nature of the MVC functional, it is clear that (4.10)
is the appropriate formula. The key argument is based on consistency (MVC are
consistent.) Given an existing curve passing through two points, if a third point is added
that lies on the curve between the first two and is close to first, then any weighting of
incident chords other than (4.10) will yield a poor tangent estimate. In fact, if the curve is
circular then for the introduction of any intervening point equation (4.10) yields the
tangent to the circle at that point; precisely the desired tangent.

The magnitudes of the curvature vectors are set by computing the radius of the circle
that interpolates the associated point and its two neighbors (Fig. 4.7). The direction of the
curvature vector is perpendicular to the tangent and is in the plane of the three points
defining the circle

In the case where the curve is not closed and the elements at the ends of the curve have
endpoints that do not have two neighbors, the curvature is set equal to the curvature to
which the single neighbor was initialized. The tangent direction is set to the tangent
direction at the other endpoint reflected about the perpendicular plane through the
midpoint of the intervening chord (Fig. 4.8).

Figure 4.7. Curvature Initialization.

Curvature vectors are initialized by fitting circles through adjacent points.

κi

κ

κ

84

Our heuristic technique for selecting a starting point has proven to be efficient and robust.
If difficulties are encountered, the continuum method described in section 4.10 may be
employed, which starts with a penalty for arc length and then gradually relaxes that
penalty.

4.10Existence, Uniqueness, and Sensitivity
Because the MEC has been much more widely studied (since the 17th century), we discuss
results from these studies and relate them to the relatively new MVC. In [104] Jerome
discusses the necessary and sufficient conditions for the existence of an MEC. To the
authors’ knowledge there has been no study of the uniqueness of MVC.

 In [65] Fisher and Jerome discuss the stable and unstable equilibrium of an MEC. An
MEC is said to be at stable equilibrium if it holds its shape in the absence of an arc length
constraint. In most practical applications we seek the stable equilibrium solution that has
the shortest length. This suggests the use of the continuum method, the approach of
computing MVC by initially placing the curve under tension (by penalizing arc length)
and gradually relaxing the tension until stable equilibrium is achieved and no tension
remains. Figure 4.9 illustrates two MVC curves for the same set of geometric constraints.
In addition to the positional constraints, the curvature at the central point is fixed. In
comparing the two solutions, note that while the solution without the loop is shorter, it has
a larger MVC functional value.

Figure 4.8. End Point Tangent Construction.

Construction of tangent direction at the open end point of a curve.

p0 p1

t̂1

t̂0

image of t̂1 reflecting plane

p2

85

4.11 Results: Test Cases, Curve Quality, and
Applications

In order to evaluate the utility of MVC, we discuss the solution to a simple problem, and
compare MVC with other curve representations; we then present a few sample
applications. Comparisons are done using a number of different techniques: by drawing
curvature and torsion plots, and by examining curvature profiles [98]. Curvature profiles
are generated by drawing the reciprocal of the evolute of a curve; this is traced out by the
curve normals scaled by the curvature of the curve.

Figure 4.9. Multiple MVC Curves from One Specification.

① the MVC resulting from an initial curve containing a loop. ② the MVC resulting from
an initial curve without a loop. Note that while curve ② is probably the desired curve,
curve ① has a lower MVC functional value. The curves are specified by five positional
constraints and a single curvature constraint at the center of the curve. Note how the
MVC distributes the high curvature at its midpoint.

-1.5 -1 -0.5 0.5 1 1.5

0.2

0.4

0.6

0.8

1

-1.5 -1 -0.5 0.5 1 1.5

0.2

0.4

0.6

0.8

1①

②

86

4.11.1 A Sample Problem: Corner Blending

In this example eight positional constraints are set symmetrically near the corners of a
box, our goal is to round the corners of the box. Two possible solutions to the blending
problem are presented. Figure 4.10① illustrates the case where tangent and curvature
constraints are specified at the eight points. These constraints result in a continuous
curvature plot, with value zero along the sides of the box, and varying from zero to a peak
of around 1.5 at the maximum. The second solution, (Fig. 4.10②) inserts curvature
discontinuities at the blend boundaries, which allows the MVC to form circular blends at
the corners of the square. Comparing these two blend alternatives, the first is curvature
continuous at the expense of a slightly higher maximum curvature, and the second is
tangent continuous and circular.

Figure 4.10. Blending the Corners of a Box.

① Curvature continuous blends specified with position, tangent and zero curvature
constraints. ② Circular blends specified with position and tangent constraints, and
curvature discontinuities.

4. 8. 12.
s

1.

k

position, tangent,
and zero curvature

constraint
position & tangent

constraint and
curvature discontinuity

① ②
4. 8. 12.

s

1.

k

87

4.11.2 A Comparison of MVC, MEC and Natural Splines

Figure 4.11 highlights the differences in fairness exhibited by a natural spline, an MEC,
and an MVC constrained to pass through a given set of positional constraints [211].
Though the curves shown in the top of the figure are nearly indistinguishable on paper, the
curvature plots emphasize the differences between these curve generation techniques. The
natural spline has a “spiky” curvature plot with peaks at several of the constraint points,
and zero curvature at the endpoints. The MEC exhibits a considerably smoother curvature
plot with slope discontinuities at the interpolated points, and zero curvature at the
endpoints. Finally, the MVC has a very smooth curvature plot, free of sharp peaks and
corners, and constant curvature at the endpoints. Note also that the MVC has a
considerably lower maximum curvature.

Figure 4.11. MVC vs. MEC and Natural Splines.

A comparison of natural splines, MEC, and MVC. Note that the MVC has a much
smoother curvature distribution and, has constant curvature at its endpoints rather than
zero curvature.

MEC
natural spline

MVC

2 4 6
t

-1

-0.5

0.5

1

1.5
k

natural spline

2 4 6
t

-1

-0.5

0.5

1

1.5
k

MEC

2 4 6
t

-1

-0.5

0.5

1

1.5
k

MVC

88

4.11.3 Scale-Independent MVC

First we compare the curvature plots of the MVC and SI-MVC for the data set presented
in Figure 4.11 (Fig. 4.12). We see that the SI-MVC has a smooth curvature plot, nearly
indistinguishable from the standard MVC. It is only in cases where curvature variation is
high that there is a noticeable difference between MVC and SI-MVC. In Figure 4.13 we

Figure4.12. Curvature Plot—MVC and Scale-Independent MVC

There is virtually no difference between MVC① and standard SI-MVC ② for pr oblems
with low curvatur e variation. These curvature plots result from the Woodford data set, also
shown in Figure4.11.

2 4 6
t

-1

-0.5

0.5

1

1.5
k

2 4 6
t

-1

-0.5

0.5

1

1.5
k

① MVC

② SI-MVC

89

see S-shaped MVC and SI-MVC, specified by constraints on position and tangent
direction at the curve’s end points. The standard MVC is somewhat longer and fuller in
appearance. If the tangents specifying this curve are rotated further, so that the curve must
bend even more, the standard MVC jumps to infinity since it can reduce the value of its
functional by letting the curve expand. The SI-MVC, however remains finite even for the
case of antipodal tangent constraints (Fig. 4.14).

Figure 4.13. Planar S-shaped Curves, MVC vs. SI-MVC

These curves are specified by position and tangent constraints at their end points. The SI-
MVC is somewhat tighter, shorter in length and its curvature varies more linearly. The
MVC has constant curvature at its end points. ① is a plot of the curves, ② are the
corresponding curvature plots.

s

k

-2 -1 1 2

-0.5

0.5SI-MVC

MVC

MVC

SI-MVC

①

②

90

As an example to demonstrate scale invariance we compute the shape of a completely
unconstrained figure-8. We initialize the curve to the rough shape of a figure-8 and then
optimize its shape using the SI-MVC functional without any constraints whatsoever. In
Figure 4.15 we provide the curve and curvature plot; the curve forms a lemniscate-like
curve. Additional experiments reveal that, if an additional loop is added to the initial
figure-8, the extra loop forms an osculating circle at the tip of the lobe, where the

Figure 4.14. A Curve from Antipodal Tangent Constraints

① the SI-MVC resulting from antipodal tangent constraints. The MVC expands to infinity
for this constraint set. ② the curvature plot of the SI-MVC, curvature vs. arc length.

①

κ

s②

91

derivative of curvature is zero. If we had attempted the same optimizations using the
standard MVC functional, the optimization procedure would have expanded the curve’s
scale to infinity reducing curvature variation.

The primary drawback of SI-MVC is that their rate of convergence is much slower than
that of the standard MVC. For example, the MVC generated from the Woodford data set
converged in 137 iterations and the SI-MVC took a total of 3921 iterations. Future
research will investigate the cause of the poor convergence rate of the SI-MVC.

Figure 4.15. An SI-MVC Figure-8.

① an unconstrained figure-8. ② the curvature plot, κ vs. arc length.

①

②

κ

s

92

4.11.4 MVC vs. MEC Space Curves

In this example we examine the characteristics of the MVC and MECspace curves.

Figure4.16 is a schematic view of the constraints used in this example. Figure4.17 shows

the MVC to be smoother and of lower maximum curvature. Note also that the MVC,

unlike the MEC is torsion continuous. As alternative representation we display these two

curves using curvature profiles (Fig.4.18).

As a second example applied to non-planar data we examine the results of computing the

MVC and MEC fit to the helical data of Jörg Peters [157]. Here we see the MEC has

discontinuities of curvature and zero curvature at the end points of the curve. The MVC

exhibits a very uniform distribution of curvature. Figure4.19 illustrates the starting shape

for the optimization, Figure4.20 shows the MEC, and Figure4.21 the MVC.

4.11.5 Coving Design

In this example, we describe an actual application of MVC to a real-world architectural

design problem. For a room with a 6" heating duct running along where the ceiling meets

the wall, design a coving to cover the duct that meets the wall and ceiling smoothly. The

coving may be no more than 12" high and 20" deep (Fig.4.22). The coving was designed

by imposing the position and tangent constraints implied by the problem parameters, and

Figure 4.16. A simple space curve for comparing MVC with MEC.

(1,1,0)

(-1,1,0)

(0,0,1)

(0,0,-1)

(0,0,-1)

93

interactively adjusting the curvature of the coving where it met the wall. The curvature
was increased until the coving cleared the duct by a reasonable amount. The coving was
then cut out of high density foam by an NC-controlled cutter taking a spline path as input.

4.12Efficiency

In this section we present wall clock timings taken on a 33MHz IRIS Indigo. Table 1 lists
timings for each of the examples in section 4.11, and also for the Wicket from Figure 4.2.
Each optimization was carried out for both the MEC and MVC functionals and was
terminated when the infinity norm of the gradient was less than 0.0005. For these
examples, the MVC takes longer to compute, except when higher order constraints are
applied, then the MEC tends to take longer. However, in all cases the strain energy of the
MVC was closer to the energy of the MEC than the curvature variation of the MEC was to
the variation of the MVC. In other words, an MVC approximates an MEC better than an
MEC approximates an MVC.

We also provide plots of the log of the MVC functional value vs. number of iterations of
the optimization procedure in Figure 4.23 and Figure 4.24. The functional values are
normalized by subtracting the minimum value and adding one; this ensures that the

Figure 4.17. Space Curve Curvature and Torsion Plots.

Curvature and torsion plots corresponding to the constraint set shown in Fig. 4.16. The
MVC has smoother curvature and torsion and is torsion continuous.

0.5 1 1.5 2

0.95

1.05

1.1

1.15

1.2

1.25

0.5 1 1.5 2

1.05

1.1

1.15

1.2

1.25

1.3

0.2 0.4 0.6 0.8 1

-1.5

-1

-0.5

0.5

1

1.5

0.5 1 1.5 2

-1

-0.5

0.5

1

curvaturecurvature

torsiontorsion

MVCMEC

① ②

94

minimum plotted log value will always be zero. The data plotted are discrete in nature and
are interconnected to make trends more obvious. From these examples it is clear that the
majority of the reduction in the MVC functional occurs very quickly. And for this reason it
is practical to build an interactive editor using MVC. Also because of this low
computation time, MVCs have become an attractive alternative to traditional methods for
curve design.

Figure 4.18. Curvature Profiles of the Simple Space Curve (Fig. 4.16).

Note the slope discontinuity in the curvature of the MEC, this corresponds to the torsion
discontinuity.

MVCMEC

95

Figure4.19. Jörg Peters’ Helical Data — The Initial Curve

The heuristic initial guess produces a curve with uneven curvature and torsion.

96

Figure4.20. Jörg Peters’ Helix — The MEC Curve

The MEC curve has zero curvature at its end points and slight discontinuities of the
derivative of curvature at each interpolation point.

97

Figure4.21. Jörg Peters’ Helix — The MVC Curve

The MVC curve has curvature and torsion of nearly constant magnitude.

98

Figure 4.22. Coving Design

A coving designed to smoothly blend the joint between the wall and the ceiling, and hide a
heating duct.

6" dia.

12
"

20"

99

Figure Name
&

Figure
Number

Functional
Time

in
Seconds

Number
of

Iterations

Final
MEC

Functional

Final
MVC

Functional

Wicket

Fig. 4.2

MVC 1.2 15 3.141 2.176x10-6

MEC 0.6 6 2.871 1.596

G2 Box

Fig. 4.10①

MVC 2.6 6 7.247 26.15

MEC 6.4 13 6.291 718.6

G1 Box

Fig. 4.10②

MVC 4.7 7 6.283 7.09x10-6

MEC 15.5 24 6.268 1.027

Woodford

Fig. 4.11

MVC 75.0 137 2.551 1.951

MEC 18.4 31 2.248 2.714

Space Curve
Fig. 4.16

MVC 12.3 90 5.098 4.597

MEC 4.4 29 5.074 5.270

Peters’ Helix
Fig. 4.21

MVC 29.3 27 4.913 0.089

MEC 17.3 15 4.658 0.156

Table 4.1. Timings for Curve Examples—MVC&MEC

Each optimization was run until the infinity norm of the gradient was less than 0.0005.

100

F
igure

4.23. L
og P

lots of M
V

C
 C

onvergence

2 4 6 8 10 12 14

1

2

3

4

1 2 3 4 5 6

0.5

1

1.5

2

2.5

3

3.5

20 40 60 80 100 120

0.5

1

1.5

2

2.5

1 2 3 4 5

0.5

1

1.5

2

2.5

3

3.5

Wicket Box.G2

Box.G1 Woodford

of iterations

xi min xi{ } 1+−()log

of iterations

xi min xi{ } 1+−()log

of iterations

xi min xi{ } 1+−()log

of iterations

xi min xi{ } 1+−()log

101

F
igure

4.24. L
og P

lots of M
V

C
 C

onvergence (cont.)

5 10 15 20 25

0.2

0.4

0.6

0.8

1

1.2

20 40 60 80

1

2

3

Space Curve

Peters’ Helix

of iterations

xi min xi{ } 1+−()log

xi min xi{ } 1+−()log

of iterations

102

103

5
Minimum Variation Networks

Many surface modeling and data interpolation schemes use a mesh or net-
work of curves as a key component in the construction of a smooth surface
[126]. The minimum variation network (MVN) is a G2 network composed
of fair curves that provides an excellent frame on which to build a smoothly
curved surface. The MVN is computed using the MVC functional (4.2) and
MVC optimization techniques with curve specifications and G2 curve conti-
nuity constructions replaced by surface specifications and G2 surface con-
tinuity constructions. This chapter describes the calculation of minimum
variation networks.

5.1 MVN Representation and Continuity

MVN are constructed to exactly match second order geometric specifications at the
vertices of the network. Minimally, a network may be specified by vertex positions. A
network specification may also include surface normal and curvature information to be
interpolated. Finally, it is possible to specify the tangent direction at the end points of
individual curves in the network. The network is constrained to meet at its vertices such
that at each vertex a second order continuous surface containing the curves incident to the
vertex can be constructed. The specification permits the assignment of a fixed or initial
geometric characterization to each vertex of the network. This geometric description
consists of the vertex position, and optionally, tangent plane, and principal directions and
principal curvatures. In addition to the geometric specification, a list of incident curves is
also provided. The curves making up the network are defined by pairs of vertices. It is also
possible to fix and/or initialize the tangent directions associated with the end points of
each curve. Last, in the case when the resulting MVN is to be input to our surface
optimization system, patches are also identified by the vertices at their corners, and curves
around their perimeter.

104

Internal to the optimization, the network of curves is defined via the second order
parameters of a surface description at each vertex of the network and via a description of
how each curve segment emerges from within the osculating paraboloid specified at its
endpoints. Each such paraboloid is defined by the vertex position , a pair of conjugate
directions, , and the normal curvatures in those directions . Conjugate
directions are equivalent to principal directions in that, coupled with the associated
curvatures, they fully characterize the curvature of a surface at a point [52]. Conjugate
directions are more amenable to optimization because they do not have to be constrained
to mutual orthogonality. The network is represented by quintic Hermite curves. These
curves are defined by the positions and the first two parametric derivatives at their
endpoints: . Each curve in the network is defined by the position , tangent
direction , and three scalar parameters, , at each endpoint. The mapping from
these values to the parameters defining the corresponding Hermite curve is

(5.1)

Note that the curvature of the curve is the sum of two orthogonal components; , the
component in the normal direction is a function of the surface curvature at the vertex and
the tangent direction of the curve at its end point; c, the component in the binormal
direction is independent of the surface curvature at the vertex and represents the curvature
of the curve “within the surface.”

During the optimization process, those variables not fixed by constraints are iteratively
adjusted to minimize the MVC functional (4.2) summed over all curves of the network. At
each iteration step, and are renormalized, and is projected onto the plane spanned
by and also renormalized. It is this normalization step in combination with the
construction outlined in equation (5.1) that guarantees G2 continuity is maintained.

5.2 Network Initialization
The curve network must be initialized to some reasonable shape before optimization can
proceed. Because the starting point of an optimization strongly affects the rate of
convergence, it is important that the starting point actually be near the optimal network. At
each interpolation point a vertex normal vector is first initialized, then the tangent vectors

p
ŵ1 ŵ2, κw1

κw2
,

P P' P'', , p
t̂ m α c, ,

P p= P' m2 t̂= P'' m4κ αm2 t̂+=

κ κnn̂ cb̂+= b̂ n̂ t̂×=

κn t̂ K t̂⋅ ⋅=

K

ŵ1

ŵ2

n̂

1−
κw1

0 0

0 κw2
0

0 0 0

ŵ1

ŵ2

n̂

1−

T

⋅ ⋅=

κ κn

ŵ1 ŵ2 t̂
ŵ1 ŵ2,

105

of the incident curves are computed, next the principal directions and curvatures are
defined, and finally each curve’s scalar coefficients are initialized. The initialization
techniques used are similar to the techniques used for G1 network construction described
in section3.2. In order to initialize the second order parameters of the vertices, we have
developed an new method for estimating the principal curvatures of a polyhedral structure.

 The vertex normal is initialized as an average of the incident face normals weighted
inversely proportional to the area of the incident face, i.e. the smaller the face the greater
its influence on the vertex normal [28]. This technique contrasts with that of Shirman and
Séquin and is based on the fact that as the area of a facet decreases it becomes a better and
better local approximation of the surface interpolating its vertices. It is a conceptual
equivalent to the weighting scheme described in section4.9. The tangent vectors of curves
incident to a vertex are set to the direction of the incident chords projected onto the plane
defined by the vertex position and the normal (Fig.5.1).

Once vertex normal vectors and incident tangent directions have been computed, the
principal curvatures and principal directions at a vertex are calculated. Both Calladine [28]
and Todd and McLeod [204] describe approaches for estimating the curvature of
polyhedral surfaces. Calladine derives a formula for the Gaussian curvature at a vertex in a
mesh:

.

Where the angular defect is defined as 2π − the sum of the interior angles of the faces
meeting at the vertex. The area associated with the vertex is 1/3 of the area of the triangles
meeting at the vertex. This methodonly provides an estimate of Gaussian curvature and is
inadequate in our application. Todd and McLeod compute a least squares fit to the Dupin
indicatrix1 [52:149] and require that a pairing be established among the vertices
neighboring a vertex; this is not possible at vertices of odd order. At even order vertices, it
remains problematic since the results vary greatly depending on the pairing chosen;
logically opposite curves are not always appropriate partners.

Our approach uses a least squares fit of sample tangent directions and normal curvatures to
compute the principal directions and curvatures. The initialization of these values is very
important to the speed of convergence. First consider the situation shown in Figure5.1. A
vertex is shown with a number of incident edges. For each edge we calculate the curvature
implied by that edge emanating from the vertex. Starting with edge we reflect
through the normal and fit a circle through and . The radius of the resulting circle
is the radius of curvature (Fig.5.2). The reciprocal of this radius of curvature is the

1 The Dupin indicatrix is an alternative representation for surface curvature , where are carte-
sian coordinates in the orthonormal basis .

pi n̂

Gaussian�curvature
angular�defect�at�a�vertex

area�associated�with�the�vertex
=

κ1ξ2 κ2η2+ 1±= ξ η,()
ê1 ê2,{ }

pi pn, pn

p'n pi, pn

106

approximate normal curvature in the direction of . Repeating this procedure for each of
the incident edges provides a set of sample tangent directions and approximate normal
curvatures (Fig. 5.3). The set of tangent directions and approximate normal curvatures is
used to compute a least squares fit for the principal directions and principal
curvatures of the surface at the vertex as follows. We start with the expression for
normal curvature expressed with respect to any convenient orthonormal basis in the plane
defined by the normal,

Figure 5.1. Tangent initialization.

The projection of incident chords onto the plane defined by the point and normal.

t̂n

ê1 ê2,
κ1 κ2,

107

.

Figure 5.2. An Approximate Radius of Curvature.

 The approximate radius of curvature in the direction of is calculated by reflecting the
chord through the normal and fitting an osculating circle through the vertex and through
the end points of a chord and its image.

t̂n

κn t̂ K t̂⋅ ⋅=

K
ê1 x, ê1 y,

ê− 1 y, ê1 x,

1−
κ1 0

0 κ2

ê1 x, ê1 y,

ê− 1 y, ê1 x,

1−

T

⋅ ⋅=

108

The normal curvature is found by multiplying the curvature tensor K twice by the desired
tangent direction defined relative to the local basis. From this expression we extract the
tangent components, to produce an over determined set of linear equations:

Figure5.3. A Set of Tangent Directions and Approximate Normal Curvatures.

Using the technique illustrated in Figure5.2, a set of normal curvatures are displayed as
the outlines of “pie wedges”. Note that only the wedges associated with verticesD and F are
completely visible.

m 1+

109

where the unknowns, x, are expressions involving the principal directions and principal
curvatures. The general formula for computing the least squares solution to this type of
system is , where is the least squares solution for “x” in equation . Having
solved for , we have three equations and four unknowns

.

Adding the fact that , allows us to solve for the principal directions and
principal curvatures.

Table 5.1 provides the results of a least squares fit to the sample directions and curvatures
shown in Figure 5.3. The resulting principal directions and curvatures are

. (5.2)

A set of principal directions and principal curvatures locally define the geometry of a
surface. Given principal directions and curvatures the normal curvature in a given tangent
 direction is computed:

. (5.3)

We illustrate our example least squares solution in two ways. First, in Figure 5.4 with a
surface (①) swept out by the osculating circles as rotated about the normal, changing
radius according to (5.3) with curvature values (5.2); the arcs of the approximate
osculating circles are also shown. Second, in Figure 5.5 we plot normal curvature versus
tangent direction. Vertical lines are drawn connecting the approximate normal curvatures
with the least squares fit curvatures.

t̂0 x,
2

t̂0 x, t̂0 y, t̂0 y,
2

t̂1 x,
2

t̂1 x, t̂1 y, t̂1 y,
2

. . .

t̂m x,
2

t̂m x, t̂m y, t̂m y,
2

ê1 x,
2 κ

ê1
ê1 y,

2 κ
ê2

+

2ê1 x, ê1 y, κ
ê1

κ
ê2

−()

ê1 x,
2 κ

ê2
ê1 y,

2 κ
ê1

+

⋅

κn 0,
κn 1,

.
κn m,

= ≡ Ax b=

AT Ax AT b= x
x

ê1 x,
2 κ1 ê1 y,

2 κ2+

2ê1 x, ê1 y, κ1 κ2−()

ê1 x,
2 κ2 ê1 y,

2 κ1+

x0

x1

x2

=

ê1 x,
2

ê1 y,
2+ 1=

κ1 0.9548= ê1 0.1266 0.0 0.9919−, ,{ }=

κ2 0.6647−= ê2 0.9919 0.0 0.1266, ,{ }=

t̂

κn κ1 ê1 t̂⋅()
2

κ2 e2 t̂⋅()
2

+=

110

To complete the initialization of the network, the scalars associated with each curve are set
as follows:m, the magnitude of the first derivative, is set to the chord length;, which
relates the first and second derivatives, is set to zero so that the derivatives are orthogonal
and the curves are arc length parameterized at their end points;c is set to zero so that the
curve’s only curvature component is the normal curvature in the tangentdirection.

5.3 Optional Network Constraints

Since the quality of the network directly impacts the quality of the resulting surface, we
present an optional heuristic constraint. A very successful method for improving network
quality is to force suitable opposing pairs of curve segments incident to a common vertex
of the network to join with G2 continuity; this is an extension of Shirman and Séquin’s
opposite edge method [200]. Pairs of curves are made G1 continuous by forcing them to
share tangent vectors. G2 continuity is imposed by forcing the curves to also share the
binormal component,c, from (5.1). Curves may be paired up automatically at even order
vertices. At odd order vertices and at vertices where custom or partial pairings are desired,
matches may be specified manually.

During initialization, shared tangent vectors are set to the average of the individual
tangents computed by chord projection. Figure5.6 illustrates curve continuity applied to
16 regularly spaced points on the surface of a torus. Figure5.6② illustrates the
improvement to the network when G2 continuity is imposed. In a second example, we
illustrate a case where there is an appreciable difference between a network of curves that
are matched up with G1 continuity versus a network of curves where paired up curves are

Vertex ID

Approximate
 Radius of
Curvature

Approximate
 Normal

 Curvature
Least Squares Fit
Normal Curvature

B {1.0, 0.4, 1.0} 2.7 0.370 -0.0584

C {-1.0, -0.5, -2.0} -5.25 -0.190 0.452

D {0.0, 0.2, 0.5} 0.725 1.379 0.929

E {-2.0, -0.75, 1.0} -3.70833 -0.269 -0.162

F {0.0, 0.5, -1.0} 1.25 0.8 0.928

Table 5.1. Least Squares Fit Curvature Example.

This table lists the inputs and solutions to finding the least squares fit curvature for the
arrangement of vertices shown in Figure 5.4. Vertex A is located at the origin, and the
surface normal is along the y-axis.

α

P

111

constrained to meet with G2 continuity. In this case the network passes through 12 points
on a symmetrical S-shaped tube. The network specification includes position, surface
normal and curvature as well as curve tangent constraints.

In Figure 5.7① we see the curves of the network meeting with G1 continuity; in the lower
half of the figure the curves running lengthwise along the tube have curvature profiles
attached, highlighting the distribution of curvature. Note that in Figure 5.7② the curves

Figure 5.4. A Least Squares Curvature Solution.

Here we see the surface (①, osculating paraboloid) swept out by the osculating circles
rotated about the surface normal, and arcs of the sample osculating circles of which it is a
least squares fit.

①

112

are G2 continuous. This latter G2 continuous network is of superior quality, in part,
because some of the curves of the network are naturally G2 continuous and those that are
only G1 continuous create asymmetry unless constrained to G2 continuity.

Figure 5.5. Normal Curvature vs. Tangent Direction.

The approximate normal curvature associated with each vertex is connected to the plot by a
vertical line.

Figure 5.6. Optional Network Continuity Constraints, G0 versus G2.

A network through points on a torus ① with G0 and ② with G2 continuous curves through
vertices.

1 2 3 4 5 6

-0.5

0.5

1

E

B

C

D

F B

D

C

F

E

① ②

113

5.4 Comparisons

To assess the quality of MVN, we compare them with other methods and examine the
distribution of curvature along the network. Since there are no other published methods
for creating G2 networks of curves, we compare MVN with the networks resulting from
Shirman’s method [198] and from that of Mann et al [126]; these methods are reviewed in

Figure 5.7. Optional Network Continuity Constraints, G1 versus G2.

A network through points on an S-shaped tube ① with G1 and ② with G2 continuous
curves through vertices.

① ②

114

section3.2. The latter approach is an adaptation of deBoor-Höllig-Sabin [44], thus we use
the initials “DBHS” to identify these networks. For our comparisons, we use the data sets
from the study of Mann et al. [126] (Fig.5.8); the corresponding input files are provided in
appendix B. These data sets are samplings of existing surfaces: bothoctahedron and
sphere6 take their data from the surface of a sphere,capsule is a cylinder with
hemispherical caps,franke4 is a sampling of the Franke function [84]

,

andtorus takes its data from the surface of a torus with major and minor radii 1.5 and 0.5
respectively. The networks calculated by the three methods in the comparison are shown
in figures 5.9-5.12. In the figures the networks are rendered with a curvature fin attached to
their component curves. The fin follows the curve normal and its width is proportional to
the curvature of the curve at the point where it is attached. This is the same method as was
used in the evaluation of MVC in section4.11. In terms of the subjective quality of the
network, the Shirman-Séquin approach is outperformed by the other two methods in all
cases. Examiningoctahedron and sphere6, we see a subtle difference between the

Figure 5.8. University of Washington Data Sets.

① octahedron, ② sphere6, ③ capsule, ④ franke4, ⑤ torus.

z
1
3

e

81
16

−() x 0.5−() 2 y 0.5−() 2+[]
=

⑤

④

③

②

①

115

curvature distribution of the MVN and DBHS, the latter network has slightly lower
curvature near the interpolation points. Examining Franke4 and finally torus, we see a
marked difference in the respective networks. The MVN torus is very regular, with
smoothly varying curvature. The DBHS torus has large discontinuities when passing
through interpolation points, and curvature is not distributed evenly along the arcs of the

Figure5.9.Octahedron.

① Minimum variation network. ②,③, and ④ are drawn with curvature profiles.
② Shirman-Séquin.③ DBHS.④ MVN.

①

③

②

④

116

network. Much of the regularity and all of the arc-to-arc continuity of the MVN may be
attributed to imposing G2 continuity among the arcs of the network. The superior
distribution of curvature is due to the curvature variation functional.

Figure5.10. Sphere6.

① Minimum variation network. ②,③, and ④ are drawn with curvature profiles.
② Shirman-Séquin.③ DBHS.④ MVN.

①

③

②

④

117

Next we examine the network generated for points on a prismatic tetrahedral frame
(Fig. 5.14), also see Figure 6.6 on page 139. We will revisit all of these examples in
section 6.5 after the networks have been used to create minimum variation surfaces. As a

Figure5.11. Capsule.

① Minimum variation network. ②, and ③ are drawn with curvature profiles.
② Shirman-Séquin. ③ MVN. The DBHS example is not included because there is no
consistent curvature info where the cylinder and hemisphere meet.

①

② ③

118

final example we compute the network for a common CAGD blending problem, the
joining of two cylinders of differing radii meeting at a right angle (Fig. 5.15).

Figure5.12. Franke4.

① Minimum variation network. ②,③, and ④ are drawn with curvature profiles.
② Shirman-Séquin.③ DBHS.④ MVN.

①

③

②

④

119

Figure5.13. Torus.

① Minimum variation network. ②,③, and ④ are drawn with curvature profiles.
② Shirman-Séquin.③ DBHS.④ MVN.

①

③

②

④

120

Figure 5.14. TetraThing.

MVN for a prismatic tetrahedral frame. Curves are G2 continuous through the vertices of
the network. The MVN network and interpolation points are shown in ①. The curvature
profiles for the separate parametric directions are shown in ② and ③ and combined in ④.

①

②

③

④

121

Figure 5.15. Cylinder Blending.

This network is defined by position, tangent, and curvature information at each vertex.

122

123

6
Minimum Variation Surfaces

In this chapter we describe the calculation of the Minimum Variation Sur-
face (MVS). A series of examples demonstrates the superior quality of MVS
compared with surfaces created by other techniques.

In the computer aided design of curved surfaces there is a wide range of requirements.
While it is necessary to model regular shapes such as cylinders, cones, tori, and spheres, it
is also important that free-form shapes be modeled with ease. Often, it is also necessary
that surfaces exactly meet a set of positional, tangent, and curvature constraints. In all
cases, surface fairness is of great importance. The minimum variation surfaces (MVS)
meet all these requirements.

Our choice of functional for minimization was prompted by the need for very high quality
surfaces with predictable, intuitive behavior, and the desire to capture shapes commonly
used in geometric modeling. The fairness of curves and surfaces has been studied
extensively and has been shown to be closely related to how little and how smoothly a
curve or surface bends. For an early and interesting reference see [15].

Traditional work on the fairness of surfaces focuses on strain energy, minimizing the area
integral of the sum of the principal curvatures squared [91,123,145,209]

.

Our approach minimizes the variation of curvature, rather than its magnitude. We
minimize the area integral of the sum of the squared magnitudes of the derivatives of the
normal curvatures taken in the principal directions:

.

κ1
2 κ2

2+ Ad∫

κnd

ê1d

2 κnd

ê2d

2

+ Ad∫

124

Like the MVC functional, the MVS functional has associated shapes that are optimal in
the sense that the functional evaluates to zero. In the case of the MVS functional, the
shapes belong to a special family of curved surfaces call cyclides [17,173] which includes
spheres, cylinders, cones, and tori. These all have lines of principal curvature where the
associated normal curvature remains constant. Lines of principal curvature follow the
paths of minimum and maximum normal curvature across a surface. Also like MVC
functional, MVS are invariant under rigid body transformations and uniform scaling, but
similarly the MVS changes functional value with changes in scale. Specifically, for a
change in scale by a factor of γ, the MVS functional changes value by a factor of .
We have designed1 a scale invariant MVS functional, similar to the SI-MVC
functional (4.3), that counters the inverse square factor by multiplying the standard MVS
functional by the area of the surface, which varies as the square of the scale:

the SI-MVS functional (6.1)

MVS are specified using interpolated geometric constraints. The resulting models
accurately reflect these specifications and are free of unwanted wrinkles, bulges, and
ripples. When the given constraints permit, the resulting surfaces form portions of spheres,
cylinders, cones, and tori. Specification of a desired shape is straightforward, allowing
simple or complex shapes to be described easily and compactly. For example, a Klein
bottle is specified with ease; only twelve point-tangent constraints are used to model the
surface shown in Figure 6.1.

6.1 MV-Surface Construction

We treat the problem of creating a surface interpolating a collection of geometric
constraints as one of scattered data interpolation. The interpolation problem is broken into
three steps (Fig. 6.2); ① connectivity definition, ② curve network computation, ③ patch
blending. In accordance with the topological type of the desired surface, the geometric
constraints are first expressed by a network of straight edges. These are then replaced with
suitable curve segments, and an optimized network is computed composed of minimum
variation curves (MVN) subject to the specified geometric constraints and the additional
constraint that the curve segments meet with second order geometric continuity, G2, at the
vertices. Finally, an interpolatory minimum variation surface (MVS) is computed,
interpolating the MVN with tangent continuity. In a first approach, the boundaries of the
MVS patches are fixed, interpolating the previously constructed curve network.
Alternatively, the surface calculation may use the MVN as a starting point and modify its

1 The SI-MVS will be implemented as part of future research.

1 γ2⁄

Ad∫()
κnd

ê1d

2 κnd

ê2d

2

+ Ad∫

125

geometry during surface calculation. The latter approach yields even smoother surfaces,
but at a substantially higher computational expense. The higher quality surfaces result
because the curves of an MVN resulting from a given constraint set do not always lie in
the MVS resulting from the same set of constraints. We examine the flexible MVN and the
associated improvement in surface quality in section 6.5.

During the modeling process, the connectivity of the geometrical constraints is typically
established as a natural outgrowth of the design process. The techniques described here
are also amenable to true scattered data interpolation, in which case connectivity must first
be derived with some other method, possibly based on some minimal triangulation on the
data points. Our system is based on triangular and quadrilateral patches. All constraints
are located at corners of these patches. Currently, the user must add additional vertices and
edges to the network so that it has only three- and four-sided openings. These additional
vertices are not constraints and are appropriately positioned by the curve network
computation and patch blending phases of the construction.

Figure6.1. A Klein bottle.

This complex surface is defined by twelve constraint sets.① The initial MVN used to model
the bottle. ② The resulting surface with diffuse shading.③ The surface rendered using
environment mapping to “highlight” its quality .

126

Based on the MVN, the computation of the MVS interpolatory surface is accomplished
using constrained optimization. The geometric constraints are imposed by constructions
similar to those used in the calculation of the network. Inter-patch tangent continuity is
imposed by means of a penalty function that is equal to zero when the patches composing
the MVS meet with tangent continuity and proportionally greater than zero for any G1

discontinuity. In addition, a similar penalty function may be applied to impose curvature
continuity. The use of penalty functions alone does not guarantee perfect continuity. Exact
G1 continuity may be achieved in a subsequent phase of optimization using Lagrange
multipliers [41] or using the continuum method, a continuous reduction to zero of the
weight of the MVS term in the functional. This reduction of the MVS functional to zero is
equivalent to increasing the G1 penalty to infinity. In practice, it is not always necessary to
resort to this second phase because the surfaces resulting from the first phase are of high
quality and sufficiently close to being tangent continuous. Mann and DeRose have shown
this type of approximate tangent continuity to be sufficient and, in fact, desirable in some
applications [50].

Figure 6.2. The Blend of Two Pipes.

Pipes are blended in three steps: ① The connectivity of the constraints is established.
② Smooth curves are fit to the constraints. ③ Surface patches are fit to the curve network.

➨① ➨ ➨② ③

127

6.2 Representation and Computation

As described in section6.1, the computation of an MVS satisfying a given set of

constraints is broken into several steps. In this section we will focus on the last phase of

the algorithm where surface patches are fit to a G2 continuous MVN. The curves may

remain fixed or they may be used simply as a starting point for optimization. The choice

between fixed and variable curves is up to the designer and does not affect the algorithms

described here (section6.5.4). Chapter 5 provides the details of MVN calculation.

The MVS is approximated by a quilt of parametric polynomial patches which interpolate

the curve network, satisfy the geometric constraints, and meet with approximate tangent

plane continuity. The surface functional is then minimized by varying the surface

parameters that are not fixed by geometric constraints.

6.2.1 Bézier Patches

The curves of the network are represented by quintic Hermite polynomial segments; one

segment replaces each edge of the network of constraints. Consequently, the patches

making up the interpolatory surface have to be at least [bi-]quintic patches. Peters [161]

has demonstrated that quintics are sufficient to achieve tangent continuity for all

triangular/quadrilateral patch-patch combinations. One patch is used for each opening in

the network. Though we have found single patches to have sufficient descriptive power, it

is simple to subdivide network patches creating multiple patches per opening. The use of

multiple patches improves the approximation of the theoretical MVS surface which in

general has no closed form representation. Note that while Peters’ construction requires

that the curve network being interpolated has G2 continuity, the interpolatory surface

resulting from his construction is only G1 across boundaries and at the vertices of the

network. In contrast, our surfaces are constrained to meet with G2 continuity at the

vertices of the network (see section6.2.6).

Even though the boundary curves are in the Hermite form, we have chosen to use Bézier

patches because of their superior numerical characteristics and because one of the tangent

continuity conditions we use is particularly concise when formulated in terms of Bézier

coefficients. Also, Bézier patches are more amenable to rendering, and may be rendered

directly by subroutines found in the graphics library of workstations such as the Silicon

Graphics IRIS®.

128

6.2.2 Parametric Functionals

The fairness functional for surfaces (6.2) is defined in terms of an area integral. To
evaluate the functional and its gradient in the context of the parametric polynomial surface
patches described in section 6.2.1, the functional must be converted to a compatible form.
Here we outline the calculations necessary to evaluate the functional. The fairness
functional is computed for each patch, and the value of the functional for the surface as a
whole is the sum of the values for each patch. The area-based definition

(6.2)

 is converted to integrals of functions of the independent parameters u and v in . For
quadrilateral patches, the bounds of the integrals are set to vary over the unit square, and
the differential with respect to area is converted to differentials in u and v

where

,

and

. (6.3)

The variables E, F, and G, are from the first fundamental form from differential geometry
[52]. The principal curvatures and are the normal curvatures in the principal
directions. Thus the problem of computing and becomes one of
computing and . First we find expressions for these in terms of
derivatives taken in the direction of the parametric derivatives

where

.

Next we define the derivatives of taken in the direction of the parametric
derivatives using derivatives with respect to the surface parameters u and v:

.

κnd

ê1d

2 κnd

ê2d

2

+ dA∫
S u v,()

κnd

ê1d

2 κnd

ê2d

2

+

Su Sv× dudv

0

1

∫
0

1

∫

Su Sv× EG F2−=

E Su Su⋅= F Su Sv⋅= G Sv Sv⋅=

κ1 κ2
κnd ê1d⁄ κnd ê2d⁄

κ1d ê1d⁄ κ2d ê2d⁄

κ1d

ê1d

κ1d

ûd
ê1 Ŝu⋅()

κ1d

v̂d
ê1 Ŝv⋅()+=

κ2d

ê2d

κ2d

ûd
ê2 Ŝu⋅()

κ2d

v̂d
ê2 Ŝv⋅()+=

Ŝu Su Su()⁄= Ŝv Sv Sv⁄=
κ1 κ2,

κid

ûd

κid

ud
1

Su

=
κid

v̂d

κid

vd
1

Sv

=

129

Finally, the parametric derivatives of and are computed from an expression derived
from the fact that the principal curvatures are the eigenvalues of the curvature tensor. The
expression for the curvature tensor is

,

where

. (6.4)

E, F, and G are defined as in equation (6.3), e, f, and g are the terms of the second
fundamental form from differential geometry [52].

Since and are the eigenvalues of the curvature tensor, we get the following
expression:

.

This expression is in terms of the surface parameters u and v. Using the chain rule, it is
simple to compute the required parametric derivatives, . Note that in
computing the parametric derivatives of , and g, it is helpful to have a simple way of
computing and :

.

6.2.3 Numerical Integration

In section 6.2.2 we discussed a method for evaluating the expression on the inside of the
fairness integral. Because it is impractical to compute the integral analytically, we use
numerical integration to evaluate the integral. Instead of using standard Gauss-Legendre
quadrature, we use Lobatto quadrature [1]. Lobatto quadrature has approximately the
same convergence and samples the perimeter of the integration domain:

κ1 κ2

a11 a21

a12 a22

a11
fF eG−
EG F2−

= a21
eF fE−
EG F2−

=

a12
gF fG−
EG F2−

= a22
fF gE−
EG F2−

=

e n̂ Suu⋅= f n̂ Suv⋅= g n̂ Svv⋅=

κ1 κ2

κi

a11 a22 a11
2 4a12a21 2a11a22− a22

2+ +±+
2

=

κid ud⁄ κid vd⁄,
e f,

n̂u n̂v

n̂u κ1 Su ê1⋅() ê1 κ2 Su ê2⋅() ê2+=

n̂v κ1 Sv ê1⋅() ê1 κ2 Sv ê2⋅() ê2+=

f x() xd

0

1

∫ w1f 0.0() wif xi()
i 2=

n 1−

∑ wnf 1.0()+ +≈

130

We have found Lobatto’s integration formula to be as effective as Gauss-Legendre
quadrature for our application, and since it samples the perimeter, its evaluations may be
used to compute continuity penalty functions, see (6.2.5). As a default, we use 20
integration points in each parametric direction, a satisfactory number for the modeling
problems we have encountered so far. If the number of sample points is reduced, the
surface might form a cusp or crease between sample points where the integrator will not
“see” it.

The first ten sets of abscissas and weight factors for Lobatto’s integration formula are
tabulated in [1]. The computation of other sets of weights and abscissas requires finding
the roots of the first derivative of a Legendre polynomial. Mathematica [210] may be used
to generate larger tables. Because finding the roots of high order polynomials is difficult
and prone to numerical errors, the results calculated for a new table should be checked for
accuracy, e.g. by verifying that the weights sum to 1.

6.2.4 Differentiation

During the optimization process, it is necessary to compute the gradient of the functional
with respect to all the available degrees of freedom. When computing the curve network,
analytical partial derivatives are used in conjunction with numerical integration to
compute the gradient. In the case of surfaces, the functional is of such complexity that it is
impractical to compute the gradient in this fashion. Instead we use central differences [39]
to approximate the partial derivatives. The standard central difference formula for
computing the derivative of with respect to a follows:

. (6.5)

In order to get accurate derivative estimates, it is necessary to choose the difference value
h carefully. An optimum value of h balances the trade-off between the discretization error
resulting from a large h and an increasing relative roundoff error resulting from too small
a value for h. We initialize h to a reasonable value based on the number of significant bits
in the computation of the functional and subsequently update h periodically based on the
observed number of significant bits in the difference computation. An accepted rule of
thumb dictates that about half the significant bits should cancel out when the difference is
computed [ref].

f a()

f ' a()
f a h+() f a h−()−

2h
=

131

First we find the number of significant bits in computing our functional. By computing the
fairness functional, F, in both single and double precision, we find the number of
significant bits in the single precision calculation:

. (6.6)

Currently our calculations are carried out in double precision. We compute using
equation (6.6) applied to a sample of MVS calculation problems. varies somewhat
both from interpolation problem to interpolation problem and from the beginning to the
end of an optimization. Averaging several sample values we compute a value of

. Because we can only directly compute , we compute the value of
 by assuming a gain of approximately 29 bits of precision corresponding to the 29

additional fractional bits available in double precision. Using this computation we get
.

At the start of an optimization h is initialized to . After each difference
computation we compute the number of significant bits in the difference value d and adjust
h if the number of significant bits is not within set bounds. The number of significant bits
in the difference computation is computed

.

The difference value h is adjusted as follows

.

Though the specific values of 1.5 and 0.75 have been chosen empirically, it is important
that they not be reciprocals of each other. If they were reciprocals, we would run the risk
of h oscillating between two values, one too large and one too small. The value of a finite
difference step size is usually fixed for the duration of an optimization; our approach of
continually adjusting h has the advantage that h adapts to different stages in the
optimization, depending on the functional and its gradient. Also note that since different
degrees of freedom have differing numerical behavior, a custom finite difference value h is

ssingle log− 2
Fsingle Fdouble−

Fdouble

=

ssingle
ssingle

ssingle 10.5≈ ssingle
sdouble

sdouble 39.5≈

h F 2 16−×=

d sdouble log+
2

2 f a() f a h+()−
f a() f a h+()+()()=

sdouble log+
2

2 f a() f a h+()−() log 2 f a() f a h+()+()()−=

if d
sdouble

3
<()h 1.5h=

if d
2sdouble

3
>()h 0.75h=

132

associated with each DOF. Finally, an inexpensive “trick” is used to preserve as much
precision as possible when adding the difference value to the associated DOF to produce
the perturbed DOF q

.

This adjusts h so that it corresponds precisely to the difference between a and the
perturbed value of a, q.

6.2.5 Continuity by Penalty

In sections (3.3.2.1) and (3.3.2.2) we outline work that highlights the difficulties
encountered when trying to construct networks of polynomial patches meeting with
specified geometric continuity. These problems can be circumvented by incorporating the
continuity problem into the optimization used to shape surfaces. We achieve this by
adding to the objective function a penalty function for lack of continuity. This penalty
function evaluates to zero when surfaces meet continuously and increases sharply with the
magnitude of discontinuity. Because of the nature of gradient-based optimization, it is
important that this penalty function have zero gradient at its minimum point. In
section 6.2.5.1 we discuss the formulation of a penalty function for tangent continuity and
in section 6.2.5.2 we present a similar penalty function for G2 continuity.

6.2.5.1 Tangent Continuity

In this section we present two possible penalty functions for incorporating tangent
continuity into a surface optimization. The first method is based on the work of DeRose
[49]; he sets forth the necessary and sufficient conditions for G1 continuity. The second
method is based on the numerical integration of a cross-boundary discontinuity function.

DeRose’s G1 conditions take the form of a series of formulas, , all of which must be
zero for G1 continuity to exist. Using his notation, and refer to the degree of
the cross-boundary tangent functions and the degree of the tangent function

 along the boundary (Fig. 6.3). For example, a pair of abutting bi-quintic patches
have and formulas

(6.7)

q a h+= h q a−=

eq i
NF ' NG ', NH '

F' G',()
H'()

NF ' NG ' 5= = NH ', 4=

eq m Fj
* Gk

* Hl
*, ,

j k l+ + m=
∑= 0=

m 0…D= D NF ' NG ' NH '+ +=

133

where

where the and are difference vectors as shown in Figure 6.3. The result per
shared boundary, for our example of bi-quintic patches, is a set of fifteen equations, made
up of one hundred distinct determinants. The complexity of solving this system of
equations (6.7) has been outlined by a number of authors [108,161,188,199]. This
complexity arises because the corner interior control points appear in the cross-boundary
equations for multiple sides. This multiple appearance couples different patch-patch
continuity equations and thereby creates a global system of equations with a very large
number of variables. In the context of the optimization described here, it is impractical and
unproductive to solve this explicitly; which is why we use penalty functions.

Figure 6.3. Difference vectors.

The difference vectors on a patch are formed by subtracting adjacent points, etc. for a pair
of bi-quintic patches.

Fj
* NF '

j

F' j= Gk
* NG '

k

G'k= Hl
* NH '

l

H' l=

F' j G'k, H' l

3 3×

F'0
F' t()

H'0

G' t()
G'0

G'5H'4

F'5

H' t()

134

We have described how the fairness functional is evaluated. We complete the objective
function to be minimized by adding a penalty for lack of G1 continuity. In formulating the
penalty function, we square the terms from equation (6.7) and add yielding

. (6.8)

The penalty is computed for every patch-patch boundary and added to the fairness
functional forming the objective function. Note that (6.8) does have the property that its
gradient evaluates to zero at its minimum (zero).

An attractive alternative to a penalty based on equation (6.7) is the integration of a
cross-boundary discontinuity function. We may form such a penalty function from
parameterization independent measures by computing the surface normal along either side
of the patch-patch boundary. One such function integrates a function of the cosine of the
angle formed by the normals

. (6.9)

This equation is satisfactory except that it is not strongly positive for large discontinuities,
in fact its magnitude is limited to 2.0. Equation (6.10) computes a function of (6.9) such
that its values range from 0 to .

. (6.10)

Since the normal vector is computed as part of evaluating the fairness functional, and the
fairness functional is integrated using Lobatto quadrature, we use the same quadrature rule
to integrate (6.10). In order to show that a polynomial of order n is identically zero, it is
only necessary to show that it is equal to zero at n distinct locations. The roots of equation
(6.10) are identical to the roots of the determinant of tangent functions and , a
polynomial of degree 14 in the biquintic-biquintic case. Thus if (6.10) is sampled at least
15 times, we are guaranteed that if the result is zero then the function itself is also zero.
This latter G1 penalty function is more efficient to compute, and it is independent of
parameterization.

P
G1 Fj

* Gk
* Hl

*, ,
j k l+ + m=

∑()
2

m 0=

D

∑=

P
G1 1 n̂a n̂b⋅()−() 2= n̂a n̂b⋅() 1→ ∇P

G1 0=

∞

P
G1

1 n̂a n̂b⋅()−
1 n̂a n̂b⋅()+

2

=

n̂a n̂b⋅() 1→ ∇P
G1 0=

n̂a n̂b⋅() 1−→ P
G1 ∞=

F' G', H'

P
G1

135

6.2.5.2 Curvature Continuity

The problem of constructing a G2 continuous network of polynomial patches is extremely
difficult to solve exactly due to the second order analogue of the twist compatibility
problem (3.3.2.2). Our penalty based method avoids this problem by using methods

similar to the G1 penalty function to push the optimization toward a G2 continuous
solution. We construct the penalty function from the geometric measures of curvature,

. Pegna and Wolter [155] show that, given a pair of patches that meet with G1

continuity, patches need only have equal normal curvatures in a single transverse direction

in order to assure G2 continuity. From this observation we derive a penalty function
measuring the difference in normal curvature in the direction perpendicular to the

patch-patch boundary. The normal curvature in the direction is

, therefore, because , the normal curvature in the

direction is . Referring to on adjacent patches as

, our G2 penalty function is . Note that this function has the

necessary property that the gradient is zero when . In order to determine the

number of samples required to accurately integrate this function, we could use a similar
argument based on the order of the polynomials involved in its evaluation. Since the
polynomial order is prohibitively high, we sample this function with the same density as

the G1 penalty and the MVS functional. We have found this to significantly improve the
quality of problematic surfaces. For example, the suitcase corner blend in Figure 1.1 has
large curvature discontinuities as shown in Figure 6.4②. In Figure 6.4③ we see the results

of applying our penalty for curvature discontinuity; the resulting surface is nearly

curvature continuous; Fig. 6.4① is a shaded rendering of the G2 surface.

6.2.5.3 Continuum Methods

The G1 (6.2.5.1) and G2 (6.2.5.2) penalty functions are combined with the MVS
functional to form the objective function:

(6.11)

Minimizing this objective function alone does not guarantee G2 or even G1 continuity.
This is because using a single quintic patch in each network opening may not provide
sufficient degrees of freedom to accurately represent the theoretical minimum variation
surface. Two solutions to this problem are possible. First, each patch of the network may

κ1 κ2 ê1 ê2, , ,

κn t̂

κn κ1 ê1 t̂⋅()
2

κ2 ê2 t̂⋅()
2

+= ê1⊥ê2

⊥ t̂ ⊥κn κ2 ê1 t̂⋅()
2

κ1 ê2 t̂⋅()
2

+= ⊥κn

κa κb, P
G2 κa κb−() 2=

κa κb− 0=

κnd

ê1d

2 κnd

ê2d

2

+ Ad∫ P
G1 sd∫ P

G2 sd∫+ +

136

be subdivided into multiple patches adding flexible arcs to the MVN, and augmented with
the resulting additional degrees of freedom, the optimization may proceed. Second, we
may use continuum methods to achieve final continuity. A continuum method computes a
series of solutions to a problem by varying a parameter of the problem. In our case we
modify (6.11) to allow the influence of the MVS functional to be slowly phased out:

. (6.12)

Our approach iteratively minimizes (6.12) reducing w by a factor of two before each
iteration. Iteration continues until the desired continuity is achieved. Peters has shown that
quintic polynomial patches are sufficient for forming a G1 continuous surface out of a
network of polynomial patches. The degree requirements for patches forming a G2

continuous surface are as yet unknown. If, after reducing w to zero, we find that G1

continuity has not been achieved, we may either, reapply the continuum method without
any penalty for G2 discontinuity, or subdivide the network of patches and reapply the
method retaining the penalty for G2 discontinuity.

Figure 6.4. A Curvature Continuous Suitcase Corner

① a shaded rendering of the G2 surface. ② and ③ are displayed as functional offset
surfaces, with the offset proportional to Gaussian curvature (see section 6.4). ② illustrates
a G1 suitcase corner with curvature discontinuities appearing as large gaps in the offset
surface. ③ illustrates a nearly G2 suitcase corner achieved using as a penalty function.

① ② ③

P
G2

w
κnd

ê1d

2 κnd

ê2d

2

+ Ad∫ P
G1 sd∫ P

G2 sd∫+ + w 0→

137

6.2.6 G2 Vertices

The order of the derivatives in the surface functional indicate a requirement for G2

continuity. In addition to the G2 penalty function, we may construct the network of
patches to meet with G2 continuity at their shared vertices only, and we maintain this
continuity by construction during the minimization process. The construction used to
maintain G2 vertex continuity of the surface is a simple extension of the construction used
to maintain G2 compatibility of the MVC network (section 5.1). An additional step is
carried out after the principal directions and curvatures at the vertices of the network have
been established. This extra step of the construction requires that the twist vector of each
incident patch corner be compatible with the established curvature. The restriction on
is derived from the formulas for mean and Gaussian curvature:

and

where are defined as in equations (6.3) and (6.4). The twist vector must be
adjusted to satisfy . This is accomplished by forcing the tip of to lie in the
plane perpendicular to , offset by distance f from the vertex

f can be computed from the values of and from the first and second order
derivatives of .

6.2.7 Symmetry—a time saving constraint

Many of the objects that we have designed using MVS possess some degree of symmetry.
For the purposes of our discussion we will examine a surface fit to a tetrahedral frame. The
surface was constructed by first fitting four-sided prisms to the edges of a tetrahedron.
Then, using the topology of the prismatic frame, a smooth surface was computed that
interpolates the resulting 20 vertices with 24 patches (Fig. 6.6).

On first examination, this surface appears to be quite complex, but on closer inspection we
discover that there are actually only two distinct patches, the “inner” and “outer” patches
(Fig. 6.7). This is because this object has full tetrahedral symmetry. If the symmetry is
specified before the surface is calculated and enforced as an additional constraint, great
computational savings may be reaped. In this case we may compute the shape of the object
at a cost comparable to computing the shape of an object composed of only two patches.
This translates into a twelve-fold savings in computation. If we look closer, we find that

Suv

Gaussian κ1κ2
eg f2−

EG F2−
==

mean
κ1 κ2+

2
1
2

gE 2fF− eG+
EG F2−

==

e f g E F G, , , , ,
f n̂ Suv⋅= Suv

n̂

S'uv Suv f n̂ Suv⋅−() n̂+=
κ1 κ2,

S u v,()

138

even these two patches have mirror symmetries and further efficiency may be gained by
constraining these patches to be self-symmetric. In all, by specifying object symmetries as
an optimization constraint, we see a 24-fold decrease in the time to compute this complex
shape. Note that the arrangement of patches is an artifact of how the surface was
constructed and that it is also possible to use 24 copies of a single patch.

To assess the benefit from imposing symmetry, we examine a simpler case. Here we
compute the MVS interpolating the vertices of a cube; the surface is composed of six
quintic tensor product patches, each with 48 degrees of freedom. For comparison we ran
four optimizations each with successively greater exploitation of symmetry. We ran cases
with no symmetry, 2, 6, and 24-fold symmetry corresponding to 288, 144, 48, and 12
degrees of freedom. Clearly we expect the case with the fewest degrees of freedom to
complete more quickly, but we also notice that the improvement per iteration of the

Figure 6.5. Construction of a G2 Vertex

139

optimization is greater for those cases with fewer degrees of freedom. We see these results
in Figure 6.8. The increase is due to the fact that there are fewer patches to minimize, but
also that we have greatly reduced the dimensionality of the space in which the
optimization is taking place.

Figure 6.6. The Construction of a tetraThing

140

We take advantage of symmetry in an indirect fashion. Rather then precisely defining the
symmetry relationship between a pair of patches, we define the transformation that maps
one patch (the master) onto another (the instance); during optimization the control points
of the instance are computed as transformed versions of the master’s control points.
Rotational symmetry is specified by defining an axis of rotation and an angle of rotation
(Fig. 6.9). Mirror symmetry involves the specification of a plane through which the master
is reflected to produce the instance. It is also possible to specify arbitrary transformations
relating one patch to another. Currently we restrict intrapatch symmetries to a subset of the
possible symmetries (Fig. 6.10). Triangular patches may be defined with three-fold
rotational symmetry. Quadrilateral patches may have two and four-fold mirror (D1,D2) or
rotational symmetry (C2,C4).

6.3 Initialization

The gradient descent scheme described in section 6.1 starts with an initial surface and
iteratively refines that surface until the surface functional reaches a (local) minimum and
an optimal surface is reached. In this section we discuss methods for finding a suitable
initial surface. In terms of the desired optimization, the goal is to find an initial point in the
proper “valley” of the solution space such that the desired surface is found as the minimal
point in that valley. The optimization requires that initial values be provided for any
parameters not explicitly set. We use an MVN to initialize the control points on the

Figure 6.7. Unique Patches Composing tetraThing.

The tetraThing is composed multiple copies of these two patches. This particular
patch-wise breakdown of the model is an artifact of the construction used to create it.

141

perimeter of each patch. We discuss three methods for the initialization of the patch’s
interior control points: Peters’ construction [161], approximate G1 continuity, and zero
corner derivatives.

Figure6.8. Symmetry—Convergence vs. Iterations/Time

① Initially , the various levels of symmetry have similar convergence per iteration, but once
the gross shaping of the surface is complete, the 24-fold symmetric optimization converges
more efficiently. ② The greater the symmetry, the faster the convergence.

1
1

1

1
1

1

1 1 1
1

1

1 1
1

1
1

1
1

1
1

2

2

2

2

2

2
2 2 2 2 2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2 2
2 2

2 2 2 2 2
2

6

6

6
6

6
6

6

6 6 6 6
6

6

6

6
6

6
6

6
6

6
6

6
6 6

6 6 6
6 6

6 6
6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6

6 6 6 6
6 6

6 6 6 6 6 6 6 6 6 6 6
6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6

6 6 6 6 6 6 6 6
6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6

6 6 6 6

24
24

24

24

24

24

24
2424

24

24
24

24

24

24

24

24
24

24
24

24
24

24
24

242424
24

24
2424

242424
24

24
2424242424242424

2424242424
2424

24
2424

2424
24242424242424242424

24242424
242424242424

of iterations

lo
g

of
 o

bj
ec

tiv
e

fu
nc

tio
n

①

24 — 24-fold

6 — 6-fold

2 — 2-fold

1 — no symmetry

1
1

1

1
1

1

1 1 1 1

1
1 1

1
1

1

1
1

1
1

2

2

2

2
2

2
2 2 2 2 2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2 2
2 2

2 2 2 2 2
2

6

6
6

6

6
6

6

6 6 6 6
6

6

6
6

6
6

6
6

6
6

6
6

6 6
6 6 6

6 6
6 6

6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
6 6 6 6

6 6
6 6 6 6 6 6 6 6 6 6 6

6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
6 6 6 6 6 6 6 6

6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
6 6 6 6

24
24
24

24
24

24

24
2424

24

24
24
24

24

24

24

24
24
24
24
24
24
24
24
242424

24
24
2424

242424
24
24
2424242424242424

2424242424
2424

24
2424

2424
24242424242424242424

24242424242424242424

lo
g

of
 o

bj
ec

tiv
e

fu
nc

tio
n

time

②

24 — 24-fold

6 — 6-fold

2 — 2-fold

1 — no symmetry

142

Peters’ construction finds an exact solution to the G1 continuity problem, using a

Figure 6.9. Examples of Interpatch Symmetries

① mirror symmetry (D1), ② 4-fold rotational symmetry (C4)

Figure 6.10. Examples of Intrapatch Symmetries

① two fold mirror symmetry (D1), ② four fold mirror symmetry (D2), ③ four fold
rotational symmetry (C4).

① ②

D1 C4

①

②

③

D1

D2

C4

143

sufficient construction and heuristics to set those degrees of freedom not assigned by the
construction. Experience has shown that starting with a G1 continuous surface has no
particular advantage, in fact the heuristics used to compute such a surface often result in a
starting point further from the optimal surface.

To achieve approximate G1 continuity, we position the interior control points so that: 1) an
approximate boundary normal is interpolated and 2) the fourth order derivatives at the
patch corners are equal to zero. The first step initializes the twelve control points adjacent

Figure6.11. The Control Points of a Bézier Patch.

 The control points are grouped as the 20 perimeter control points (), the 12 adjacent
control points (,), and the 4 central control points (). As an example of
initialization, is computed by linearly interpolating the surface normal vectors at the
corners and the magnitudes of the corresponding difference vectors.

F'0

n̂00 p00

H'ˆ
2 n̂03

p03

F'3

p13

F'5

p05
n̂05

p13

144

to the perimeter (,), and the second step initializes the four points in the center of
the patch () (Fig. 6.11). The heuristic used to position the control points adjacent to the
perimeter linearly interpolates the normal vectors and the magnitudes of difference
vectors. Figure 6.11 and eq. (6.13) illustrate the approach, with the calculation of :

. (6.13)

This approach fails when modeling highly curved surfaces; it produces an usable starting
shape. For example if the normal vectors differ by more than 180°, linearly interpolating
them will yield nonsensical results.

Finally, we may also position all the interior control points so that the twist vector, and
third and fourth order derivatives are zero at the corners of the patch:

We have found this final technique to be simple and robust for a large variety of problems.
There are cases for which even this approach fails; for example the surface in Figure 6.26
had to be manually initialized in order to start the optimization in the correct energy
valley.

6.4 Surface Analysis Methods

To assess the quality of curved surfaces and of different design techniques, it is necessary
to develop rendering and analysis methods that expose the subtler aspects of curved
surface character. Forrest [73] discusses a variety of techniques for increasing the
information content and the understandability of renderings of curved surfaces. He
discusses realistic renderings, hedgehog surfaces, contouring, isoparametric lines,
pseudo-coloring by Gaussian and mean curvature, and various combinations of these
techniques. Klass [117] evaluates and fairs (modifies) curved surfaces with lines of
reflection, i.e. the images of parallel lines reflected in a smoothly curved surface. Dill [51]
discusses the assessment of curved surfaces based on pseudo-coloring that represents
mean and Gaussian curvature. He presents various schemes designed to expose different

p13

p13 p03 F'3+= F'3 F'3 F'ˆ
3= F̂3

n̂03 H'ˆ
2× n̂03 H'ˆ

3×+

n̂03 H'ˆ
2× n̂03 H'ˆ

3×+
=

F'3
2
5

F'0
3
5

F'5+= n̂03

2
5

n̂00
3
5

n̂05+

2
5

n̂00
3
5

n̂05+
=

Suv u v,() 0= Suuv u v,() 0=

Suvv u v,() 0= Suuvv u v,() 0=
u v, 0 1,{ }=

145

aspects of surface character. To assess the results of his fairing scheme, Kjellander [116]

uses isoparametric lines, curvature profiles of surface sections, and renderings of lines of

principal curvature. Schweitzer [194] presents a technique based on synthetic textures

designed to enhance the understandability of curved surface renderings. He renders

patches with dots scattered across the surface in roughly even patterns. These renderings

are designed to take advantage of three aspects of texture that affect our perception of

shape: size, shape, and density. These correspond to three types of gradient. Size is a

function of depth. Shape is a function of normal to the surface. Density is a function of

both compression and convergence. Compression is due to perspective, and convergence

is due to slant. Hoschek [103] describes the use of polarity to expose inflections in curves,

and areas of zero Gaussian curvature in surfaces. The polar complement of a point relative

to a circle is a line perpendicular to the line connecting the point and circle center. The line

is positioned at a distance inversely proportional to the distance between the point and

circle center. As a curve or surface is traversed, an envelope of lines or planes is formed:

the polar curve or polar surface. Both polar forms exhibit cusps corresponding to points of

inflection and zero Gaussian curvature. Poeschl [165] discusses surface analysis

techniques using isophotes, contours of . He also illustrates how shadow outlines, or

terminators, can expose G1 and G2 discontinuities; note that terminators are isophotes.

This may be seen in a cylinder topped with a cone and a hemisphere (Fig. 6.12). Beck et

al. [10] have compared analysis techniques including shaded renderings, contours of

Figure 6.12. Terminators Exposing Discontinuities.

G1 and G2 surface discontinuities cause respectively G0 and G1 discontinuities in isophotes
and terminators.

l̂ n̂⋅

146

intensity, curvature, etc., lines of principal curvature, geodesic paths, and curvature
pseudo-coloring. Munchmeyer [137] presents a case study of surface analysis techniques
concerning the display of contours of Gaussian curvature, mean curvature, maximum
principal curvature, principal directions, asymptotic directions, and level contours. The
primary problem with these methods is that while some give false negative indications,
others miss surface irregularities. In [170] Pottmann provides simple examples where
lines of reflection fail to expose discontinuities of curvature. He describes a new approach
that is designed to maximize the apparent curvature discontinuity at patch-patch
boundaries. His method relies on results from differential geometry; for any direction of
travel on a surface, there is a conjugate direction determined by the curvature of the
surface. As the curvature of the surface is varied the conjugate direction changes.
Pottmann finds the surface tangent direction at a point on the patch-patch boundary that
maximizes the angular difference between the conjugate directions corresponding to the
two abutting patches; a difference in conjugate direction will only result if the patches
have differing curvatures. The result is displayed as short vectors originating at the
patch-patch boundary and oriented in the derived conjugate directions. This approach
illustrates the maximum visual discontinuity a viewer could experience. However, this
approach fails to detect curvature discontinuities in some cases; this is because on a
parabolic surface one of a pair of conjugate directions is always in the direction of zero
curvature. For example, Pottmann’s approach fails to detect a discontinuity when half
cylinders of differing radii meet along their lines of zero curvature (Fig. 6.13).

Figure6.13. Cross Section of Half Cylinders of Differing Radii

Pottman’s G2 discontinuity detection scheme fails to indicate a discontinuity for this joint
because, for any cross boundary tangent the conjugate direction is along the boundary.

G2 discontinuity

147

We have reviewed work on rendering techniques designed to aid in the evaluation of
surface quality. Here we describe an additional technique based on rendering the surface
resulting from a functionally controlled normal offset from the original surface:

(6.14)

where is a scalar function such as mean or Gaussian curvature. Positions on the
surface are straightforward to compute using equation (6.14). The normal to

 may be computed by finding the partial derivatives of with respect to u
and v and taking their cross product. This is straightforward since the partial derivatives of

 were computed as part of the optimization process. Functional offset surfaces
provide an excellent means for analyzing and comparing the curvature characteristics of
surfaces (Fig. 6.15⑤). Discontinuities of curvature appear as gaps in the surface, and the
distribution of curvature is conveyed by the smoothness of the offset surface.

Figures 6.14 and 6.15 illustrate some of the techniques we used in the analysis of our
results. We classify techniques involving surface position and orientation as first order,
and those techniques involving surface curvature are classified as second order. From
among the first order approaches we used primarily lines of reflection (Fig. 6.14⑤) to
expose G1 discontinuities, and environment mapping (Fig. 6.14⑥) in the subjective
evaluation of surfaces. In combination with these techniques, real-time motion produces
many additional visual cues highlighting discontinuities and enhancing a sense of shape
quality. The second order approaches are specifically designed to help expose the
character of a surface’s curvature distribution. In Figure 6.15①, a method analogous to
those used in the analysis of MVN and MVC space curves is shown. The method does not
carry over very effectively to surfaces, other techniques are more useful. In ② of the
figure, the shaded surface is overlaid with contours of constant Gaussian curvature. We
have experimented with contouring other quantities, such as mean curvature, and
minimum and maximum curvature, and found the contours of Gaussian curvature most
useful. Such contours make G2 discontinuities obvious, there are breaks in the contours.
However, they do not provide a sense of the magnitude of curvature or of apparent
discontinuities. Figure 6.15③ is a rendering of the surface pseudo-colored based on
Gaussian curvature. Areas of positive curvature are pink to red, areas of negative
curvature are light to deep blue, and black regions have approximately zero Gaussian
curvature. This approach provides a sense of curvature sign and magnitude, but
discontinuities are difficult to identify. In Figure 6.15④ the surface is pseudo-colored to
provide a stronger sense of curvature distribution coloring with hues that vary quickly
with curvature. ⑥ combines the pseudo-coloring of ④ with the functional offset surface
shown in Figure 6.15⑤.

S' u v,() S u v,() f u v,()n̂
S

u v,()+=

f u v,()
S' u v,() n̂

S '
S' u v,() S' u v,()

n̂ u v,()

148

Figure6.14. Surface Analysis—First Order.

① Simple shaded rendering with specular highlights. ② Patch boundaries with
isoparametric lines indicating parameterization.③ A “hedgehog” surface; spines indicate
surface orientation and tangent discontinuities.④ Surface contours.⑤ Lines of reflection;
G0 reflection line discontinuity → G1 surface discontinuity, G1 line discontinuity → G2

discontinuity. ⑥ Environment mapping, similar to lines of reflection, but provides for a
subjective evaluation of aesthetics.

①

⑤

③

⑥

④

②

149

Figure6.15. Surface Analysis—Second Order.

① isoparametric normal curvature profiles. ② Contours of Gaussian curvature, .
③, ④ Gaussian curvature pseudo-coloring. ③ Pink → red ≡ ε → positive, lt. blue →blue ≡ -
ε→ negative, black ≡ zero. ④ The full range of hues is mapped to the full range of Gaussian
curvatur es. ⑤ A functional offset surface. This surface is offset from the original in
proportion to Gaussian curvature. The surface has expanded in areas of positive (elliptic)
curvatur e, and contracted in areas of negative (hyperbolic) curvature. ⑥ A pseudo-colored
offset surface;④ and ⑤ are combined to produce this rendering of curvature distribution.

①

⑤

③

⑥

④

②

κ1κ2()

150

6.5 Examples & a Comparison of
Functionals

In order to evaluate the quality and usefulness of MVS, we examine a few interpolation
and design problems. The special rendering techniques described in section6.4 are used to
assist in the evaluation of the quality of these surfaces. First we examine the problem of
interpolating the corners of a cube. Next, we revisit the data sets from the University of
Washington, introduced during the evaluation of MVN. The remainder of the section is
devoted to the modeling of more complex shapes, and an assessment of the effect of
flexible MVN on the quality of MVS.

6.5.1 Spheres

In Figure6.16 we use functional offset surfaces and pseudo-coloring to compare the MVS
functional with four other functionals. In② and③ only the G1 and G2 penalty functions
were minimized when fitting a surface to the points of a cube.④ illustrates the result of
using a linearized approximation to strain energy; curvature distribution is improved.
Next, ⑤ true strain energy is minimized producing a surface with fairly uniform
curvature. Finally, in Fig.6.16⑥ an MVS surface fitted to the corners of a cube produces a
very close approximation to a sphere.

6.5.2 University of Washington Data Sets

In section5.4 we compared MVN with the networks produced by the techniques studied
by the Mann et al. [126]. In this section we revisit these data sets continuing the
comparison with MVS. Both of the methods we make comparisons with use a
Clough-Tocher scheme (Fig.3.22), placing three quartic triangular patches in each
network opening. We place a single quintic triangular patch per network opening in the
construction of an MVS. In all cases the MVS interpolants are clearly superior to those of
both Shirman-Séquin and DBHS, (Fig.6.17-6.21). In each figure, the surface computed
using each technique is displayed as a row of three renderings. The first image in each row
is a simple shaded rendering. The second rendering is pseudo-colored according to
Gaussian curvature. The third surface in each row is a shaded rendering of the functional
offset surface, where offset is proportional to Gaussian curvature. The MVS we show here
are limited by the very large number of degrees of freedom in the more complex examples
(Table5.1). It is unrealistic to calculate MVS for such problems; in the cases with large
numbers of degrees of freedom (>500) it took several days to compute the solutions
shown.

151

6.5.3 Three Handles

Figure 6.22 illustrates the application of MVS to a more complicated example. In ① we
provide the MVN interpolated to create the G1 MVS. ② illustrates the surface rendered
with lines of reflection. In Figure 6.22, strain energy ③,④ and the MVS functional ⑤,⑥
are compared. The differences are subtle, curvature varies more smoothly and is
distributed more evenly over the MVS surface.

Figure 6.16. Surfaces Interpolating The 8 Corners of a Cube.

① The MVN and MVS interpolating the cube. Pseudo-coloring combined with functional
offset surfaces illustrate the differences among the different objective functions. ②-G1

penalty alone, ③-G2 penalty alone. ④-linearized strain energy, ⑤-strain energy, ⑥-MVS.

① ③②

④ ⑤ ⑥

0.4817580.217259 Gaussian curvature

152

6.5.4 Flexible MVN

In Fig. 6.23 and Fig. 6.24 we examine the consequences of computing an MVS with a
flexible MVN framework. Also included here is the same basic surface with all but two
point constraints removed. The combination of these two points and symmetry constraints
produces a stable solution. Generally, we find that the added degrees of freedom of a
flexible network allow for substantial improvement in the curvature distribution of the
surface. In Fig. 6.23①,②&③ we see the shaded renderings of the surfaces, the MVS with
flexible MVN② appears rounder and more full. The MVS with the largest number of
degrees of freedom③ is the fairest. We have rendered these surfaces with lines of
reflection in Fig. 6.23④-⑥; the more “flexible” the MVS the more regular the lines of
reflection. Lastly, in Fig. 6.24, we directly examine the distribution of curvature across the
surfaces

6.5.5 Minimum Topological Shapes

The MVS is a new class of surface. Like minimum energy surfaces and minimal surfaces
there are shapes that are characteristic of minimum variation surfaces. We have discussed
the cyclides as one class of surface readily formed by MVS under compatible constraints.
Here we consider, briefly, what shapes are formed in the absence of any constraints. For
surfaces of genus zero and one, the cyclide nearest and downhill from the starting point is
formed, but for surfaces of higher genus the answer is less clear. The problem arrises that,
without any constraints, surfaces of genus greater than one expand toward infinity. This is
because as the scale of an object is increased, its MVS functional is reduced in value; the
value of the MVS functional is not scale invariant (see (6.1) on p. 124). The genus zero
and one surfaces do not expand limitlessly because they are able to reach zero energy

Data Set # of vertices # of curves # of patches # of degrees of freedom

Octahedron 6 12 8 144

Sphere6 14 36 24 432

Franke4 36 85 50 900

Torus 50 150 100 1800

Capsule 74 216 144 2592

Table 5.1. University of Washington Data Set Stats.

N.b. the surfaces computed the using the Shirman-Séquin and DBHS methods are made up
of quartic triangular patches, three quartic patches for every quintic patch used in an
MVS. Thus there are three times thenumber of patches used by these methods.

153

Figure6.17.Octahedron.

Both Shirman-Séquin and DBHS produce surfaces with higher curvature at the boundaries
of the original network.

Shirman
Séquin DBHS MVS

shaded

Gaussian
pseudo-colored

Gaussian
offset surface

patch
outlines

154

Figure6.18. Sphere6

The irr egular spacing of sample points on the sphere cause Shirman-Séquin to generate a
surface with large curvature discontinuities.

Shirman
Séquin DBHS MVS

shaded

Gaussian
pseudo-

Gaussian
offset
surface

colored

patch
outlines

155

without expanding. We have, as an experiment, computed surfaces of genus greater than
one with only enough constraints to prevent scaling. The TetraThing (Fig.6.27) is an

Figure 6.19. Franke4.

The quality of the MVSs computed for this and the remaining University of Washington
data sets were limited by the large number of degrees of freedom. Surface computations
were terminated before completion.

Shirman
Séquin DBHS MVS

shaded

Gaussian
pseudo-

Gaussian
offset

colored

 surface

patch
outlines

156

Figure6.20. Torus.

Of the University of Washington data sets, the torus data set is the most technically
challenging. Both Shirman-Séquin and DBHS produce surfaces with visible creases.
Despite the large number of degrees of freedom, the MVS surface is smooth with smoothly
varying curvatur e.

shaded

Gaussian
pseudo-

Gaussian
offset

patch
outlines

colored

surface

Shirman
Séquin DBHS MVS

157

Figure 6.21. Capsule.

Because the MVS tends toward a G2 continuous surface, there is evidence of ringing where
the hemisphere and cylinder meet, a G2 discontinuity in the data set. Allowing the MVS to
contain a G2 discontinuity along the cylinder-hemisphere boundary would correct this
flaw. DBHS is not included because the method requires surface curvature information at
all points, there is no consistent curvature information along the G2 discontinuity.

shaded

Gaussian
pseudo-colored

Gaussian
offset surface

patch outlines

Shirman
Séquin MVS

158

example of one such surface; it was computed with only four positional constraints, one at
each vertex of the underlying tetrahedron. Once implemented, the SI-MVS will allow us
to explore this family of surfaces without imposing any constraints.

Figure 6.22. Three Handles.

The MVN used in the computation of the surfaces is shown in ①. ② is a rendering of the
MVS with lines of reflection, demonstrating G1 and ~G2 continuity. ③ and ④ show the
Gaussian pseudo-colored and Gaussian offset surface resulting from the surface computed
using strain energy as an objective function. ⑤ and ⑥ illustrate these same rendering styles
for the surface computed using curvature variation as an objective function. Curvature is
more evenly distributed across the MVS.

① ②

④③

⑤ ⑥

159

6.5.6 Expressive Power and Aesthetics

In this section we present additional MVS, exploring their expressive power and their
aesthetics.(Fig. 6.25). Our first example is a surface computed from just two positional
constraints. The surface is represented by a single biquintic patch. In the second example,
we computed a series of four patches tied in a knot. The knot is specified by five pairs of
points, positioned symmetrically along the knot. Next we examine the surface resulting
from a single constraint; position, surface tangent, and curvature are specified (Fig. 6.26).
This surface specification is ambiguous, the curvature specified is hyperbolic allowing any
torus or general cyclide to be formed reducing the MVS functional to zero. Since the
polynomial patch used to model this surface is not capable of analytically forming a
cyclide, the surface formed is the surface, from among the cyclides satisfying the

Figure6.23. Flexible Frame Comparison

①-The MVS with fixed curve network. ②-The MVS with flexible network. ③-The MVS
with only two positional constraints, to control scale, plus symmetry constraints.④-⑥ The
surfaces are rendered with lines of reflection. The surfaces with “more flexibility” have
more regular reflection lines.

① ② ③

④ ⑤ ⑥

160

constraints, best approximated by the single biquintic patch. In Figure6.26① the Bézier
control hull for the patch is shown to illustrate the placement of control points; it is
infeasible to interactively sculpt a surface of such quality by dragging control points with
a mouse or other pointing device.

As our last illustration in this section, theTetraThing, described in section6.5.5, is
rendered with an environment map created from a photograph of a café, taken with a fish-
eye lens (Fig.6.27). Two copies of the 180° image were used to form the 360°
environment. The reflections of the café are fluid and free of irregularities. This last
example, fitting a surface to a tetrahedral frame, further demonstrates the versatility,
fairness and power of MVS to solve difficult interpolation problems.

Figure 6.24. Flexible Frame Comparison (cont.)

Pseudo-colored and functional offset renderings of the three surfaces. Curvature
concentrations appear on the interior of the legs of the MVS with fixed frame. Generally,
the MVS with flexible frame has more evenly distributed curvature. Likewise the MVS
with movable points has the most evenly distributed curvature.

① ② ③

④ ⑤ ⑥

161

Figure 6.25. MVS Sculptures.

① top view of a surface defined by two point constraints, all other degrees of freedom were
used to optimize the surface. ②,③ an isometric and side view of the same surface. ④ a
ribbon tied in a knot, the surface is defined by five pairs of points.

①

④

③

②

162

Figure6.26. One Constraint — One Patch — One Surface

A surface specified by a single constraint set. The surface position, tangent plane, and
curvatur e are specified at a single point.① The Bézier control hull of the single biquintic
patch computed for the constraint set.② isoparametric lines and the MVN framework
consisting of only two circles.③Lines of reflection.④ A specular rendering.

①

④③

②

MVN

163

6.6 Efficiency

In this section we discuss the cost of computing MVS, what part of the optimization
process dominates the expense, how to estimate relative computation times, and how
computation times might be reduced. It is logical to discuss computational expense in
terms of the number of times that the functional must be evaluated at a point on the
surface.

Figure 6.27. TetraThing.

164

First we examine the optimization procedure at a high level (Fig. 6.28). Each iteration of

the optimization begins by computing the current value of the objective function; each

patch in the quilt is integrated, this requires 200 functional evaluations for every triangular

patch, and 400 evaluations for every tensor product patch. The computation of the penalty

functions is of negligible cost, since we compute all of the required quantities during the

integration phase.

Figure 6.28. Optimization Overview

Compute
Objective

Compute
Gradient

Compute
Conjugate
Direction

Line
Minimize

Bracket
Minimum

Parabolic
Search

Integrate
over each

Patch

Compute
Penalty

along each
Boundary

for each DOF
Compute Objective Function

Affected Patches
(twice)

done?

Function

165

The computation of the current gradient completely dominates the computation time. For
each degree of freedom, the objective function of each affected patch must be recalculated
twice. Depending on the type of variable, the number of patches affected ranges from one
to several. If the degree of freedom is interior to a single patch then only that patch is
affected. If the DOF is part of a boundary curve definition, then two patches are affected.
In the costliest case, if the DOF is part of a vertex definition, then all patches incident to
the vertex must be taken into account. From this it should be apparent that it is possible to
compute an MVS with fixed curve network much more quickly than a surface with only
point constraints. In the case of the flexible MVN, not only is the number of DOF
increased, but the cost of computing the associated partial derivatives is disproportionately
higher because the number of patches associated with each DOF is higher. The cost of
computing the conjugate direction and performing the line minimization is comparatively
low.

We now consider a concrete example, the computation of the MVS sphere in Figure 6.16.
Because of its symmetry, this problem has only twelve DOF, and each of these is limited
to the interior of a patch. In Figure 6.29 we display a plot of the number of iteration vs. the
log of the objective function, normalized by the same method as employed in Figure 4.23.
The optimization, including problem input, initialization, optimization, and result output,
took approximately 91 seconds to complete, a total of 510 tensor product patch
integrations were performed. Assuming no overhead whatsoever, each integration took
~0.18 seconds. Given the total number of iterations, we may also compute what portion of
the 510 integrations were devoted to gradient computation. This optimization problem
took 17 iterations; ~5.3sec. per iteration. Each iteration required a partial derivative
computation for each of 12 DOF; each partial derivative requires two integrations. This
accounts for a total of 408 integrations, roughly 80% of the computation. This percentage
is conservative, since as the number of DOF grows, the number of integrations required
for gradient computation increases much more quickly than the integrations required for
line minimization and objective function calculation. To understand why this is the case,
consider two optimization problems, one of which requires one more tensor product patch
than the other. In the larger problem, we gain at least 48 degrees of freedom corresponding
to the 16 control points on the interior of the additional patch, These 48 additional DOF
require 96 integrations to the gradient computation, while the additional patch only
introduces one additional integration in the evaluation of the objective function and one
additional integration in the line minimization loop.

This particular optimization problem converges quickly. This is due to the fact that the
solution has zero “energy”. The computation of more general surfaces, such as the one
defined by two positional constraints (Fig. 6.25②), converge more slowly (Fig. 6.30). In
this case the optimization has 29 degrees of freedom; these DOF are from the curvature at
the corners of the patch, the curves of the network, and the interior of the patch, all

166

reduced by symmetry. The optimization took about 30 minutes to complete, and used a
total of 8646 integrations distributed over 136 iterations. To compute the fraction of this
total that is devoted to derivative calculation, we multiply twice the number of DOF by the
number of iterations yielding a total of 7888 integrations, or about 91% of the total.

From these examples, we see that improvement in the efficiency of the integration of the
functional will directly impact the efficiency of the algorithm. Counter-intuitively, we
have found that reducing the number of integration points actually slows the optimization
process. This is because the accuracy of the gradient computation suffers and the descent
scheme spends lots of time “wandering around”. In order to improve performance, work
needs to be aimed at restructuring the functional so that it may be integrated analytically.

Figure 6.29. Sphere—# Iterations vs. Log(functional)

Here we show the convergence of the optimization of the MVS sphere in Figure 6.16. The
optimization took approximately 91 seconds to complete. Taking advantage of symmetry,
the number of DOF was reduced to 12.

5 10 15

0.5

1

1.5

2

x i
m

in
x i

{
}

1
+

−
(

)
lo

g

of iterations

167

6.7 Summary

Constructing a quilt of G2 or just G1 continuous surface patches is known to be a difficult
task, and it is even harder to shape such a quilt into a satisfactory surface. The use of a
general optimization procedure with suitable penalty functions greatly simplifies both
tasks.

In this chapter we have described a conceptually simple yet powerful technique for
surface modeling. Nonlinear optimization is used to minimize a fairness functional while
maintaining geometric and continuity constraints. The functional of choice is the variation
of curvature. This choice has the advantage that it leads to regular shapes commonly used

Figure 6.30. OnePatch—#iterations vs. Log(functional)

This plot illustrates the convergence of the optimization of the MVS sculpture in
Figure 6.25. The optimization took approximately 30 minutes to complete. Taking
advantage of symmetry, the number of DOF was reduced to 29.

20 40 60 80 100 120

1

2

3

4

x i
m

in
x i

{
}

1
+

−
(

)
lo

g

of iterations

168

in geometric modeling; spheres, cylinders, and tori are formed in response to a compatible
set of constraints.The minimization of our fairness functional also produces very fair
free-form surfaces. This allows the designer to specify technical and artistic shapes in a
very natural way for a given design problem.

 Surfaces are represented by a patchwork of quintic polynomial Bézier patches. The use of
quintic patches makes the satisfaction of geometric constraints simple, direct, and exact.
The use of a quintic patch also tends to minimize thenumber of patches needed to solve a
given problem. The use of Bézier patches eases numerical problems and simplifies
communication with other modeling systems.

The optimization techniques described here are computationally very expensive. They
have only become practical because of the wide availability of very fast workstations. As
computers increase in speed, these techniques will become even more attractive.

169

7
Conclusions

The computation of truly fair curves and surfaces has been difficult due to poor fairness
measures and lack of computational resources. In this thesis we have described new
fairness measures and computational techniques that produce curves and surfaces of very
clearly superior quality. Our fairness measures are based on minimizing the variation of
curvature. Curves and surfaces are computed using numerical optimization techniques that
were, until recently, too computationally intensive to be practical for general use. The
continuing increases in and wide availability of processing power are making these
techniques both practical and attractive.

Our work in this area is only a start. There are many problems that are too large to be
solved in a practical amount of time. Although the curve optimization techniques are fast
enough to support truly interactive design, surface computation is far too time consuming.
This slowness is ameliorated by the fact that, for most design problems, minimum
variation surfaces behave in a predictable manner and produce superior shapes. This
behavior reduces the number of iterations required in the design process.

There are several areas of research that need development. First, the functionals we have
described must be numerically integrated. We have seen that it is this integration step that
dominates the time to compute MVC and MVS. Research into good linear approximations
of the minimum variation functionals should dramatically reduce computation times.
Another aspect of our research is that we have defined a new class of curves (MVC &
SI-MVC) and surfaces (MVS & SI-MVS) that warrant a more thorough investigation of
their properties. Minimum variation curves and surfaces are still largely unknown. We
only have experience with them relative to shape design. It will be interesting to explore
the properties of these curved forms and their scale independent relatives.

The increasing power of computers and their growing availability continues to expand the
number of problems and approaches that were once intractable and impractical that are

170

now workable. In our work, the use of computationally intensive optimization techniques
has greatly simplified some of the basic problems of surface design and freed us to focus
on the actual problem of designing shapes.

171

Bibliography

1. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical
Tables, ed. M. Abramowitz and I. A. Stegun, 887-888. Dover Publications, Inc.,
New York, 1972.

2. T. G. Ackland. “On Osculatory Interpolation, where the given values of the
function are at unequal intervals.”Journal of the Institute of Actuaries, 49 (1915):
369-375.

3. J. Alan Adams. “The Intrinsic Method for Curve Definition.”Computer Aided
Design, 7 (October 1975): 243-249.

4. Hiroshi Akima. “A New Method of Interpolation and Smooth Curve Fitting Based
on local Procedures.”Journal of the Association for Computing Machinery, 17
(October 1970): 589-602.

5. Bengt Asker. “The Spline Curve, A Smooth Interpolating Function used in
Numerical Design of Ship-Lines.”BIT, 2 (1962): 76-82.

6. A. A. Ball and D. J. T. Storry. “Conditions for Tangent Plane Continuity over
Recursively Generated B-Spline Surfaces.”ACM Transactions on Graphics, 7
(April 1988): 83-102.

7. A. A. Ball. “A Simple Specification of the Parametric Cubic Segment.”Computer
Aided Design, 10 (May 1978): 181-182.

8. Brian A. Barsky and John C. Beatty. “Local Control of Bias and Tension in Beta-
splines.”Computer Graphics (1983): 193-218.

9. Brian A. Barsky. Computer Graphics and Geometric Modeling Using Beta-splines.
Springer-Verlag, New York, 1988.

10. James M. Beck, Rida T. Farouki and John K. Hinds. “Surface Analysis Methods.”
IEEE Computer Graphics and Applications, 6 (December 1986): 18-36.

11. Etienne Beeker. “Smoothing of Shapes Designed with Free-Form Surfaces.”
Computer-Aided Design, 18 (1986): 224-232.

12. P. E. Bézier. “Example of an Existing System in the Motor Industry: the Unisurf
System.”Proceedings of the Royal Society of London. Series A. 321 (1971): 207-
218.

172

13. G. Birkhoff and C. R. de Boor. “Piecewise Polynomial Interpolation and
Approximation.” In Approximation of Functions, ed. H. L. Garabedian, 164-190.
Elsevier, New York/Amsterdam, 1965.

14. G. Birkhoff, H. Burchard and D. Thomas. “Nonlinear Interpolation by Splines,
Pseudosplines, and Elastica.” Research Publication No. 468, General Motors
Research Laboratories, 1965.

15. G. D. Birkhoff. Aesthetic Measure. Harvard University Press, Cambridge, MA,
1933.

16. James F. Blinn and Martin E. Newell. “Texture and Reflection in Computer
Generated Images.”Communications of the ACM, 19 (October 1975): 542-547.

17. Wolfgang Böhm. “On Cyclides in Geometric Modeling.”Computer Aided
Geometric Design, 7 (1990): 243-255.

18. Wolfgang Böhm, Gerald Farin and Jürgen Kahmann. “A Survey of Curve and
Surface Methods in CAGD.”Computer Aided Geometric Design, 1 (1984): 1-60.

19. Wolfgang Böhm. “Rational Geometric Splines.”Computer Aided Geometric
Design (1987): 67-77.

20. Wolfgang Böhm. “On Cubics: A Survey.” Computer Graphics and Image
Processing, 19 (1982): 201-226.

21. Vincent Braibant, Claude Fleury and Pierre Beckers. “Shape Optimal Design - An
Approach Matching CAD and Optimization Concepts.” InOptimization in
Computer-Aided Design, ed. J. S. Gero, 321-269. North-Holland Publishing
Company, 1985.

22. J. A. Brewer and D. C. Anderson. “Visual Interaction with Overhauser curves and
surfaces.”Computer Graphics, 11 (July 1977): 132-137.

23. K. W. Brodlie. “A Review of Methods for Curve and Function Drawing.” In
Mathematical Methods in Computer Graphics and Design, ed. K. W. Brodlie, 1-37.
Academic Press, 1980.

24. K. W. Brodlie. “Methods for Drawing Curves.” InFundamental Algorithms for
Computer Graphics, ed. R. A. Earnshaw, 303-323. Springer-Verlag, 1985.

25. Ingrid Brueckner. “Construction of Bézier Points of Quadrilaterals from Those of
Triangles.” Computer Aided Design, 12 (1980): 21-24.

26. Pere Brunet. “Including Shape Handles in Recursive Subdivision Surfaces.”
Computer Aided Geometric Design, 5 (1988): 41-50.

27. Su Bu-Qing and Liu Ding-Yuan. Computational Geometry, Curve and Surface
Modeling. Academic Press, San Diego, 1989.

28. C. R. Calladine. “Gaussian Curvature and Shell Structures.”The Mathematics of
Surfaces (1986): 179-196.

29. Edwin Catmull and James H. Clark. “Recursively Generated B-spline Surfaces on
Arbitrary Topological Meshes.”Computer-Aided Design, 10 (1978): 350-355.

30. Alfred S. Cavaretta and Charles A. Micchelli. “The Design of Curves and Surfaces
by Subdivision Algorithms.” In Mathematical Methods in Computer Aided
Geometric Design, ed. T. Lyche and L. L. Schumaker, 115-153. Academic Press,
San Diego, 1989.

173

31. George Celniker and Dave Gossard. “Deformable Curve and Surface Finite-
Elements for Free-Form Shape Design.”Computer Graphics, 25 (July 29 - August
2, 1991): 257-266.

32. Peter Charrot and John A. Gregory. “A Pentagonal Surface Patch for Computer
Aided Geometry.” Computer Aided Geometric Design, 1 (1984): 87-94.

33. Hiroaki Chiyokura and Fumihiko Kimura. “Design of Solids with Free-form
Surfaces.”Computer Graphics, 17 (July 1983): 289-298.

34. Hiroaki Chiyokura. “Localized Surface Interpolation Method for Irregular
Meshes.” In Advanced Computer Graphics: Proceedings of Computer Graphics
Tokyo 86', ed. T. L. Kunii, 3-19. Springer-Verlag, New York, New York, 1986

35. Hiroaki Chiyokura, Teiji Takamura, Koichi Konno and Tsuyoshi Harada. “G1

Surface Interpolation Over Irregular Meshes with Rational Curves.” InNURBS for
Curve and Surface Design, ed. G. E. Farin, 15-34. Society for Industrial and
Applied Mathematics, 1991.

36. Hiroaki Chiyokura. Solid Modeling with DESIGNBASE. Addison-Wesley
Publishing, 1988.

37. A. K. Cline. “Scalar- and Planar- Valued Curve Fitting Using Splines Under
Tension.”Communications of the ACM, 17 (April 1974): 218-220.

38. Elaine Cohen. “A New Local Basis for Designing with Tensioned Splines.”ACM
Transactions on Graphics, 6 (April 1987): 81-122.

39. Samuel Daniel Conte and Carl de Boor. Elementary Numerical Analysis: An
Algorithmic Approach. 3d ed. McGraw-Hill, New York, 1980.

40. Steven A. Coons. “Surface patches and B-spline Curves.” InComputer Aided
Geometric Design, ed. R. E. Barnhill and R. F. Riesenfeld, 1-16. Academic Press,
Inc., Orlando, Florida, March 18-21, 1974.

41. Courant and Hilbert.Methods of Mathematical Physics. Interscience, London,
England, 1953.

42. M. G. Cox. “The Numerical Evaluation of B-splines.” National Physical
Laboratory Report DNAC 4, August 1971.

43. Carl de Boor. “On Calculating with B-Splines.”Journal of Approximation Theory,
6 (1972): 50-62.

44. Carl de Boor, Klaus Höllig and Malcolm Sabin. “High Accuracy Geometric
Hermite Interpolation.”Computer Aided Geometric Design (1987): 269-378.

45. Paul de Faget de Casteljau. “Outillage Méthodes Calcul.”, André Citroën
Automobiles SA, Paris, France, 1959.

46. Wendelin L. F. Degen. “Explicit Continuity Conditions for Adjacent Bézier Surface
Patches.” Computer Aided Geometric Design, 7 (1990): 181-189.

47. Anthony D. DeRose. “Geometric Continuity: A Parametrization Independent
Measure of Continuity for Computer Aided Geometric Design.” Report No. UCB/
CSD 86/255, Computer Science Division (EECS), University of California,
Berkeley, August 1985.

48. Tony D. DeRose and Brian A. Barsky. “Geometric Continuity, Shape Parameters,
and Geometric Constructions for Catmull-Rom Splines.”ACM Transactions on
Graphics, 7 (January 1988): 1-41.

174

49. Tony D. DeRose. “Necessary and Sufficient Conditions for Tangent Plane
Continuity of Bézier Surfaces.” Computer Aided Geometric Design, 7 (1990): 165-
179.

50. Tony D. DeRose and Stephen Mann. “An Approximately G1 Cubic Surface
Interpolant.” In Mathematical Methods in Computer Aided Geometric Design II,
ed. T. Lyche and L. L. Schumaker, 185-196. Academic Press, Inc., San Diego,
1992.

51. John C. Dill. “An Application of Color Graphics to the Display of Surface
Curvature.”Computer Graphics, 15 (August 1981): 153-161.

52. Manfredo P. Do Carmo.Differential Geometry of Curves and Surfaces. Prentice
Hall, Inc., Englewood Cliffs, New Jersey, 1976.

53. D. Doo and M. Sabin. “Behavior of Recursive Division Surfaces Near
Extraordinary Points.”Computer-Aided Design, 10 (1978): 356-360.

54. Nira Dyn, David Levin and Charles A. Micchelli. “Using Parameters to Increase
Smoothness of Curves and Surfaces Generated by Subdivision.”Computer Aided
Geometric Design, 7 (1990): 129-140.

55. T. M. R. Ellis and D. H. McLain. “Algorithm 514 - A Numerical Method of Cubic
Curve Fitting Using Local Data.”ACM Transactions on Mathematical Software, 3
(1977): 175-178.

56. Gerald E. Farin, G. Rein, N. Sapidis and A. J. Worsey. “Fairing Cubic B-Spline
Curves.”Computer Aided Geometric Design (1987): 91-103.

57. Gerald E. Farin and Nickolas Sapidis. “Curvature and the Fairness of Curves and
Surfaces.”IEEE Computer Graphics & Applications (1989): 52-57.

58. Gerald E. Farin. “Smooth Interpolation to Scattered 3D Data.” InSurfaces in
Computer Aided Geometric Design, ed. R. E Barnhill and W. Böhm, 43-63.
North-Holland Publishing Company, 1983.

59. Gerald E. Farin.Curves and Surfaces for Computer Aided Geometric Design, A
Practical Guide. Academic Press, San Diego, 1990.

60. Gerald E. Farin. “A Construction for Visual C1 Continuity of Polynomial Surface
Patches.”Computer Graphics and Image Processing, 20 (1982): 272-282.

61. Gerald E. Farin. “Visually C2 Cubic Splines.”Computer-Aided Design, 14 (May
1982): 137-139.

62. David R. Ferguson, Paul D. Frank and Alan K. Jones. “Surface Shape Control
using Constrained Optimization on the B-spline Representation.”Computer Aided
Geometric Design, 5 (1988): 87-103.

63. David R. Ferguson. “Construction of Curves and Surfaces Using Numerical
Optimization Techniques.”Computer-Aided Design, 18 (1986): 15-21.

64. James Ferguson. “Multivariable Curve Interpolation.”Journal of the Association of
Computing Machinery, 11 (April 1964): 221-228.

65. S. D. Fisher and Joseph W. Jerome. “Stable and Unstable Elastica Equilibrium and
the Problem of Minimum Curvature.”Journal of Mathematical Analysis and
Applications, 53 (1976): 367-376.

175

66. G. Yates Fletcher and David F. McAllister. “An Analysis of Tension Methods for
Convexity-Preserving Interpolation.” IEEE Computer Graphics and Applications,
7 (August 1987): 7-14.

67. G. Yates Fletcher and David F. McAllister. “Automatic Tension Adjustment for
Interpolating Splines.” IEEE Computer Graphics and Applications, 10 (January
1990): 10-17.

68. G. Yates Fletcher and David F. McAllister. “Natural Bias Approach to Shape
Preserving Curves.” Computer Aided Design, 18 (January/February 1986): 48-52.

69. Thomas A. Foley. “Interpolation with Interval and Point Tension Controls Using
Cubic ν-Splines.” ACM Transactions on Mathematical Software, 13 (March 1987):
68-96.

70. A. R. Forrest. Curves and Surfaces for Computer-Aided Design. Ph.D. thesis,
Cambridge, 1968.

71. A. R. Forrest. “II. Current Developments in the Design and Production of
Three-dimensional curved Objects -- Computational Geometry.” Proceedings of
the Royal Society of London. Series A. 321 (1971): 187-195.

72. A. R. Forrest. “On Coons and Other Methods for the Representation of Curved
Surfaces.” Computer Graphics and Image Processing, 1 (1972): 341-359.

73. A. R. Forrest. “On The Rendering of Surfaces.” Computer Graphics, 13 (August
1979): 253-259.

74. A. R. Forrest. “The Twisted Cubic Curve: A Computer-Aided Geometric Design
Approach.” Computer Aided Design, 12 (July 1980): 165-172.

75. David R. Forsey and Richard H. Bartels. “Hierarchal B-spline Refinement.”
Computer Graphics, 22 (August 1988): 205-212.

76. Frederick N. Fritsch and R. E. Carlson. “Monotone Piecewise Cubic Interpolation.”
SIAM Journal of Numerical Analysis, 17 (April 1980): 238-246.

77. Frederick N. Fritsch. “Energy Comparisons of Wilson-Folwer Splines with Other
Interpolating Splines.” in Geometric Modeling: Algorithms and New Trends, ed.
G. E. Farin, 185-201. SIAM, 1987.

78. J. M. Glass. “Smooth-Curve Interpolation: A Generalized Spline-Fit Procedure.”
BIT, 9 (1966): 277-293.

79. Michael Golomb and Joseph Jerome. “Equilibria of the Curvature Functional and
Manifolds of Nonlinear Interpolating Spline Curves.” SIAM Journal on
Mathematical Analysis, 13 (May 1982): 421-458.

80. T. N. T. Goodman and K. Unsworth. “Shape Preserving Interpolation by Curvature
Continuous Parametric Curves.” Computer Aided Geometric Design, 5 (1988):
323-340.

81. T. N. T. Goodman. “Closed Surfaces Defined from Biquadratic Splines.”
Constructive Approximation, 7 (1991): 149-160.

82. William J. Gordon and Richard F. Riesenfeld. “B-spline Curves and Surfaces.” In
Computer Aided Geometric Design, ed. R. E. Barnhill and R. F. Riesenfeld, 95-
126. Academic Press, Inc., Orlando, Florida, March 18-21, 1974.

83. William J. Gordon. “Spline-Blended Surface Interpolation Through Curve
Networks.” Journal of Mathematics and Mechanics, 18 (1969): 931-952.

176

84. T. Grandine. “An Iterative Method For Computing Multivariate C1 Piecewise
polynomial interpolants.” Computer Aided Geometric Design, 4 (1987): 307-319.

85. Ned Greene. “Environment Mapping and Other Applications of World
Projections.”,IEEE Computer Graphics and Applications, 6 (1986): 21-29.

86. John A. Gregory and Jörg M. Hahn. “A C2 Polygonal Surface Patch.” Computer
Aided Geometric Design, 6 (1989): 69-75.

87. John A. Gregory and Peter Charrot. “A C1 Triangular Interpolation Patch for
Computer-Aided Design.” Computer Graphics and Image Processing, 13 (1980):
80-87.

88. John A. Gregory, Vincent K. H. Lau and Jianwei Zhou. “Smooth Parametric
Surfaces and n-Sided Patches.” InComputation of Curves and Surfaces, ed. W.
Dahmen, M.Gasca and C. A. Micchelli, 457-498. Kluwer Academic Publishers,
Dordrecht, The Netherlands, 1989.

89. John A. Gregory. “Shape Preserving Spline Interpolation.” Computer Aided
Design, 18 (January/February 1986): 53-57.

90. John A. Gregory. “Smooth Interpolation Without Twist Constraints.” InComputer
Aided Geometric Design, ed. R. E. Barnhill and R. F. Riesenfeld, 71-87. Academic
Press, Inc., Orlando, Florida, March 18-21, 1974.

91. Hans Hagen and Guido Schulze. “Automatic Smoothing with Geometric Surface
Patches.” Computer Aided Geometric Design, 4 (1987): 231-236.

92. Hans Hagen and Helmut Pottmann. “Curvature Continuous Triangular
Interpolants.” InMathematical Methods in Computer Aided Geometric Design, ed.
T. Lyche and L.L. Schumaker, 373-384. Academic Press, San Diego, 1989.

93. Hans Hagen. “Bézier Curves with Curvature and Torsion Continuity.” Rocky
Mountain Journal of Mathematics, 16 (Summer 1986): 629-638.

94. Hans Hagen. “Geometric Spline Curves.” Computer Aided Geometric Design, 2
(1985): 223-227.

95. Jörg Hahn. “Filling Polygonal Holes with Rectangular Patches.”Submitted for
publication Theory and Practice of Geometric Modeling.

96. Jörg M. Hahn. “Geometric Continuous Patch Complexes.” Computer Aided
Geometric Design, 6 (1989): 55-67.

97. Gary Herron. “Techniques for Visual Continuity.” In Geometric Modeling:
Algorithms and Trends, ed. G. E. Farin, 163-174. Society for Industrial and Applied
Mathematics, Philadelphia, Pennsylvania, 1987.

98. Masatake Higashi, Kohji Kaneko and Mamoru Hosaka. “Generation of High-
Quality Curve and Surface with Smoothly Varying Curvature.” Eurographics 88'
(September 12-16, 1988): 79-92.

99. Klaus Höllig and Harald Mögerle. “G-Splines.” Computer Aided Geometric
Design, 7 (1990): 197-207.

100. Klaus Höllig. “Geometric Continuity of Spline Curves and Surfaces.” Computer
Sciences Technical Report #645, Computer Sciences Department, University of
Wisconsin - Madison, June 1986.

101. B. K. P. Horn. “The Curve of Least Energy.” ACM Transactions on Mathematical
Software, 9 (December 1983): 441-460.

177

102. Mamoru Hosaka and Fumihiko Kimura. “Non-four-sided Patch Expression with
Control Points.” Computer Aided Geometric Design, 1 (1984): 75-86.

103. Josef Hoschek. “Detecting Region with Undesirable Curvature.” Computer Aided
Geometric Design, 1 (1984): 183-192.

104. Joseph W. Jerome. “Smooth Interpolating Curves of Prescribed Length and
Minimum Curvature.” Proceedings of the American Mathematical Society, 51
(August 1975): 62-66.

105. Barry Joe. “Discrete Beta-Splines.” Computer Graphics, 21 (1987): 137-144.
106. Barry Joe. “Multiple Knot and Rational Cubic Beta-Splines.” ACM Transactions

on Graphics, 8 (April 1989): 100-120.
107. Barry Joe. “Quartic Beta-Splines.” ACM Transactions on Graphics, 9 (July 1990):

301-337.
108. A. K. Jones. “Nonrectangular Surface Patches with Curvature Continuity.”

Computer Aided Design, 20 (July/August 1988): 325-335.
109. Alan K. Jones. “Shape Control of Curves and Surfaces through Constrained

Optimization.” In Geometric Modeling: Algorithms and Trends, ed. G. E. Farin,
265-279. Society for Industrial and Applied Mathematics (SIAM), Philadelphia,
Pennsylvania, 1987.

110. Michael C. Jordan and Frank Schindler. “Curves Under Tension.” Computer Aided
Geometric Design, 1 (1984): 291-300.

111. Emery D. Jou and Weimin Han. “Minimal Energy Splines with Various End
Constraints.” In Curve and Surface Modeling. SIAM Frontiers in Applied
Mathematics Series. 1990.

112. Emery D. Jou and Weimin Han. “Minimal-energy Splines: I. Plane Curves with
Angle Constraints.” Mathematical Methods in the Applied Sciences, 13 (1990):
351-371.

113. Jürgen Kahmann. “Continuity of Curvature Between Adjacent Bézier Patches.” In
Surfaces in Computer Aided Geometric Design, ed. R. E. Barnhill and W. Böhm,
65-75. North-Holland Publishing Company, Amsterdam, The Netherlands, 1983.

114. Michael Kallay. “Method to Approximate the Space Curve of Least Energy and
Prescribed Length.” Computer Aided Design, 19 (March 1987): 74-76.

115. Michael Kallay and Bahram Ravani. “Optimal Twist Vectors as a Tool for
Interpolating a Network of Curves with a Minimum Energy Surface.” Computer
Aided Geometric Design, 7 (November 1990): 465-473.

116. Johan A. P. Kjellander. “Smoothing of Bicubic Parametric Surfaces.” Computer
Aided Design, 15 (September 1983): 288-294.

117. Reinhold Klass. “Correction of Local Surface Irregularities Using Reflection
Lines.” Computer-Aided Design, 12 (March 1980): 73-77.

118. E. H. Lee and G. E. Forsythe. “Variational Study of Nonlinear Spline Curves.”
SIAM review, 15 (January 1973): 120-133.

119. S. L. Lee and A.A. Majid. “Closed Smooth Piecewise Bicubic Surfaces.” ACM
Transactions on Graphics, 10 (October 1991): 342-365.

178

120. Dingyuan Liu. “GC1 Continuity Conditions Between Two Adjacent Rational
Bézier Surface Patches.” Computer Aided Geometric Design, 7 (1990): 151-163.

121. Charles Loop and Tony DeRose. “A Multisided Generalization of Bézier
Surfaces”.ACM Transactions on Graphics, 8 (July 1989):204-234.

122. Charles Loop and Tony DeRose. “Generalized Bspline Surfaces of Arbitrary
Topology.” Computer Graphics, 24 (August 1990): 137-144.

123. N. J. Lott and D. L. Pullin. “Method for Fairing B-spline Surfaces.” Computer-
Aided Design, 20 (December 1988): 597-604.

124. Augustus Edward Hough Love. A Treatise on the Mathematical Theory of
Elasticity. 4th ed. Dover, New York, 1944.

125. Michael A. Malcolm. “On the Computation of Nonlinear Spline Functions.” SIAM
Journal of Numerical Analysis, 15 (April 1977): 254-282.

126. Stephen Mann, Charles Loop, Michael Lounsbery, David Meyers, James Painter,
Tony DeRose and Kenneth Sloan. “A Survey of Parametric Scattered Data Fitting
Using Triangular Interpolants.” InCurve and Surface Design, ed. H. Hagen, 145-
172. Society for Industrial and Applied Mathematics, 1992.

127. J. R. Manning. “Continuity Conditions for Spline Curves.” The Computer Journal,
17 (1974): 181-186.

128. Samuel P. Marin. “An Approach to Data Parametrization in Parametric Cubic
Spline Interpolation Problems.” Journal of Approximation Theory, 41 (1984): 64-
86.

129. R. R. Martin. “Principal Patches - A New Class of Surface Patch Based on
Differential Geometry.” Eurographics 83'.

130. Harry W. McLaughlin. “Shape-Preserving Planar Interpolation: An Algorithm.”
IEEE Computer Graphics and Applications (May/June 1983): 58-67.

131. Even Mehlum and P. F. Sorensen. “Example of an Existing System in the Ship-
building Industry: the Autokon System.” Proceedings of the Royal Society of
London. Series A. 321 (1971): 219-233.

132. Even Mehlum. “A Curve-Fitting Method Based on a Variational Criterion.” BIT, 4
(1964): 213-223.

133. Even Mehlum. “Curve and Surface Fitting Based on Variational Criteria for
Smoothness.” Central Institute for Industrial Research, Oslo, Norway, 1969.

134. Even Mehlum. “Nonlinear Splines.” InComputer Aided Geometric Design, ed.
R. E. Barnhill and R. F. Riesenfeld, 173-207. Academic Press, Inc., Orlando,
Florida, March 18-21, 1974.

135. H. Meier and H. Nowacki. “Interpolating Curves with Gradual Changes in
Curvature.” Computer Aided Geometric Design (1987): 297-305.

136. Henry P. Moreton and Carlo H. Séquin. “Surface Design with Minimum Energy
Networks.” In Proceedings Symposium on Solid Modeling Foundations and CAD/
CAM Applications, ed. J. Rossignac and J. Turner, 291-301. ACM Press, New
York, 1991.

137. F. Munchmeyer. “On Surface Imperfections.” InThe Mathematics of surfaces II,
459-474. Oxford University Press, New York, 1987.

179

138. Ahmad H. Nasri. “Polyhedral Subdivision Methods for Free-Form Surfaces.” ACM
Transactions on Graphics, 6 (January 1987): 29-73.

139. Ahmad H. Nasri. “Surface Interpolation on Irregular Networks with Normal
Conditions.” Computer Aided Geometric Design, 8 (1991): 89-96.

140. Gregory M. Nielson. “Some Piecewise Polynomial Alternatives to Splines Under
Tension.” In Computer Aided Geometric Design, ed. R. E. Barnhill and
R. F. Riesenfeld, 209-235. Academic Press, Inc., Orlando, Florida, March 18-21,
1974.

141. Gregory M. Nielson. “A Locally Controllable Spline with Tension for Interactive
Curve Design.” Computer Aided Geometric Design, 1 (1984): 199-205.

142. Gregory M. Nielson. “A Method for Interpolating Scattered Data Based Upon a
Minimum Norm Network.” Mathematics of Computation, 40 (January 1983):
253-271.

143. Gregory M. Nielson. “Interactive Surface Design Using Triangular Network
Splines.” Proceedings 3rd International Conference on Engineering Graphics and
Descriptive Geometry, 2 (1988): 70-77.

144. Gregory M. Nielson. “A Transfinite, Visually Continuous, Triangular Interpolant.”
In Geometric Modeling: Algorithms and New Trends, ed. G. E. Farin, 235-246.
Society for Industrial and Applied Mathematics, 1987.

145. Horst Nowacki and D. Reese. “Design and Fairing of Ship Surfaces.” InSurfaces
in Computer Aided Geometric Design, ed. R. E. Barnhill and W. Böhm, 121-134.
North-Holland Publishing Company, Amsterdam, The Netherlands, 1983.

146. Horst Nowacki, Dingyuan Liu and Xinmin Lü. “Fairing Bézier Curves with
Constraints.” Computer Aided Geometric Design, 7 (1990): 43-55.

147. Horst Nowacki, Dingyuan Liu and Xinmin Lü. “Mesh Fairing GC1 Surface
Generation Method.” InTheory and Practice of Geometric Modeling 93-108.
Springer-Verlag, 1989.

148. A. W. Nutbourne, P. M. McLellan and R. M. L. Kensit. “Curvature Profiles for
Plane Curves.” Computer Aided Design, 4 (July 1972): 176-184.

149. Ir. S. C. Ohlin. “Splines for Engineers.”In Eurographics 87', 555-565. ed.
G. Marechal, North-Holland Publishing Company, Amsterdam, The Netherlands,
1987.

150. Ir. S. C. Ohlin. “2-D and 3-D Curve Interpolation by Consistent Splines.” IBM
Nederland NV, CAD/CAM Systems Support Group, March 1985.

151. A. W. Overhauser. “Analytic Definition of Curves and Surface by Parabolic
Blending.” Technical Report Number SL68-40, Ford Motor Company Scientific
Laboratory, May 8, 1968.

152. T. K. Pal and A. W. Nutbourne. “Two-Dimensional Curve Synthesis Using Linear
Curvature Elements.” Computer Aided Design, 9 (April 1977): 121-134.

153. T. K. Pal. “Intrinsic Spline Curve with Local Control.” Computer Aided Design, 10
(January 1978): 19-29.

154. Theo Pavlidis. “Curve Fitting with Conic Splines.” ACM Transactions on
Graphics, 2 (January 1983): 1-31.

180

155. J. Pegna and F. E. Wolter. “A Simple Practical Criterion to Guarantee Second
Order Smoothness of Blend Surfaces.” InAdvances in Design Automation - 1989 -
Volume One - Computer-Aided and Computational Design, ed. B. Ravani, ASME,
Montreal, Quebec, Canada, September 17-21 1989.

156. Jörg Peters. “Smooth Mesh Interpolation with Cubic Patches.” Computer Aided
Design, 22 (March 1990): 109-120.

157. Jörg Peters. “Local Generalized Hermite Interpolation by Quartic C2 Space
Curves.” ACM Transactions on Graphics, 8 (July 1989).

158. Jörg Peters. “Local Smooth Surface Interpolation: A Classification.” Computer
Aided Geometric Design, 7 (1990): 191-195.

159. Jörg Peters. “Parametrizing Singularly to Enclose Data Points by a Smooth
Parametric Surface.”.fixthis518

160. Jörg Peters. “Rectangulation Algorithms: Smooth Surface Interpolation with
Bicubics.” CMS Technical Summary Report #90-1, University of Wisconsin,
Center for the Mathematical Sciences, July 7, 1989.

161. Jörg Peters. “Smooth Interpolation of a Mesh of Curves.” Constructive
Approximation, 7 (1991): 221-247.

162. Binh Pham. “Conic Beta-splines with Local Tension Control for Interactive Curve
Fitting.” In Eurographics 88', 67-77. North-Holland Publishing Company,
Amsterdam, The Netherlands, 1988.

163. David Pilcher. “Smooth Parametric Surfaces.” InComputer Aided Geometric
Design, ed. R. E. Barnhill and R. F. Riesenfeld, 237-253. Academic Press, Inc.,
Orlando, Florida, March 18-21, 1974.

164. Bruce R. Piper. “Visually Smooth Interpolation with Triangular Bézier Patches.” In
Geometric Modeling: Algorithms and Trends, ed. G. E. Farin, 221-233. Society for
Industrial and Applied Mathematics (SIAM), Philadelphia, Pennsylvania, 1987.

165. Thomas Poeschl. “Detecting Surface Irregularities Using Isophotes.” Computer
Aided Geometric Design, 1 (1984): 163-168.

166. Helmut Pottman. “Curves and Tensor Product Surfaces with Third Order
Geometric Continuity.” Proceedings 3rd International Conference on Engineering
Graphics and Descriptive Geometry, 2 (1988): 107-116.

167. Helmut Pottmann. “Smooth Curves Under Tension.” Computer Aided Design, 22
(May 1990): 241-245.

168. Helmut Pottmann. “Locally Controllable Conic Splines with Curvature
Continuity.” ACM Transactions on Graphics, 10 (October 1991): 366-377.

169. Helmut Pottmann. “Scattered Data Interpolation Based upon Generalized
Minimum Norm Networks.” #1232, May 1989.

170. Helmut Pottmann. “Visualizing Curvature Discontinuities of Free-Form Surfaces.”
Eurographics 89' (1989): 529-536.

171. Antti Pramila. “Ship Hull Surface Using Finite Elements.” International
Shipbuilding Progress, 25 (1978): 97-107.

172. William H. Press, Brian P. Flannery, Saul A. Teukolsky, and WIlliam T. Vetterling.
Numerical Recipes in C. Cambridge University Press, Cambridge, 1988.

181

173. M. J. Pratt. “Cyclides in Computer Aided Geometric Design.” Computer Aided
Geometric Design, 7 (1990): 221-242.

174. Vaughan Pratt. “Techniques for Conic Splines.” Computer Graphics, 19 (1985):
151-159.

175. Lyle Ramshaw. “Béziers and B-splines as Multiaffine Maps.” In Theoretical
Foundations of Computer Graphics and CAD, ed. R. A. Earnshaw, Springer-
Verlag, Berlin Heidelberg, 1988.

176. Lyle Ramshaw. “Blossoming: A Connect-the-Dots Approach to Splines.” No. 19,
Digital Systems Research Center, June 21, 1987.

177. Thomas Rando and John A. Roulier. “Fair Curves and Surfaces.” InApproximation
Theory VI: Volume 2, ed. C. K. Chui, L. L. Schumaker and J. D. Ward, 553-556.
Academic Press, 1989.

178. Thomas Rando. “Automatic Fairness in Computer Aided Geometric Design.”
Ph.D. Dissertation, University of Connecticut, May 1990.

179. Thomas Rando and John A. Roulier. “Designing Faired Parametric Surfaces.”
Computer Aided Design, 23 (September 1990): 492-497.

180. Dirk Reese. “Fairing of Ship Line and Ship Surfaces.” Computer Applications in
the Automation of Shipyard Operation and Ship Design V, 11 (1985): 395-399.

181. John A. Roulier. “Bézier Curve of Positive Curvature.” Computer Aided Geometric
Design, 5 (1988): 59-70.

182. John A. Roulier, Thomas Rando and Bruce Piper. “Fairness and Monotone
Curvature.” InApproximation Theory and Functional Analysis, ed. C. K. Chui,
Academic Press, 1991.

183. M. A. Sabin. “An Existing System in the Aircraft Industry. The British Aircraft
Corporation Numerical Master Geometry System.” Proceedings of the Royal
Society of London. Series A. 321 (1971): 197-205.

184. M. A. Sabin. “Non-Rectangular Surface Patches Suitable for Inclusion in a B-
spline Surface.”In Eurographics 83', ed. P. J. W. ten Hagen, 57-69. North-Holland
Publishing Company, 1983.

185. H. B. Said. “A Generalized Ball Curve and it Recursive Algorithm.” ACM
Transactions on Graphics, 8 (October 1989): 360-371.

186. K. Salkauskas. “C1 Splines for Interpolation of Rapidly Varying Data.” Rocky
Mountain Journal of Mathematics, 14 (Winter 1984): 239-250.

187. Nicholas Sapidis and G. E. Farin. “Automatic Fairing Algorithm for B-spline
Curves.” Computer Aided Design, 22 (March 1990).

188. Ramon F. Sarraga. “G1 Interpolation of Generally Unrestricted Cubic Bézier
Curves.” Computer Aided Geometric Design, 4 (1987): 23-39.

189. R. Schaback. “On Global GC2 Convexity Preserving Interpolation of Planar
Curves by Piecewise Bézier Polynomials.” InMathematical Methods in Computer
Aided Geometric Design, ed. T. Lyche and L. L. Schumaker, 539-547. Academic
Press, San Diego, 1989.

190. A. Schechter. “Synthesis of 2D Curves by Blending Piecewise Linear Curvature
Profiles.” Computer Aided Design, 10 (January 1978): 8-18.

182

191. I. J. Schoenberg. “On Variation Diminishing Approximation Methods.” InOn
Numerical Approximation, ed. R. E. Langer, 249-274. The University of Wisconsin
Press, Madison, Wisconsin, 1959.

192. Larry A. Schumaker. “On Shape Preserving Quadratic Spline Interpolation.” SIAM
Journal of Numerical Analysis, 20 (August 1983): 854-864.

193. Daniel G. Schweikert. “An Interpolation Curve using a Spline in Tension.” Journal
of Mathematics and Physics, 45 (1966): 312-317.

194. Dino Schweitzer. “Artificial Texturing: An Aid to Surface Visualization.”
Computer Graphics, 17 (July 1983): 23-29.

195. Carlo H. Séquin. “Procedural Spline Interpolation in UNICUBIX.” Report No.
UCB/CSD 87/321, Computer Science Division (EECS), University of California,
Berkeley.

196. Leon A. Shirman and Carlo H. Séquin. “Local Surface Interpolation with Shape
Parameters Between Adjoining Gregory Patches.”Computer Aided Geometric
Design, 7 (August 1990): 375-388

197. Leon A. Shirman and Carlo H. Séquin. “Procedural Interpolation with G1 and G2

Cubic Splines.” Proceedings of the SIAM Conference on Geometric Design
(November 1989).

198. Leon A. Shirman. “Construction of Smooth Curves and Surfaces from Polyhedral
Models.” UCB/CSD 90/602 Ph.D. Thesis, University of California at Berkeley.

199. Leon Shirman and Carlo H. Séquin. “Local Surface Interpolation with Bézier
Patches.” Computer Aided Geometric Design, 4 (1987): 279-295.

200. Leon A. Shirman and Carlo H. Séquin. “Procedural Construction of
Patch-Boundary Curves.” InCurves and Surfaces. Academic Press, Boston, 1991.

201. S. T. Tan and K. C. Chan. “Bi-quadratic B-spline Surfaces Generated from
Arbitrary Polyhedral Meshes: A Constructive Approach.” Computer Vision,
Graphics, and Image Processing, 39 (1987): 144-166.

202. Feodor Theilheimer and William Starkweather. “The Fairing of Ship Lines on a
High-Speed Computer.” Mathematics of Computation, 15 (October 1961).

203. Wayne Tiller. “Rational B-Splines for Curve and Surface Representation.” IEEE
Computer Graphics and Applications (September 1983): 61-69.

204. P. H. Todd and R. J. Y. McLeod. “Numerical Estimation of the Curvature of
Surfaces.” Computer-Aided Design, 18 (January, February 1986): 33-37.

205. M. Veron, G. Ris and J. P. Musse. “Continuity of Biparametric Surface Patches.”
Computer Aided Design, 8 (October 1976): 267-273.

206. Kenneth James Versprille.Computer-Aided Design Applications of the Rational B-
spline Form. Ph.D. Thesis, Department of Computer Science, Syracuse University,
1975.

207. A. Vinacua and P. Brunet. “A Construction for VC1 Continuity of Rational Bézier
Patches.” InMathematical Methods in Computer Aided Geometric Design, ed.
T. Lyche and L. L. Schumaker, 601-611. Academic Press, San Diego, 1989.

208. Jarke J. Van Wijk. “Bicubic Patches for Approximating Non-Rectangular Control-
Point Meshes.” Computer Aided Geometric Design, 3 (1986): 1-13.

183

209. C. J. K. Williams. “Use of Structural Analogy in Generation of Smooth Surfaces
for Engineering Purposes.” Computer-Aided Design, 19 (July-Aug. 1987): 310-22.

210. S. Wolfram. Mathematica, A System for Doing Mathematics by Computer. 2d ed.
Addison-Wesley, Redwood City, CA, 1991.

211. C. H. Woodford. “Smooth Curve Interpolation.” BIT, 9 (1969): 69-77.

184

185

Appendix A
Test Curve Definitions and Results

In this appendix we provide the data used to produce the figures in Chapter 4. These data
are presented in the format read by the curve optimization program. We also provide the
coefficients of the quintic Hermite polynomials used to approximate the MEC and MVC
computed for these constraint sets. The coefficients are provided for those examples
appearing in Table 1 and selected others. Each quintic segment is defined by six rows of x
and y coefficients, z coefficients are included for space curves. The coefficients in each set
of six are arranged as follows:

Figure 4.2. The Wicket.

x y z

(G2Joint a (-1,0,0)
(Fixed Tangent (0,1,0)))

(G2Joint b (1,0,0)
(Fixed Tangent (0,-1,0)))

(G2Curve test Open (a,b))

Cx 0() Cy 0() Cz 0()

C'x 0() C'y 0() C'z 0()

C'' x 0() C'' y 0() C'' z 0()

C'' x 1() C'' y 1() C'' z 1()

C'x 1() C'y 1() C'z 1()

Cx 1() Cy 1() Cz 1()

186

MVC Wicket

MEC Wicket

Figure 4.9. Multiple MVC Curves from One Specification.①

Figure 4.9. Multiple MVC Curves from One Specification.②

Figure 4.10. Blending the Corners of a Box.②

x y
-1.000000000000000000, 0.000000000000000000
0.000000000000000000, 3.339604570886604200
11.152885331851587000, -1.397023282660818700
-11.152885239807613000, -1.397023345756839500
0.000000000000000000, -3.339604546536601800
1.000000000000000000, 0.000000000000000000

x y
-1.000000000000000000, 0.000000000000000000
0.000000000000000000, 4.692084720170503200
-0.135640024937254740, 5.319109370220547600
0.135640025547803110, 5.319109370749801600
0.000000000000000000, -4.692084720375821600
1.000000000000000000, 0.000000000000000000

(G2Joint a (-1.5,0,0) (Initial Tangent (1,0.1,0)))
(G2Joint b (-0.5,0.5,0))
(G2Joint mid (0,1,0) (Initial Tangent (-1,0,0))

(Fixed Curvature (0,-10,0)))
(G2Joint c (0.5,0.5,0))
(G2Joint d (1.5,0,0) (Initial Tangent (1,-0.1,0)))
(G2Curve test Open (a,b,mid,c,d))

(G2Joint a (-1.5,0,0) (Initial Tangent (1,0.1,0)))
(G2Joint b (-0.5,0.5,0))
(G2Joint mid (0,1,0) (Initial Tangent (1,0,0))

(Fixed Curvature (0,-10,0)))
(G2Joint c (0.5,0.5,0))
(G2Joint d (1.5,0,0) (Initial Tangent (1,-0.1,0)))
(G2Curve test Open (a,b,mid,c,d))

(G1Joint pt0 (2,1,0) (Fixed Tangent (0,1,0)))
(G1Joint pt1 (1,2,0) (Fixed Tangent (-1,0,0)))
(G1Joint pt2 (-1,2,0) (Fixed Tangent (-1,0,0)))
(G1Joint pt3 (-2,1,0) (Fixed Tangent (0,-1,0)))
(G1Joint pt4 (-2,-1,0) (Fixed Tangent (0,-1,0)))
(G1Joint pt5 (-1,-2,0) (Fixed Tangent (1,0,0)))

187

MVC G1 Box

(G1Joint pt6 (1,-2,0) (Fixed Tangent (1,0,0)))
(G1Joint pt7 (2,-1,0) (Fixed Tangent (0,1,0)))
(G2Curve test Closed (pt0,pt1,pt2,pt3,pt4,pt5,pt6,pt7))

x y
2.000000000000000000 1.000000000000000000
0.000000000000000000 1.572188061452545000
-2.471771120970351900 0.004606320531753661
0.004606320531753814 -2.471771120970369200
-1.572188061452548300 0.000000000000000000
1.000000000000000000 2.000000000000000000
1.000000000000000000 2.000000000000000000
-2.007564017841089400 0.000000000000000000
0.002091398719665465 0.000037352839841653
-0.002091398719668384 0.000037352839852335
-2.007564017841089400 0.000000000000000000
-1.000000000000000000 2.000000000000000000
-1.000000000000000000 2.000000000000000000
-1.572188061452545000 0.000000000000000000
-0.004606320531753661 -2.471771120970351900
2.471771120970369200 0.004606320531753814
0.000000000000000000 -1.572188061452548300
-2.000000000000000000 1.000000000000000000
-2.000000000000000000 1.000000000000000000
0.000000000000000000 -2.007564017841089400
-0.000037352839841653 0.002091398719665465
-0.000037352839852335 -0.002091398719668384
0.000000000000000000 -2.007564017841089400
-2.000000000000000000 -1.000000000000000000
-2.000000000000000000 -1.000000000000000000
0.000000000000000000 -1.572188061452545000
2.471771120970351900 -0.004606320531753661
-0.004606320531753814 2.471771120970369200
1.572188061452548300 0.000000000000000000
-1.000000000000000000 -2.000000000000000000
-1.000000000000000000 -2.000000000000000000
2.007564017841089400 0.000000000000000000
-0.002091398719665465 -0.000037352839841653
0.002091398719668384 -0.000037352839852335
2.007564017841089400 0.000000000000000000
1.000000000000000000 -2.000000000000000000
1.000000000000000000 -2.000000000000000000
1.572188061452545000 0.000000000000000000
0.004606320531753661 2.471771120970351900

188

MEC G1 Box

-2.471771120970369200 -0.004606320531753814
0.000000000000000000 1.572188061452548300
2.000000000000000000 -1.000000000000000000
2.000000000000000000 -1.000000000000000000
0.000000000000000000 2.007564017841089400
0.000037352839841602 -0.002091398719665490
0.000037352839852229 0.002091398719668344
0.000000000000000000 2.007564017841089000
2.000000000000000000 1.000000000000000000

x y
2.000000000000000000 1.000000000000000000
0.000000000000000000 1.568487761472243400
-2.170881086348618100 0.170012542253929010
0.170012542253353100 -2.170881086347895100
-1.568487761472023800 0.000000000000000000
1.000000000000000000 2.000000000000000000
1.000000000000000000 2.000000000000000000
-0.165956461600846370 0.000000000000000000
-0.005231878959692125 0.000699498602219908
0.005231878959692118 0.000699498602220033
-0.165956461600842630 0.000000000000000000
-1.000000000000000000 2.000000000000000000
-1.000000000000000000 2.000000000000000000
-1.568487761472268500 0.000000000000000000
-0.170012542253951490 -2.170881086348706000
2.170881086347749500 0.170012542253325130
0.000000000000000000 -1.568487761471974800
-2.000000000000000000 1.000000000000000000
-2.000000000000000000 1.000000000000000000
0.000000000000000000 -0.165956461600846370
-0.000699498602219908 -0.005231878959692125
-0.000699498602220033 0.005231878959692118
0.000000000000000000 -0.165956461600842630
-2.000000000000000000 -1.000000000000000000
-2.000000000000000000 -1.000000000000000000
0.000000000000000000 -1.568487761472268500
2.170881086348706000 -0.170012542253951490
-0.170012542253325130 2.170881086347749500
1.568487761471974800 0.000000000000000000
-1.000000000000000000 -2.000000000000000000
-1.000000000000000000 -2.000000000000000000
0.165956461600846370 0.000000000000000000

x y

189

Figure 4.10. Blending the Corners of a Box.①

MVC G2 Box

0.005231878959692125 -0.000699498602219908
-0.005231878959692118 -0.000699498602220033
0.165956461600842630 0.000000000000000000
1.000000000000000000 -2.000000000000000000
1.000000000000000000 -2.000000000000000000
1.568487761472268500 0.000000000000000000
0.170012542253951490 2.170881086348706000
-2.170881086347749500 -0.170012542253325130
0.000000000000000000 1.568487761471974800
2.000000000000000000 -1.000000000000000000
2.000000000000000000 -1.000000000000000000
0.000000000000000000 0.165956461600846510
0.000699498602219915 0.005231878959692129
0.000699498602220040 -0.005231878959692123
0.000000000000000000 0.165956461600842790
2.000000000000000000 1.000000000000000000

(G2Joint pt0 (2,1,0)
(Fixed Tangent (0,1,0)) (Fixed Curvature (0,0,0)))

(G2Joint pt1 (1,2,0)
(Fixed Tangent (-1,0,0)) (Fixed Curvature (0,0,0)))

(G2Joint pt2 (-1,2,0)
(Fixed Tangent (-1,0,0)) (Fixed Curvature (0,0,0)))

(G2Joint pt3 (-2,1,0)
(Fixed Tangent (0,-1,0)) (Fixed Curvature (0,0,0)))

(G2Joint pt4 (-2,-1,0)
(Fixed Tangent (0,-1,0)) (Fixed Curvature (0,0,0)))

(G2Joint pt5 (-1,-2,0)
(Fixed Tangent (1,0,0)) (Fixed Curvature (0,0,0)))

(G2Joint pt6 (1,-2,0)
(Fixed Tangent (1,0,0)) (Fixed Curvature (0,0,0)))

(G2Joint pt7 (2,-1,0)
(Fixed Tangent (0,1,0)) (Fixed Curvature (0,0,0)))

(G2Curve test Closed (pt0,pt1,pt2,pt3,pt4,pt5,pt6,pt7))

x y
2.000000000000000000 1.000000000000000000
0.000000000000000000 1.818569178683748100
0.000000000000000000 -0.846045050683249090
-0.846045050683599360 0.000000000000000000
-1.818569178684742900 0.000000000000000000
1.000000000000000000 2.000000000000000000

x y

190

1.000000000000000000 2.000000000000000000
-2.000000000000000400 0.000000000000000000
0.000000000000000000 0.000000000000000000
0.000000000000000000 0.000000000000000000
-2.000000000000000400 0.000000000000000000
-1.000000000000000000 2.000000000000000000
-1.000000000000000000 2.000000000000000000
-1.818569178683748100 0.000000000000000000
0.846045050683249090 0.000000000000000000
0.000000000000000000 -0.846045050683599360
0.000000000000000000 -1.818569178684742900
-2.000000000000000000 1.000000000000000000
-2.000000000000000000 1.000000000000000000
0.000000000000000000 -2.000000000000000400
0.000000000000000000 0.000000000000000000
0.000000000000000000 0.000000000000000000
0.000000000000000000 -2.000000000000000400
-2.000000000000000000 -1.000000000000000000
-2.000000000000000000 -1.000000000000000000
0.000000000000000000 -1.818569178683748100
0.000000000000000000 0.846045050683249090
0.846045050683599360 0.000000000000000000
1.818569178684742900 0.000000000000000000
-1.000000000000000000 -2.000000000000000000
-1.000000000000000000 -2.000000000000000000
2.000000000000000400 0.000000000000000000
0.000000000000000000 0.000000000000000000
0.000000000000000000 0.000000000000000000
2.000000000000000400 0.000000000000000000
1.000000000000000000 -2.000000000000000000
1.000000000000000000 -2.000000000000000000
1.818569178683748100 0.000000000000000000
-0.846045050683249090 0.000000000000000000
0.000000000000000000 0.846045050683599360
0.000000000000000000 1.818569178684742900
2.000000000000000000 -1.000000000000000000
2.000000000000000000 -1.000000000000000000
0.000000000000000000 2.000000000000000400
0.000000000000000000 0.000000000000000000
0.000000000000000000 0.000000000000000000
0.000000000000000000 2.000000000000000400
2.000000000000000000 1.000000000000000000

x y

191

MEC G2 Box

x y
2.000000000000000000 1.000000000000000000
0.000000000000000000 0.481346323583097370
0.000000000000000000 8.949839802519163000
8.949839802248662900 0.000000000000000000
-0.481346323568559110 0.000000000000000000
1.000000000000000000 2.000000000000000000
1.000000000000000000 2.000000000000000000
-2.000000000000000400 0.000000000000000000
0.000000000000000000 0.000000000000000000
0.000000000000000000 0.000000000000000000
-2.000000000000000400 0.000000000000000000
-1.000000000000000000 2.000000000000000000
-1.000000000000000000 2.000000000000000000
-0.481346323583097370 0.000000000000000000
-8.949839802519163000 0.000000000000000000
0.000000000000000000 8.949839802248662900
0.000000000000000000 -0.481346323568559110
-2.000000000000000000 1.000000000000000000
-2.000000000000000000 1.000000000000000000
0.000000000000000000 -2.000000000000000400
0.000000000000000000 0.000000000000000000
0.000000000000000000 0.000000000000000000
0.000000000000000000 -2.000000000000000400
-2.000000000000000000 -1.000000000000000000
-2.000000000000000000 -1.000000000000000000
0.000000000000000000 -0.481346323583097370
0.000000000000000000 -8.949839802519163000
-8.949839802248662900 0.000000000000000000
0.481346323568559110 0.000000000000000000
-1.000000000000000000 -2.000000000000000000
-1.000000000000000000 -2.000000000000000000
2.000000000000000400 0.000000000000000000
0.000000000000000000 0.000000000000000000
0.000000000000000000 0.000000000000000000
2.000000000000000400 0.000000000000000000
1.000000000000000000 -2.000000000000000000
1.000000000000000000 -2.000000000000000000
0.481346323583097370 0.000000000000000000
8.949839802519163000 0.000000000000000000
0.000000000000000000 -8.949839802248662900
0.000000000000000000 0.481346323568559110
2.000000000000000000 -1.000000000000000000

192

Figure 4.11. MVC vs. MEC and Natural Splines.

MVC Woodford

2.000000000000000000 -1.000000000000000000
0.000000000000000000 2.000000000000000400
0.000000000000000000 0.000000000000000000
0.000000000000000000 0.000000000000000000
0.000000000000000000 2.000000000000000400
2.000000000000000000 1.000000000000000000

(G2Joint a (0,0,0))
(G2Joint b (1,1.9,0))
(G2Joint c (2,2.7,0))
(G2Joint d (3,2.6,0))
(G2Joint e (4,1.6,0))
(G2Joint f (5,0.89,0))
(G2Joint g (6,1.2,0))
(G2Curve test Open (a,b,c,d,e,f,g))

x y
0.000000000000000000 0.000000000000000000
0.895706961882983820 1.957602735457642000
0.138116531243261090 -0.007460993038492146
0.950336864105681740 -0.723238623568194680
1.226992709070398700 1.731998021036268700
1.000000000000000000 1.899999999999999900
1.000000000000000000 1.899999999999999900
0.736631406425843020 1.039813952219272600
0.341076876087715750 -0.262720381219853420
0.374159349449745160 -1.234293454103546400
1.276352407316269500 0.379079327591151930
2.000000000000000000 2.700000000000000200
2.000000000000000000 2.700000000000000200
0.987026269314594810 0.293148861036986170
0.223941997150225750 -0.738077511555863320
-0.313252904433228950 -0.640273750582883380
0.919995843472537820 -0.475735465574735170
3.000000000000000000 2.600000000000000100
3.000000000000000000 2.600000000000000100
1.257453686820322500 -0.650236975941283490
-0.583492801176973220 -1.197013778096099200
0.243047472123983250 0.246235997524879740
0.894274438387285820 -1.103115925695012500
4.000000000000000000 1.600000000000000100
4.000000000000000000 1.600000000000000100

x y

193

MEC Woodford

0.788065060272710170 -0.972103284130933500
0.188594695290718790 0.191404747823292250
0.206132714814211420 1.296965844295417900
1.219064320176212600 -0.247386799026987620
5.000000000000000000 0.890000000000000010
5.000000000000000000 0.890000000000000010
1.041194033679268700 -0.211291278806912870
0.143765661390689000 0.947443416051865330
-0.801532699461220850 1.085239013974033100
0.800568752284721020 0.859094412108452280
6.000000000000000000 1.200000000000000000

x y
0.000000000000000000 0.000000000000000000
0.850166319401722710 1.958481078380348600
0.001824248225836333 0.007791546189537588
0.733134601003124660 -0.616940467375432510
1.270507025303729800 1.726903101643841200
1.000000000000000000 1.899999999999999900
1.000000000000000000 1.899999999999999900
0.762887395443757170 1.036934533346533800
0.264851931674635330 -0.221732405115490060
0.371842025691673290 -1.267109569086311900
1.259917399656275800 0.376248155646289660
2.000000000000000000 2.700000000000000200
2.000000000000000000 2.700000000000000200
0.996692543012572480 0.297641520910178090
0.235271846591626870 -0.792194148853525460
-0.313579617589919590 -0.650848712213846550
0.910485272947530680 -0.469980947560508680
3.000000000000000000 2.600000000000000100
3.000000000000000000 2.600000000000000100
1.267105467144682200 -0.654063767753085950
-0.602519409932451340 -1.263034154317588900
0.115138824492793890 0.152815145156221770
0.858519716078747890 -1.094676325330322200
4.000000000000000000 1.600000000000000100
4.000000000000000000 1.600000000000000100
0.770000814965735910 -0.981808159838148400
0.091743352114028190 0.124044740659081190
0.241029377584454250 1.798817524749730000
1.264770554097381000 -0.135794155227056600
5.000000000000000000 0.890000000000000010

x y

194

Figure 4.13. Planar S-shaped Curves, MVC vs. SI-MVC

MVC Planar S

SI-MVC Planar S

5.000000000000000000 0.890000000000000010
1.062566848745276600 -0.114084224312618550
0.182788334493450530 1.268266975320603300
-0.002492900176544379 0.004387465129715400
0.905306984108416700 0.501211498512781570
6.000000000000000000 1.200000000000000000

(G2Joint a 1 Fixed (-2,0,0) (Fixed Tangent (-1,0,0)))
(G2Joint b 2 Fixed (0,0,0) (Initial Tangent (1,-1,0)))
(G2Joint c 3 Fixed (2,0,0) (Fixed Tangent (-1,0,0)))

(G2Curve test Open (a,b,c))

x y
-2.000000000000000000 0.000000000000000000
0.000000000000000000 2.860963429830545700
10.598732289532171000 -1.761417091639582200
1.218185541957548900 -1.528097160495165200
1.987573949878479500 -2.493167901229647900
0.000000000000000000 0.000000000000000000
0.000000000000000000 0.000000000000000000
1.987560128941692600 -2.493150564558494600
-1.218206227525659500 1.528057683842199300
-10.598808209987586000 1.761394932761270800
0.000000000000000000 2.860970283458000200
2.000000000000000000 0.000000000000000000

-2.000000000000000000 0.000000000000000000
0.000000000000000000 2.555486051505411600
9.418447741144513300 -1.262060633140546200
1.296403845320799300 -1.386947688280506300
2.220610538787489500 -2.373177371829916300
0.000000000000000000 0.000000000000000000
0.000000000000000000 0.000000000000000000
2.220388526532516900 -2.372940106244363400
-1.297995306784533800 1.385699702347881200
-9.418483725329133800 1.261973056289178200
0.000000000000000000 2.555582054915814800
2.000000000000000000 0.000000000000000000

x y

195

Figure 4.14. A Curve from Antipodal Tangent Constraints

SI-MVC from Antipodal Tangent Constraints

Figure 4.15. An SI-MVC Figure-8.

SI-MVC Figure-8

(G2Joint a 1 Fixed (-2,0,0) (Fixed Tangent (-1,0,0)))
(G2Joint b 2 Fixed (0,0,0) (Initial Tangent (1,-1,0)))
(G2Joint c 3 Fixed (2,0,0) (Fixed Tangent (-1,0,0)))

(G2Curve test Open (a,b,c))

x y
-2.000000000000000000 0.000000000000000000
-5.656778106812373300 0.000000000000000000
10.348410909356211000 39.487317404691396000
-1.483451659599880300 3.414200869535436700
2.846789650620191300 -6.552005467716160300
0.000000000000000000 0.000000000000000000
0.000000000000000000 0.000000000000000000
2.846789931535775400 -6.552006114255128500
1.483407565897053800 -3.414149747511139800
-10.348447590104763000 -39.48736276839746000
-5.656780185756640700 0.000000000000000000
2.000000000000000000 0.000000000000000000

(G2Joint a Initial (-2,0,0) (Initial Tangent (0,1,0)))
(G2Joint b Initial (0,0,0) (Initial Tangent (1,-1,0)))
(G2Joint c Initial (2,0,0) (Initial Tangent (0,1,0)))
(G2Joint d Initial (0,0,0) (Initial Tangent (-1,-1,0)))
(G2Curve test Closed (a,b,c,d))

x y
-2.059438815174891700 0.000000310515343706
0.000000026487255110 2.679774226217526600
10.054345895709034000 -1.528680488254063700
1.365515068654025400 -1.459323900376956500
2.263550943524616600 -2.419144944425363900
0.000003095254827856 -0.000002264150156569
0.000003095254827856 -0.000002264150156569
2.263544637954198800 -2.419138205416975200
-1.365372440630191000 1.459281810743707600
-10.054228280691872000 1.528595066277622600
-0.000010314671962915 2.679757749513795900
2.059439003643854300 0.000004584664002064

196

Figure 4.16. A simple space curve for comparing MVC with MEC.

MVC Space Curve

2.059439003643854300 0.000004584664002064
-0.000010314622031358 2.679744777266389400
-10.054119171968471000 -1.528589662848433000
-1.365505776314093600 -1.459313589897367700
-2.263561937541239500 -2.419161445125951100
-0.000003283723838783 -0.000002631029189197
-0.000003283723838783 -0.000002631029189197
-2.263556322734365800 -2.419155444351647000
1.365408607705594500 1.459326575204787500
10.054024148001007000 1.528505328424123500
0.000000026486831259 2.679731344308613500
-2.059438815174891700 0.000000310515343706

(G2Joint a (-1,1,0) (Fixed Tangent (0,0,1)))
(G2Joint b (0,0,1) (Fixed Tangent (1,0,0)))
(G2Joint c (1,1,0) (Fixed Tangent (0,0,-1)))
(G2Curve test Open (a,b,c))

x y z
-1.000000000000000000 1.000000000000000000 0.000000000000000000
0.000000000000000000 0.000000000000000000 1.078867484913692800
0.354420491775258860 -1.435904154680027700 -0.297943080553370930
0.673958122061576790 -0.010428915469809950 -0.666215116998288170
0.459185483511367950 -0.759850105427875900 0.461589706755405390
-0.801205879876136890 0.501364567946027910 0.799553000101731360
-0.801205879876136890 0.501364567946027910 0.799553000101731360
0.455478093420548400 -0.753715197307894380 0.457862905350963910
0.669909429724079410 -0.021497524066445631 -0.648674930045294640
0.312988277961696540 1.468429588826430700 -0.362450059663945610
1.091008392794767600 0.000000000000000000 0.000000000000000000
0.000000000000000000 0.000000000000000000 1.000000000000000000
0.000000000000000000 0.000000000000000000 1.000000000000000000
1.091008435233340000 0.000000000000000000 0.000000000000000000
-0.312988284304521470 1.468429703065802400 -0.362450087861461820
-0.669909515856446310 -0.021497380000049405 -0.648674715378938170
0.455478278305560980 0.753714766389898870 -0.457863271569038110
0.801205809480143420 0.501364690351200460 0.799552882559168450

x y

197

MEC Space Curve

Figure4.21. Jörg Peters’ Helix — The MVC Curve

0.801205809480143420 0.501364690351200460 0.799552882559168450
0.459185522385636040 0.759849426897001190 -0.461589927666278820
-0.673957731845823190 -0.010428699492232388 -0.666214518472055370
-0.354420321271875120 -1.435903044388611400 -0.297942957604386100
0.000000000000000000 0.000000000000000000 -1.078867121557249200
1.000000000000000000 1.000000000000000000 0.000000000000000000

x y z
-1.000000000000000000 1.000000000000000000 0.000000000000000000
0.000000000000000000 0.000000000000000000 0.914949164956981640
0.097129959958679096 -1.095470031849944800 0.267541422448963510
0.767407666626231830 -0.079916432757612371 -0.732462279400721730
0.473671514190957710 -0.779045432860106970 0.510933878695110200
-0.821502212764560920 0.519297949993124290 0.797115282295676520
-0.821502212764560920 0.519297949993124290 0.797115282295676520
0.472386037860052120 -0.776931215655485170 0.509547277668780390
0.763556864891897220 -0.079991163385507505 -0.728158971755585080
-0.017147060641873518 1.417728906584188000 -0.127845774636541370
1.042148273769049700 0.000000000000000000 0.000000000000000000
0.000000000000000000 0.000000000000000000 1.000000000000000000
0.000000000000000000 0.000000000000000000 1.000000000000000000
1.042148273769657700 0.000000000000000000 0.000000000000000000
0.017147060642242903 1.417728906585842300 -0.127845774636690560
-0.763556864891930530 -0.079991163384028757 -0.728158971756630470
0.472386037859937990 0.776931215655080390 -0.509547277668360170
0.821502212764325670 0.519297949993114070 0.797115282295383860
0.821502212764325670 0.519297949993114070 0.797115282295383860
0.473671514191492340 0.779045432860768660 -0.510933878695388870
-0.767407666628735500 -0.079916432756948250 -0.732462279403384260
-0.097129959958063214 -1.095470031848894600 0.267541422448927150
0.000000000000000000 0.000000000000000000 -0.914949164956570640
1.000000000000000000 1.000000000000000000 0.000000000000000000

(G2Joint mg (6.28319, 0.0, 9.42478))
(G2Joint mf (3.14159, 3.14159, 7.85398))
(G2Joint me (0.0, 0.0, 6.28319))
(G2Joint md (3.14159, -3.14159, 4.71239))
(G2Joint mc (6.28319, 0.0, 3.14159))
(G2Joint mb (3.14159, 3.14159, 1.5708))
(G2Joint a (0.0, 0.0, 0.0))
(G2Joint b (-3.14159, -3.14159, -1.5708))
(G2Joint c (-6.28319, 0.0, -3.14159))

x y z

198

MVC Peter’s Helix

(G2Joint d (-3.14159, 3.14159, -4.71239))
(G2Joint e (0.0, 0.0, -6.28319))
(G2Joint f (-3.14159, -3.14159, -7.85398))
(G2Joint g (-6.28319, 0.0, -9.42478))
(G2Curve test Open (mg,mf,me,md,mc,mb,a,b,c,d,e,f,g))

x y z
6.283190000000000300 0.000000000000000000 9.424780000000000200
-0.198240501864768960 5.127592600184613900 -0.900498439689743630
-7.404660987479192400 -0.654288223753734300 -2.267244200646349100
-0.140132511716231200 -7.516237976810065100 0.299115663624224590
-4.820838993551762800 -0.003459456191450867 -1.785574826772078800
3.141589999999999900 3.141589999999999900 7.853980000000000000
3.141589999999999900 3.141589999999999900 7.853980000000000000
-4.851087569079537000 -0.003481162708103279 -1.796778497975442200
-0.185518691475120960 -7.610887154301886800 0.286724012404223410
7.855946991046825400 -0.089657324579906605 -0.027644305879624534
-0.037930411637132122 -4.986766677999626500 -1.417156959629212400
0.000000000000000000 0.000000000000000000 6.283190000000000300
0.000000000000000000 0.000000000000000000 6.283190000000000300
-0.038062279945965435 -5.004103597373588600 -1.422083826582449800
7.910474014794299800 -0.115480529804041570 -0.034997916477095381
-0.411394914821889610 7.710277951899867900 -0.067823414221496167
4.869476633292717500 0.085815221954173918 -1.742240617382419900
3.141589999999999900 -3.141589999999999900 4.712390000000000100
3.141589999999999900 -3.141589999999999900 4.712390000000000100
4.814429316149434300 0.084845118163894839 -1.722545344352614200
-0.380113356894011490 7.537328876903091100 -0.074181743874287415
-7.618766674143293100 0.819069738500618590 0.234502932609861210
0.253621279605101450 5.072492160672243100 -1.333164698668582100
6.283190000000000300 0.000000000000000000 3.141589999999999900
6.283190000000000300 0.000000000000000000 3.141589999999999900
0.260683315091404470 5.213734723987268900 -1.370286411900781400
-8.047051228319658000 0.903492938509249170 0.237711021040665050
1.440934205972207200 -8.800287657189658200 -0.125059871504051120
-4.846279367174115100 -0.678215956157780410 -1.881345255957855200
3.141589999999999900 3.141589999999999900 1.570800000000000000
3.141589999999999900 3.141589999999999900 1.570800000000000000
-4.652827031292924100 -0.651143133687143050 -1.806246276557444700
1.299468628608854600 -8.115755520425958400 -0.126425724169441480
-0.005520690153294453 -0.011559048132690753 -0.003693813207739863
-1.955286538167493800 -4.093917713230832900 -1.308253685509470600
0.000000000000000000 0.000000000000000000 0.000000000000000000
0.000000000000000000 0.000000000000000000 0.000000000000000000

199

MEC Peter’s Helix

-1.955286538167488900 -4.093917713230822200 -1.308253685509467300
0.005520690153339702 0.011559048132735238 0.003693813207774506
-1.299468628608771500 8.115755520425928200 0.126425724169473120
-4.652827031292915200 -0.651143133687150600 -1.806246276557443900
-3.141589999999999900 -3.141589999999999900 -1.570800000000000000
-3.141589999999999900 -3.141589999999999900 -1.570800000000000000
-4.846279367174099100 -0.678215956157787400 -1.881345255957851800
-1.440934205972111500 8.800287657189599600 0.125059871504085620
8.047051228319849900 -0.903492938508873690 -0.237711021040795330
0.260683315091416850 5.213734723987325700 -1.370286411900804500
-6.283190000000000300 0.000000000000000000 -3.141589999999999900
-6.283190000000000300 0.000000000000000000 -3.141589999999999900
0.253621279605114050 5.072492160672310600 -1.333164698668607700
7.618766674143470800 -0.819069738501116530 -0.234502932609762570
0.380113356893867600 -7.537328876903044000 0.074181743874357817
4.814429316149421800 0.084845118163913241 -1.722545344352605100
-3.141589999999999900 3.141589999999999900 -4.712390000000000100
-3.141589999999999900 3.141589999999999900 -4.712390000000000100
4.869476633292676700 0.085815221954192028 -1.742240617382400800
0.411394914821723970 -7.710277951899732900 0.067823414221572342
-7.910474014794523600 0.115480529803705240 0.034997916476944835
-0.038062279945982401 -5.004103597373649800 -1.422083826582474500
0.000000000000000000 0.000000000000000000 -6.283190000000000300
0.000000000000000000 0.000000000000000000 -6.283190000000000300
-0.037930411637148269 -4.986766677999588300 -1.417156959629208800
-7.855946991046735700 0.089657324579462072 0.027644305879443502
0.185518691475364090 7.610887154301903700 -0.286724012404107220
-4.851087569079542300 -0.003481162708118615 -1.796778497975445100
-3.141589999999999900 -3.141589999999999900 -7.853980000000000000
-3.141589999999999900 -3.141589999999999900 -7.853980000000000000
-4.820838993551763700 -0.003459456191466105 -1.785574826772080100
0.140132511716462100 7.516237976810067800 -0.299115663624112630
7.404660987479128500 0.654288223753565660 2.267244200646340700
-0.198240501864756030 5.127592600184594400 -0.900498439689733530
-6.283190000000000300 0.000000000000000000 -9.424780000000000200

x y z
6.283190000000000300 0.000000000000000000 9.424780000000000200
-2.142965239510339300 4.020970800200585100 -1.312064723484967600
-0.215140634044518440 0.383258582772364240 -0.117137413288213140
-1.812106081661876800 -7.867670142582347200 0.316973145218641730
-4.503273658465318800 0.813561531701879840 -1.780651914983478500
3.141589999999999900 3.141589999999999900 7.853980000000000000

x y z

200

3.141589999999999900 3.141589999999999900 7.853980000000000000
-4.798681291567134200 0.866929882082043800 -1.897459865704987000
-2.088162595492970600 -8.928226326126948100 0.347856525658778890
7.279794298335967400 1.115101854507194700 -0.418291699749942070
0.263423938997219280 -5.323546162802631300 -1.367503540802859500
0.000000000000000000 0.000000000000000000 6.283190000000000300
0.000000000000000000 0.000000000000000000 6.283190000000000300
0.255758938323335960 -5.168643821425973800 -1.327712489155490600
6.865503483548182300 0.986594959247617640 -0.410886712156491090
-0.007070736580352500 7.206526877641582700 0.003487890560489223
4.825839620230559600 0.000259694436204610 -1.731093005485156500
3.141589999999999900 -3.141589999999999900 4.712390000000000100
3.141589999999999900 -3.141589999999999900 4.712390000000000100
4.830667445462973200 0.000259954237493192 -1.732824810756202100
0.033688215022310258 7.220955268303451500 -0.011130983959190335
-6.799482809146049100 0.882088524096727560 0.428130848969397850
0.255972174237975860 5.145304589834865700 -1.322378914581311400
6.283190000000000300 0.000000000000000000 3.141589999999999900
6.283190000000000300 0.000000000000000000 3.141589999999999900
0.262956002657292080 5.285686740853824600 -1.358458099642151400
-7.172244838370619200 0.997763227669373310 0.434621472247647520
1.857795968323474600 -9.287335707758302300 -0.486655599332728390
-4.883088638107976100 -0.881031929781648240 -1.930493251785411000
3.141589999999999900 3.141589999999999900 1.570800000000000000
3.141589999999999900 3.141589999999999900 1.570800000000000000
-4.571504427978734200 -0.824814306411612240 -1.807310721301907100
1.566894481023706400 -8.150995670518637900 -0.450796546722077200
-0.006869497376285692 -0.012872590403354202 -0.004201878221504241
-2.073789164863796500 -3.886024994251078300 -1.268478470915351600
0.000000000000000000 0.000000000000000000 0.000000000000000000
0.000000000000000000 0.000000000000000000 0.000000000000000000
-2.073789164863798300 -3.886024994251081400 -1.268478470915352500
0.006869497376243054 0.012872590403257687 0.004201878221473569
-1.566894481023829200 8.150995670518637900 0.450796546722038730
-4.571504427978743100 -0.824814306411609800 -1.807310721301911700
-3.141589999999999900 -3.141589999999999900 -1.570800000000000000
-3.141589999999999900 -3.141589999999999900 -1.570800000000000000
-4.883088638107977900 -0.881031929781644240 -1.930493251785413000
-1.857795968323610900 9.287335707758270300 0.486655599332682040
7.172244838370545500 -0.997763227669457690 -0.434621472247623710
0.262956002657292910 5.285686740853798900 -1.358458099642145800
-6.283190000000000300 0.000000000000000000 -3.141589999999999900
-6.283190000000000300 0.000000000000000000 -3.141589999999999900
0.255972174237978190 5.145304589834871000 -1.322378914581314100
6.799482809146059700 -0.882088524096800390 -0.428130848969384800

x y z

201

Figure 4.22. Coving Design.

-0.033688215022069729 -7.220955268303578500 0.011130983959117735
4.830667445463007000 0.000259954237489609 -1.732824810756212800
-3.141589999999999900 3.141589999999999900 -4.712390000000000100
-3.141589999999999900 3.141589999999999900 -4.712390000000000100
4.825839620230588900 0.000259694436201030 -1.731093005485165600
0.007070736580596062 -7.206526877641695500 -0.003487890560562922
-6.865503483548194700 -0.986594959248261020 0.410886712156361360
0.255758938323330240 -5.168643821425987100 -1.327712489155492100
0.000000000000000000 0.000000000000000000 -6.283190000000000300
0.000000000000000000 0.000000000000000000 -6.283190000000000300
0.263423938997212780 -5.323546162802632200 -1.367503540802858000
-7.279794298335948700 -1.115101854507838400 0.418291699749811170
2.088162595492710800 8.928226326126822000 -0.347856525658837850
-4.798681291567096000 0.866929882082041360 -1.897459865704975500
-3.141589999999999900 -3.141589999999999900 -7.853980000000000000
-3.141589999999999900 -3.141589999999999900 -7.853980000000000000
-4.503273658465287700 0.813561531701878500 -1.780651914983469600
1.812106081661653000 7.867670142582254800 -0.316973145218694070
0.215140634044485800 -0.383258582772301290 0.117137413288193300
-2.142965239510338000 4.020970800200581500 -1.312064723484964700
-6.283190000000000300 0.000000000000000000 -9.424780000000000200

(G2Joint a (0.5,-12,0)
(Fixed Tangent (0,1,0)) (Fixed Curvature (0.27,0,0)))

(G2Joint b (20,-0.5,0)
(Fixed Tangent (1,0,0)))

(G2Curve test Open (a,b))

x y z

202

205

Appendix B
Test Network and Surface Definitions

and
Results

In this appendix we provide the Bézier patch definitions computed for the interpolation
problems described inChapters 5 and 6. Because of their voluminous nature, some
solutions have been omitted. In most cases, the network solutions correspond to the
perimeter of the patches provided. All solutions are provided in terms of Bézier control
points, either triangular or tensor product patches. In cases where a solution possesses
symmetry, only one instance of each unique patch is provided.

Figure5.9. Octahedron.
Figure6.17. Octahedron.

Quintic Triangular Bézier Patch

x y z
1.2246465878873718e-16 y1.4997592652241824e-32 1.0
8.3969953450706316e-17 0.31433317757768608 1.0
3.0299919591783472e-17 0.62907565454315328 0.87649331684239362

-9.113645065713357e-18 0.87649331684239362 0.62907565454315362
-1.0458311156693061e-16 1.0 0.31433317757768642
-1.7797581001999499e-16 1.0 2.7755575615628914e-16
0.3143331775776862 3.8494705338030874e-17 1.0
0.40028275364196442 0.40015801734831902 1.0000234314342797
0.42988520970532879 0.78523097313237966 0.7856096621114711
0.40015801734831902 1.0000234314342797 0.40028275364196464
0.31433317757768597 1.0 1.8671406114570802e-16
0.6290756545431534 7.7039535385928788e-17 0.87649331684239351
0.78560966211147165 0.42988520970532912 0.78523097313237955
0.78523097313237977 0.78560966211147143 0.4298852097053289

206

Figure5.14. TetraThing.
Figure6.23. Flexible Frame Comparison①

0.62907565454315328 0.87649331684239395 6.1474088550453253e-17
0.87649331684239429 2.7704787508089549e-16 0.62907565454315295
1.00002343143428 0.40028275364196486 0.4001580173483188
0.87649331684239351 0.62907565454315384 -5.1339999758081665e-18
1.0000000000000004 3.9446007822497554e-16 0.31433317757768575
1.0000000000000002 0.31433317757768658 -1.961927929748761e-16
1.0000000000000002 4.5553156617628415e-16 -3.4450926371376849e-16

Quintic Tensor Product Bézier Patch

x y z
-1.10894 -1.10894 -1.10894
-1.2153562480759041 -1.2153562480759041 -0.89610750384819204
-1.2784415348988749 -1.2784415348988749 -0.63922300438420709
-1.1948822417048364 -1.1948822417048364 -0.3680167802199949
-1.0602242672337785 -1.0602242672337785 -0.19871020242421106
-0.90450600000000003 -0.90450600000000003 -0.13700699999999999
-1.6222042306722075 -0.85230788466389629 -0.85230788466389629
-1.7286204787481116 -0.95872413273980017 -0.63947538851208829
-1.7917057655710824 -1.0218094195627709 -0.38259088904810334
-1.474005551806469 -0.90754630205625131 -0.36638965723573425
-1.3393475773354111 -0.77288832758519344 -0.19708307943995035
-1.1836293101016326 -0.61717006035141497 -0.13537987701573928
-1.8820802013215752 -0.34223710605948665 -0.34223710605948665
-1.9884964493974793 -0.44865335413539076 -0.12940460990767866
-2.05158173622045 -0.51173864095836152 0.12747988955630629
-1.7472461350271424 -0.61291030162707139 -0.33625840753141689
-1.612588160556085 -0.47825232715601351 -0.16695182973563305
-1.4568698933223063 -0.32253405992223505 -0.10524862731142201
-1.8820768791582174 0.34224077434868216 0.34224077434868216
-1.988490128170572 0.12941427632397318 0.44865402336103655
-2.0515679371343851 -0.1274686224065269 0.51173183232484964
-1.7629381500309518 0.34258121220555737 0.62937148433947332
-1.6282690163028 0.17321239871570493 0.49470235061132195
-1.4725265645295451 0.11147765335898771 0.33895989883806676
-1.6222019241586265 0.8523090379206868 0.8523090379206868
-1.7286151731709807 0.63948253989597781 0.95872228693304118
-1.7916929821347938 0.38259964116547773 1.0218000958968543
-1.4817754299560133 0.36969470557858852 0.9160526110128977
-1.3471062962278619 0.20032589208873602 0.78138347728474611
-1.1913638444546069 0.13859114673201881 0.62564102551149103
-1.10894 1.10894 1.10894

Quintic Triangular Bézier Patch

x y z

207

Figure5.15. Cylinder Blending.

-1.2153532490123544 0.89611350197529105 1.2153532490123544
-1.2784310579761675 0.63923060324479097 1.2784310579761675
-1.1949175855014067 0.36811055884656968 1.1949175855014067
-1.0602484517732551 0.19874174535671721 1.0602484517732551
-0.90450600000000003 0.13700699999999999 0.90450600000000003
-0.90450600000000003 -0.90450600000000003 -0.13700699999999999
-0.78414914723503104 -0.78414914723503104 -0.089315721505687867
-0.65094561409127816 -0.65094561409127816 -0.10580115961905867
-0.54828868502670169 -0.54828868502670169 -0.20872377675715009
-0.48988594493195969 -0.48988594493195969 -0.32004711013608061
-0.43327300000000002 -0.43327300000000002 -0.43327300000000002
-1.1836293101016326 -0.61717006035141497 -0.13537987701573928
-1.0632724573366636 -0.49681320758644598 -0.087688598521427158
-0.93006892419291076 -0.3636096744426931 -0.10417403663479796
-0.82385009976447887 -0.41050797765781311 -0.070943069388261559
-0.76544735966973687 -0.35210523756307111 -0.18226640276719208
-0.7088344147377772 -0.29549229263111143 -0.29549229263111143
-1.4568698933223063 -0.32253405992223505 -0.10524862731142201
-1.3365130405573376 -0.20217720715726606 -0.057557348817109888
-1.2033095074135844 -0.068973674013513175 -0.074042786930480692
-1.1109323516153615 -0.28320844416137936 0.056356464108172299
-1.0525296115206195 -0.22480570406663736 -0.054966869270758223
-0.99591666658865974 -0.16819275913467763 -0.16819275913467763
-1.4725265645295451 0.11147765335898771 0.33895989883806676
-1.35263638359968 0.06376758945395905 0.21812721669000545
-1.2198385855572318 0.080302590227123605 0.084471866161901055
-1.1121008178275857 -0.055874996282832157 0.28277902436530278
-1.0531981595211592 0.055413860931337489 0.22480739286188323
-0.99610035876928582 0.16860357996335873 0.16860357996335873
-1.1913638444546069 0.13859114673201881 0.62564102551149103
-1.0714736635247415 0.090881082826990145 0.50480834336342983
-0.93867586548229354 0.1074160836001547 0.37115299283532543
-0.82494640280325604 0.071228070155861412 0.4098820908039964
-0.76604374449682955 0.18251692737003111 0.35191045930057685
-0.70894594374495612 0.29570664640205235 0.29570664640205235
-0.90450600000000003 0.13700699999999999 0.90450600000000003
-0.78461581907013467 0.089296936094971316 0.78367331785193883
-0.65181802102768671 0.1058319368681359 0.65001796732383432
-0.54927345905829983 0.20879442375380913 0.54744844440194407
-0.49037080075187356 0.32008328096797878 0.48947681289852452
-0.43327300000000002 0.43327300000000002 0.43327300000000002

Quintic Tensor Product Bézier Patch

x y z

208

Figure6.2. The Blend of Two Pipes.

Quintic Tensor Product Bézier Patch

x y z
1 0 -0.8125
1 0.3230000101622772 -0.92065681475376948
0.86958874179396117 0.63513403301773375 -1.061406887955747
0.63513403301773275 0.8695887417939614 -1.2010931120442534
0.3230000101622767 1 -1.3418431852462307
0 1 -1.45
1 0 -1.05
0.99315204069659258 0.314930952490658 -1.1498647804731514
0.87643801006704336 0.60486690672135979 -1.2929503264563043
0.6457486221953348 0.86993581355265137 -1.3557470346889169
0.32498796666110419 1.0012731165838109 -1.5182059564911066
0 1 -1.5600000000000001
1 0 -1.2875000000000001
0.99248442446329088 0.31451531287606144 -1.3827058735744191
0.86891349638816007 0.62233751294202244 -1.5213569193950307
0.63364503902498848 0.87459293056197451 -1.4421063221212731
0.31667039034233846 1.0009322096917295 -1.6348772633979933
0 1 -1.6700000000000002
1 0 -1.5249999999999999
0.9924105672092266 0.30740220918580152 -1.5356568575503167
0.87302641414183568 0.62289246777101137 -1.5174121917859147
0.63277471612037584 0.8711763691504536 -1.7529099374090522
0.321724393667429 1.0006999088069031 -1.7546226736351254
0 1 -1.7799999999999998
1 0 -1.7625
0.99303767891626304 0.31341838809297273 -1.7610991369147821
0.87196870261149739 0.62553644220655125 -1.7584819112921133
0.62964944631122444 0.87753400178645002 -1.8741935834980303
0.31185797203078258 1.000571111961942 -1.8686678246774151
0 1 -1.8899999999999999
1 0 -2
1 0.31365282659954213 -2
0.87702738045764694 0.62755898835409096 -2
0.62755898835409007 0.87702738045764739 -2
0.31365282659954169 1 -2
0 1 -2
0.43301270190000002 2 -0.25
0.38064973256762019 2 -0.34069532332048252
0.30453330734992029 2 -0.4176952279421326
0.20946802481019455 2 -0.47258119441477586
0.10472593868803298 2 -0.5
0 2 -0.5

209

0.4855827587959986 1.5429870629264815 -0.15894599049770772
0.47404788453971286 1.514507886009604 -0.21290113745736447
0.41370966624127697 1.5371909088984252 -0.34456898232458383
0.28391033067634391 1.5396514086458901 -0.43385911137353994
0.15245224347016859 1.5727449556379975 -0.49585067168939484
0 1.6401875864270259 -0.5
0.52575824293905127 1.0900805809528458 -0.034087793098807218
0.43104868005888131 1.2831060858568055 -0.2741275245319435
0.37064483387039332 1.1980303839115611 -0.34472837036197063
0.3787947532065476 1.4080428011308099 -0.38985089026796088
0.23653891713306194 1.1233892301577799 -0.52555456204036322
0 1.283625966079063 -0.5
0.83180233740289444 0.85330737815971869 -0.2656703280564926
0.82216811187420102 0.83838861148311894 -0.49597245622842195
0.61809771155219295 1.0985439631872196 -0.58243515723542705
0.52232068323247427 0.83000356590190216 -0.59012733148693663
0.3054397869501615 1.2208968555305644 -0.94803480279284758
0 1 -0.82068253079323017
1 0.36682165977172676 -0.47484020886857914
0.89413609496918123 0.49528954384792062 -0.47803031213233499
0.82909953361968747 0.6982196352065424 -0.64843526981167643
0.58909191615379219 0.82762821373160866 -1.0518396791452973
0.45026130445998092 0.95771058521539254 -0.83419126020653944
0 1 -1.1343191321345052
1 0 -0.8125
1 0.3230000101622772 -0.92065681475376948
0.86958874179396117 0.63513403301773375 -1.061406887955747
0.63513403301773275 0.8695887417939614 -1.2010931120442534
0.3230000101622767 1 -1.3418431852462307
0 1 -1.45
1 0 0.8125
1 0.36682165977172676 0.47484020886857914
0.83180233740289444 0.85330737815971869 0.2656703280564926
0.52575824293905127 1.0900805809528458 0.034087793098807218
0.4855827587959986 1.5429870629264815 0.15894599049770772
0.43301270190000002 2 0.25
1 0 0.48750000000000004
0.96253290128242419 0.31994132592106367 0.12700280251329771
0.88792135129784067 0.92312364807749114 0.11556936022894462
0.52832000597974027 1.024332611017982 0.027738102103180458
0.49525226248946203 1.5397124494253354 0.10677723746199662
0.48537567121674913 2 0.15930467670659065
1 0 0.16250000000000009

Quintic Tensor Product Bézier Patch

x y z

210

0.98321853978383833 0.25355009988457028 0.12871952601076664
0.88661332628517886 0.91736237553117239 -0.0031605897227102225
0.5178701665361245 1.0762601595352079 0.0052811993272599365
0.50445274049111766 1.5066455812750585 0.041970737411966406
0.5140013320962119 2 0.054885966546680098
1 0 -0.16250000000000009
0.98321853978383833 0.25355009988457028 -0.12871952601076664
0.88661332628517886 0.91736237553117239 0.0031605897227102225
0.5178701665361245 1.0762601595352079 -0.0052811993272599365
0.50445274049111766 1.5066455812750585 -0.041970737411966406
0.5140013320962119 2 -0.054885966546680098
1 0 -0.48750000000000004
0.96253290128242419 0.31994132592106367 -0.12700280251329771
0.88792135129784067 0.92312364807749114 -0.11556936022894462
0.52832000597974027 1.024332611017982 -0.027738102103180458
0.49525226248946203 1.5397124494253354 -0.10677723746199662
0.48537567121674913 2 -0.15930467670659065
1 0 -0.8125
1 0.36682165977172676 -0.47484020886857914
0.83180233740289444 0.85330737815971869 -0.2656703280564926
0.52575824293905127 1.0900805809528458 -0.034087793098807218
0.4855827587959986 1.5429870629264815 -0.15894599049770772
0.43301270190000002 2 -0.25
0.43301270190000002 3 -0.25
0.38064973256762019 3 -0.34069532332048252
0.30453330734992029 3 -0.4176952279421326
0.20946802481019455 3 -0.47258119441477586
0.10472593868803298 3 -0.5
0 3 -0.5
0.43301270190000002 2.7999999999999998 -0.25
0.38064973256762019 2.7999999999999998 -0.34069532332048258
0.30453330734992029 2.7999999999999998 -0.41769522794213265
0.20946802481019455 2.7999999999999998 -0.47258119441477586
0.10472593868803298 2.7999999999999998 -0.5
0 2.7999999999999998 -0.5
0.43301270190000002 2.5999999999999996 -0.25
0.38064973256762019 2.5999999999999996 -0.34069532332048258
0.30453330734992029 2.5999999999999996 -0.41769522794213265
0.20946802481019455 2.5999999999999996 -0.47258119441477586
0.10472593868803298 2.5999999999999996 -0.5
0 2.5999999999999996 -0.5
0.43301270190000002 2.4000000000000004 -0.25
0.38064973256762019 2.4000000000000004 -0.34069532332048258

Quintic Tensor Product Bézier Patch

x y z

211

0.30453330734992029 2.4000000000000004 -0.41769522794213265
0.20946802481019455 2.4000000000000004 -0.47258119441477586
0.10472593868803298 2.4000000000000004 -0.5
0 2.4000000000000004 -0.5
0.43301270190000002 2.2000000000000002 -0.25
0.38064973256762019 2.2000000000000002 -0.34069532332048258
0.30453330734992029 2.2000000000000002 -0.41769522794213265
0.20946802481019455 2.2000000000000002 -0.47258119441477586
0.10472593868803298 2.2000000000000002 -0.5
0 2.2000000000000002 -0.5
0.43301270190000002 2 -0.25
0.38064973256762019 2 -0.34069532332048252
0.30453330734992029 2 -0.4176952279421326
0.20946802481019455 2 -0.47258119441477586
0.10472593868803298 2 -0.5
0 2 -0.5
0.43301270190000002 3 0.25
0.48537567121674863 3 0.1593046767065916
0.51400133209621135 3 0.054885966546682319
0.51400133209621135 3 -0.054885966546682319
0.48537567121674863 3 -0.1593046767065916
0.43301270190000002 3 -0.25
0.43301270190000002 2.7999999999999998 0.25
0.48537567121674857 2.7999999999999998 0.1593046767065916
0.51400133209621135 2.7999999999999998 0.054885966546682319
0.51400133209621135 2.7999999999999998 -0.054885966546682319
0.48537567121674857 2.7999999999999998 -0.1593046767065916
0.43301270190000002 2.7999999999999998 -0.25
0.43301270190000002 2.5999999999999996 0.25
0.48537567121674857 2.5999999999999996 0.1593046767065916
0.51400133209621135 2.5999999999999996 0.054885966546682319
0.51400133209621135 2.5999999999999996 -0.054885966546682319
0.48537567121674857 2.5999999999999996 -0.1593046767065916
0.43301270190000002 2.5999999999999996 -0.25
0.43301270190000002 2.4000000000000004 0.25
0.48537567121674857 2.4000000000000004 0.1593046767065916
0.51400133209621135 2.4000000000000004 0.054885966546682319
0.51400133209621135 2.4000000000000004 -0.054885966546682319
0.48537567121674857 2.4000000000000004 -0.1593046767065916
0.43301270190000002 2.4000000000000004 -0.25
0.43301270190000002 2.2000000000000002 0.25
0.48537567121674857 2.2000000000000002 0.1593046767065916
0.51400133209621135 2.2000000000000002 0.054885966546682319

Quintic Tensor Product Bézier Patch

x y z

212

Figure6.22. Three Handles.

0.51400133209621135 2.2000000000000002 -0.054885966546682319
0.48537567121674857 2.2000000000000002 -0.1593046767065916
0.43301270190000002 2.2000000000000002 -0.25
0.43301270190000002 2 0.25
0.48537567121674913 2 0.15930467670659065
0.5140013320962119 2 0.054885966546680098
0.5140013320962119 2 -0.054885966546680098
0.48537567121674913 2 -0.15930467670659065
0.43301270190000002 2 -0.25

Quintic Tensor Product Bézier Patch

x y z
-0.82898899999999998 0.87407400000000002 0.72850099999999995
-1.0248362747225066 0.59588014737159567 0.84154394046907943
-1.1471151972523397 0.24846263258590828 0.91212326805864319
-1.1471151972523397 -0.24846263258590828 0.91212326805864319
-1.0248362747225066 -0.59588014737159567 0.84154394046907943
-0.82898899999999998 -0.87407400000000002 0.72850099999999995
-0.78439940369675654 0.87512203116249732 0.80404850511282577
-0.98412956874094693 0.58982712297719819 0.92328900576506467
-1.1124001565732935 0.24132242892335026 0.96682734564590078
-1.1124001565732935 -0.24132242892335026 0.96682734564590078
-0.98412956874094693 -0.58982712297719819 0.92328900576506467
-0.78439940369675654 -0.87512203116249732 0.80404850511282577
-0.71009844903014496 0.8491074540062552 0.86241095715047289
-0.94206539040767157 0.51954082220551079 1.010243944797379
-1.0453524456041947 0.20631744805243166 0.99747071427491396
-1.0453524456041947 -0.20631744805243166 0.99747071427491396
-0.94206539040767157 -0.51954082220551079 1.010243944797379
-0.71009844903014496 -0.8491074540062552 0.86241095715047289
-0.6237607726562242 0.79892324802041093 0.86532102077979833
-0.78491326005310158 0.5309706857243226 1.0186160171390848
-1.0133115560299064 0.35480479529413028 1.0334836889961569
-1.0133115560299064 -0.35480479529413028 1.0334836889961569
-0.78491326005310158 -0.5309706857243226 1.0186160171390848
-0.6237607726562242 -0.79892324802041093 0.86532102077979833
-0.54805958296574353 0.75481067407012226 0.85354858622139129
-0.72061006589040399 0.47787832549604131 1.0120032295431083
-0.93875088256837824 0.26958391589859049 1.0364031363879886
-0.93875088256837824 -0.26958391589859049 1.0364031363879886
-0.72061006589040399 -0.47787832549604131 1.0120032295431083
-0.54805958296574353 -0.75481067407012226 0.85354858622139129

Quintic Tensor Product Bézier Patch

x y z

213

-0.48748999999999998 0.70703300000000002 0.82003599999999999
-0.65238823828880477 0.48121819289309581 0.98204674248845059
-0.88617667019940838 0.22457817273761993 1.0317401847481011
-0.88617667019940838 -0.22457817273761993 1.0317401847481011
-0.65238823828880477 -0.48121819289309581 0.98204674248845059
-0.48748999999999998 -0.70703300000000002 0.82003599999999999
-0.48748999999999998 0.70703300000000002 0.82003599999999999
-0.65238823828880477 0.48121819289309581 0.98204674248845059
-0.88617667019940838 0.22457817273761993 1.0317401847481011
-0.88617667019940838 -0.22457817273761993 1.0317401847481011
-0.65238823828880477 -0.48121819289309581 0.98204674248845059
-0.48748999999999998 -0.70703300000000002 0.82003599999999999
-0.42334546634277442 0.65643538198126272 0.78454542685151896
-0.43507242882581248 0.37439826400455162 0.87149605669765262
-0.7396771165849394 0.25281643518706992 1.0256208616674181
-0.7396771165849394 -0.25281643518706992 1.0256208616674181
-0.43507242882581248 -0.37439826400455162 0.87149605669765262
-0.42334546634277442 -0.65643538198126272 0.78454542685151896
-0.37592056561046672 0.60152934906394429 0.7245338497682785
-0.42108632576512445 0.41640022167296353 0.68771634478490085
-0.60604792336885882 0.13631799314567752 0.96577909655868988
-0.60604792336885882 -0.13631799314567752 0.96577909655868988
-0.42108632576512445 -0.41640022167296353 0.68771634478490085
-0.37592056561046672 -0.60152934906394429 0.7245338497682785
-0.33856102588822479 0.55980811697008948 0.64408457548273912
-0.4342019351483728 0.46096933021991576 0.68351591386305988
-0.52939644330327928 0.31412901271413557 0.8545806986023623
-0.52939644330327928 -0.31412901271413557 0.8545806986023623
-0.4342019351483728 -0.46096933021991576 0.68351591386305988
-0.33856102588822479 -0.55980811697008948 0.64408457548273912
-0.35301911948879278 0.53890074827088119 0.55293589538710597
-0.4545897301996491 0.33566759554870856 0.66485749559622076
-0.47099102867013415 0.073394476153425509 0.67684855482367434
-0.47099102867013415 -0.073394476153425509 0.67684855482367434
-0.4545897301996491 -0.33566759554870856 0.66485749559622076
-0.35301911948879278 -0.53890074827088119 0.55293589538710597
-0.395955 0.54000199999999998 0.47853699999999999
-0.50472582210347716 0.35742207834452805 0.54131478644963038
-0.54631635455091598 0.12114405450251586 0.564528465525865
-0.54631635455091598 -0.12114405450251586 0.564528465525865
-0.50472582210347716 -0.35742207834452805 0.54131478644963038
-0.395955 -0.54000199999999998 0.47853699999999999
0 1.2706 0.25000899999999998

Quintic Tensor Product Bézier Patch

x y z

