
Robust Geometric Methods
for Surface Modeling and Manufacturing

by

Jordan Philip Smith

B.S. (UC Berkeley) 1996
M.S. (UC Berkeley) 2003

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

GRADUATE DIVISION

of the

UNIVERSITY of CALIFORNIA at BERKELEY

Committee in charge:

Professor Carlo H. Séquin, Chair
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Abstract

Robust Geometric Methods

for Surface Modeling and Manufacturing

by

Jordan Philip Smith

Doctor of Philosophy in Computer Science

University of California at Berkeley

Professor Carlo H. Séquin, Chair

We investigate methods to aid in the process of going from a conceptual shape of a part

to its physical realization. We present contributions to the “design for manufacture” problem in

two major areas: surface model representation and process planning for layered manufacturing. In

surface modeling, the focus is on subdivision surfaces and the analysis of their continuity behavior.

We present a new algorithm for the exact evaluation of piecewise smooth Loop and Catmull-Clark

surfaces near user-defined sharp features. This algorithm aids in the geometric process planning

of subdivision surfaces for manufacturing. On the process planning side, we have developed an

approach to layered manufacturing that produces parts with thin, dense walls filled with a loose

web-like interior to reduce material usage and accelerate build times. The key algorithm in this

process generates a conservative offset of a polyhedral surface by generating a stack of 2D slice

contours, calculating individual offset contours, and forming appropriate Boolean combinations of

these contours. We describe a numerically robust algorithm for constructing the generalized Voronoi

diagram of polygonal slice contours which is then used to generate clean offset contours for each

slice, which are combined between layers to create the conservative 3D offset surface.

Professor Carlo H. Séquin
Dissertation Committee Chair
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6.4 Application of the Ā matrix to a quad patch next to an extraordinary vertex produces
a ribbon of three subpatches {U,UV, V } that are regular B-spline patches and a
fourth patch Φ which is analogous to its parent. Patches not adjacent to any sharp
edges (a) generate B-spline subpatches with a full set of 16 control points, while
patches adjacent to sharp edges generate B-spline subpatches, e.g. {U, V } in (b),
that must calculate phantom vertices. Light vertices and edges represent the current
generation, while black ones represent its child mesh. . . . . . . . . . . . . . . . 120



x

7.1 Examples of the five different extraordinary vertex types for piecewise smooth Loop
surfaces. Black thick lines and squares denote sharp edges and vertices. Light thin
lines and circles represent smooth edges and vertices. The numbers indicate the
patch number p within each wedge; the maximum number is the valence n of the
wedge. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

7.2 Loop parameterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
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Chapter 1

Introduction

1.1 Solids Modeling for Manufacturing

The goal of my research has been to aid in the process of going from a design idea to

the physical manufacture of that shape. My work in the “design for manufacturing” (DFM) process

has been twofold. First, I have been searching for a representation of shape geometry that is both

easy and powerful for the designer and leads to a geometry that is unabiguous to the downstream

manufacturing processes. Second, I have made contributions to the geometry processing necessary

for certain types of free-form fabrication methods.

Shape design for consumer products have become more “organic” in nature. Even prod-

ucts such as the casings for desktop computers which could be simple rectilinear boxes are becom-

ing more free-form to be more pleasing to the consumer’s eye. The design interface must allow

for the intuitive description of smooth surfaces of arbitrary genus which may be interrupted with

discontinuous crease features. Ideally the designer would specify a set of positional and differential

geometry constraints for the surface, and an optimization process could be run to fill in the rest of

the surface in a “pleasing way”. Subdivision surfaces are becoming an ideal substrate for specify-

ing these types of free-form surfaces. These same surface primitives are used in film production to

represented animated computer graphic characters in movies.

On the manufacturing end, the surface representation must describe an unambiguous solid

that is watertight without self intersections. The generation of a process plan for automatic fabrica-

tion of a part, requires execution of many geometric queries and operations on this surface repre-

sentation. These computer aided design (CAD) operations include sampling the position, tangents,

and principle curvatures of the surface at a parametrice location; generating clean offset surfaces;
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and making Boolean combinations of surfaces. These CAD operations must be numerically robust,

so that the part can be automatically generated.

1.2 Free-Form Manufacturing

The types of manufacturing methods we are addressing fall into the category of free-form

fabrication. Traditional manufacturing methods made it difficult to produce free-form surfaces due

to difficult fixturing issues. However, new layered manufacturing technologies that build up both

the desired part along with a disposable custom fixturing and support structure make it possible

to construct intricate geometric surfaces. The free-form technologies that we have had practical

experience with are Fused Deposition Modeling (FDM), wax deposition, and 3D Printing, but the

geometric process planning techniques that we are focusing on tend to span all of the layered man-

ufacturing processes. For layered manufacturing, a first requirement for the shape description is

to have a clean, closed boundary representation of the model. Process planning then involves slic-

ing the model with parallel planes perpendicular to the build axis, and performing 2D offsets and

Boolean combinations among these slice planes. Knowledge of the differential geometry of the sur-

face can be used to optimize the process planning, for instance tessellating more finely in areas of

higher curvature to reduce discretization error. We will review concepts of the differential geometry

of parametric surfaces in Chapter 2.

Numerically-controlled milling is a subtractive manufacturing method where the negative

volume is removed from a piece of stock material, leaving behind the desired part. For round free-

form parts, there are many difficulties with fixturing the work piece securely enough to resist the

forces and torques of the cutting head without interfering with the cutting plan. While it is very

difficult to clamp down a part composed of all free-form surfaces, techniques such as reference free

part encapsulation (RFPE) [24] and five axis milling do allow for generating interesting surfaces.

Process planning for N.C. milling also is much more difficult and involved that for layered manu-

facturing, but many of the same queries to the surface representation will be required. For example,

the principle curvatures at a point on the surface dictate the maximum radius cutting tool that can

be used for stock removal there and specify the tool path spacing needed to achieve a bound on

scallop height. The scallop height is the height of excess material remaining between two parallel

tool passes of a ball end mill.

With these downstream constraints of the manufacturing processes in mind, we would

like to give the designer a part specification tool that describes shapes in such a way that the part
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can be manufactured, while still giving the designer the freedom to explore interesting geometries.

Subdivision surfaces are a very expressive and intuitive parametric boundary representation. A

designer can guarantee that the limit surface is watertight simply by defining a closed polyhedral

control mesh. We will discuss properties and some advancements in the field of subdivision surfaces

that make them an ideal surface description for the “design for manufacturing” problem.

1.3 Manifold Surfaces

We would like to describe watertight, closed 2D manifold surfaces. Non-uniform ratio-

nal B-splines (NURBS) have been the computer-aided design (CAD) industry standard for many

years. The difficulty with NURBS is that they are patch based. A NURBS patch is specified by a

rectilinear array of user specified control vertices weighted by tensor product basis function humps.

To maintain the guaranteed continuity given by the basis functions for a NURBS surface of order

k, k − 1 of the parametric lines of control vertices must be shared from one patch to the next in

both parametric directions. The result is that the valence of the vertices in the defining control mesh

must all be valence n = 4. The topology of closed surfaces that meet this requirement is limited to

the family of tori, which is not very interesting. To define more general surfaces of arbitrary mesh

connectivity topology with NURBS, it is necessary to knit together multiple patches that must meet

at an extraordinary vertex of valence n 6= 4. In this case, the control structure is not a 2D manifold

mesh. At an extraordinary vertex, there are a multitude of control points, but they are not all true

degrees of freedom. To achieve even the minimum C 0 positional continuity, many of these control

points must be constrained to be functions of other control points. Achieving higher degrees of con-

tinuity, such as tangent plane continuity and curvature continuity, requires even more constraints on

the control points. From a designer’s point of view, it is preferable for all control vertices to be true

degrees of freedom while still guaranteeing a given degree of continuity.

Subdivision surfaces [5, 15] solve this user interface problem. Subdivision surfaces are

generalizations of uniform box spline schemes, e.g. B-splines, to meshes of arbitrary topology.

Chapter 3 is an introduction to subdivision surfaces and the analysis of their continuity behavior.

Box splines have the property that the same limit surface can be represented by a finer set of con-

trol vertices using the technique of knot insertion. A uniform subdivision scheme of a box spline

performs a constant number of knot insertions per knot interval, usually one at the midpoint. The

process of uniform knot insertion over the entire control structure defines a topological split of the

control mesh, followed by a set of averaging rules to generate the control vertex positions in the
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finer mesh, which are weighted by more local basis functions. Subdivision surface schemes such

as the ones defined by Loop [15] and Catmull-Clark [5] generalize these averaging rules at vertices

with extraordinary valences, while maintaining a certain degree of continuity. All of the control

vertices of a subdivision surface are true, user-defined degrees of freedom, and any manipulation of

their positions still maintains a closed 2-manifold shape with a certain level of parametric continu-

ity. Conceptually after an infinite number of refinement steps, the control structure approaches the

smooth limit surface, which is thus a closed 2-manifold surface.

Subdivision surfaces are ideal for creating organic looking smooth geometries, but it is

often necessary or desirable for the designer to intentionally break this smoothness by adding sharp

features. The control mesh can be tagged to specify that portions of the mesh be refined by different

rules that will create sharp feature curves and points [10, 6, 4]. The types of extraordinary vertices

present in the mesh are: smooth, spikes, darts, creases, and corners (Figure 1.1). While the surface

topology at a smooth interior point is a full disc, the local surface topology of a point on one these

sharp boundary features is a half disc.

(a) Smooth (b) Dart (c) Crease

(d) Spike (e) Corner (f) Corner

Figure 1.1: Examples of the five different extraordinary vertex types for piecewise smooth Catmull-
Clark surfaces. Black thick lines and squares denote sharp edges and vertices. Light thin lines and
circles represent smooth edges and vertices.

A dart vertex (Figure 1.1(b)) has one sharp edge incident on it, but it is still averaged by
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the smooth Catmull-Clark vertex rule, forming a transition from the feature curve to the smooth

surface. A crease vertex (Figure 1.1(c)) has two sharp edges incident on it, and it is smoothed by the

B-spline subdivision curve rule. A spike vertex (Figure 1.1(d)) is tagged not to move, while the rest

of the surface around it follows the standard Catmull-Clark rules, leading to geometry resembling

the tip of a cone. A corner vertex is defined to be a vertex with 3 or more sharp edges incident on it

(Figure 1.1(e)), or a vertex with 1 or more sharp edges where the vertex is also tagged to not move

(Figure 1.1(f)). With this expanded set of tagging rules, it possible with one surface representation

to describe shapes that range from completely smooth free-form shapes to faceted polyhedral shapes

using the same closed control mesh.

1.4 Continuity Requirements

To know and control the degree of continuity of the surface is important for many reasons.

From the design point of view, the need for smoothness could be for purely aesthetic reasons or

functional reasons like reducing air resistance for car bodies. For manufacturing, properties of the

surface such as the position, tangent plane, and principle curvatures at a parametric location may

be used to generate and optimize process plans. The position is used to guide the tool that either

adds or removes material to generate the surface. In the case of milling, the tangent plane is used

to orient the tool head to optimally remove material and avoid gouging. Curvature, along with a

global distance function over space, define the local feature size of a surface. This local feature

size defines the largest ball end mill that can be used to carve out the surface. The curvature also

specifies the density of tool paths necessary to achieve scalloping below a tolerance for a given

size mill. For layered manufacturing methods, the curvature information of the surface can be used

to adaptively tessellate the surface to allot more triangles to areas of the surface that require it.

Adaptive tessellation reduces the amount of data necessary to be transferred to the manufacturer as

well as reducing the amount of computing time needed to generate the low level process plans.

The above requirements strongly favor a surface description for which it is fast and easy

to evaluate the position, tangent plane, and principle curvatures at arbitrary parametric locations.

It is then necessary to calculate up to the second derivative of the surface with respect to the two

parameter directions. The subdivision schemes discussed in this thesis will be C 2 continuous except

at isolated extraordinary vertices, where they will be C 1 continuous. Until recently, it was unknown

how to do exact evaluation of subdivision surfaces at arbitrary locations, but recent results have

shown how to do evaluation of smooth Catmull-Clark [29] and smooth Loop [27] surfaces using
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the eigen-decomposition of the subdivision matrix. In this thesis, we introduce a new technique,

using the Jordan decomposition of the possibly defective subdivision, matrices for the evaluation of

piecewise smooth Loop and Catmull-Clark subdivision with sharp tagging rules [10, 6], which are

the RenderMan standard.

Chapter 4 shows how the 2D subdivision averaging rules can be viewed as a difference

equation over a 1D signal, and how to use this notion to derive analytic forms for the eigenvalues

and eigenvectors of the subdivision matrix. Chapter 5 describes how to transform the circulant

and Toeplitz shaped subdivision matrices to block diagonal form, which is an alternate way of

understanding the eigen-decomposition nature of these matrices. Chapter 6 describes in general the

Jordan decomposition based exact evaluation method for subdivision surfaces. Chapters 7 and 8 fill

in the details for Loop and Catmull-Clark subdivision respectively. Chapter 9 provides a description

of our half-edge structure used to represent the subdivision mesh.

1.5 Robustness of Geometric Algorithms

We want to make the physical generation of 3D geometric models as easy and robust as

printing 2D postscript documents. This requires a number of geometric process planning algorithms.

Ideally, we would like these algorithms to execute and complete without human intervention. One

of the biggest problems with geometric algorithms is numeric robustness. Subdivision surfaces

are good because the closed manifold structure stays throughout the tessellation process. Further

more, the local linear averaging and limit position masks are less prone to numerical round off

errors than evaluating high degree polynomials. In terms of robustness of algorithms, errors in the

numeric calculation of subdivision vertex positions will not prevent the tessellation algorithm from

completing because the algorithm does not make logical decisions based on these values.

However, many of the other algorithms involved in process planning do make logical

decisions based on numeric calculations. One such algorithm is the creation of clean offset curves

or surfaces. Offset curves are used in layered manufacturing and milling to define contour-parallel

tool paths for tracing out volumes to be filled or removed. In our paper about thin-walled layered

manufacturing [19], we show how the generation of a 3D offset surface can be used to optimize

the build time and material usage in FDM. This algorithm makes a thin stiff wall near the surface

and uses a looser honeycomb weave for the interior. This greatly reduces the amount of material

used to build the model, which in turn greatly reduces the building time on the FDM machine. This

is because the material is extruded at a constant feed rate, so the build time is proportional to the
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volume of material used. The generation of a clean 3D offset surface is a very hard problem, but

fortunately for layered manufacturing the output tool paths are 2D slice planes so we were able

to reduce our problem to 2D curve offsetting. We slice the original polyhedral model into planes,

which each contain a set of polygonal contours. For each plane, we generate the 2D offset curves of

this set of polygonal contours, using a robust algorithm that I implemented. Boolean combinations

of the slice contours and 2D offset curves from a number of slice layers n proportional to the

desired wall thickness are then combined to create slice contours that correspond to an inwardly

conservative 2 1
2D approximation to the true 3D offset surface.

I will only focus on my contribution to the thin-walled algorithm which is the robust

generation of 2D offset curves from sets of polygonal contours. The naive approach to creating

offset curves is to take each input edge segment and vertex and generate their offset line segment or

circular arc, respectively, creating one parametrically continuous offset curve. Unfortunately, some

of these offset segments will intersect each other creating loops in the offset curve. A de-looping

algorithm must then be run to detect self intersections, split the curve into separate loops at the

intersection points, and then at the end decide which loops are spurious and should be deleted. The

difficulty here is detecting the global interaction of when one local offset front intersects another

front from a topologically distant input source. At this point the offset curve must change topology.

Making logical decisions based on generated geometry, like the local fronts, is dangerous because

the exact values of those entities may not be representable on a computer in a finite number of bits.

Then all decisions made using these inputs will have some degree of uncertainty to them. Even if we

are unconcerned with slight positional and topological inaccuracies in our output as long as they are

self consistent, it still may not be possible to implement an algorithm that always runs to completion

under these assumptions. Geometric algorithms are usually designed using the assumption of the

real Euclidean plane, but computers can only represent entities that lie on a discrete grid. While

the input vertices may be on this discrete grid, geometry generated by offsetting them will pass

through a continuum of points on the real plane. Hence points generated by intersecting these offset

curves may not be representable. The real problem arises if the algorithm makes decisions based on

multiple geometric relationships that are consistent in the Euclidean plane but are not necessarily

consistent given floating point computation. If the algorithm depends on the consistency of these

relationships, then it is liable to either crash or produce garbage output.

An alternate approach for constructing the offset curves is to first generate a generalized

Voronoi diagram where the input sites are the vertices and edge segments. The Voronoi diagram is

a topological mesh that encodes the global distance function. The generated Voronoi vertices are
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equidistant from three input sites. The Voronoi diagram when viewed in 3D, with the Z-dimension

being the distance from the input contours, looks like a mountain. Offsetting the input contours

is equivalent to creating a level-set slice of the Voronoi mountain which can be done as robustly

as slicing the original polyhedral input. The difficult part is generating the Voronoi diagram. The

algorithm to generate the Voronoi diagram depends on two geometric predicates. A predicate is a

decision function that returns a value that is either positive, negative, or zero in the case of a tie.

The first predicate describes whether three ordered input sites inscribe a counterclockwise oriented

circle. The second predicate checks whether a fourth site penetrates the circle inscribed within

three other input sites. The algorithm depends on the consistency of the logical answers returned

by these two separate predicates. If we represented these circles as a generated center point and

radius, then we would have the same numeric difficulties found in the intersection based approach.

Instead, we always return to the original input site data when evaluating a predicate. We are also

careful to always pass the vertices in the same order for both predicates. For efficiency, an interval

arithmetic filter is used try to get a quick answer using floating point arithmetic. If the interval

of uncertainty does not include zero then the result can be trusted. Otherwise, a slow, infinite

precision calculation is used. The package that we used for these extended precision calculations is

mpfun [3]. Chapter 10 describes the numerically robust generalized Voronoi diagram of polygonal

contours used to generate 2D offset curves.
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Chapter 2

Differential Geometry of Surfaces

2.1 Introduction

Differential geometry of a 2-manifold [11] or surface embedded in 3D is the study of the

intrinsic properties of the surface as well as the effects of a given parameterization on the surface.

For the discussion below, we will consider the local behavior of a surface S at a single point p

with a given local parameterization (u, v), see Figure 2.1. We would like to calculate the prin-

ciple curvature values (κ1, κ2), the maximum and minimum curvature values at p, as well as the

local orthogonal arc length parameterization which is aligned with the directions of maximum and

minimum curvature {E1, E2}.

vS

Su

N

T

Figure 2.1: Tangent plane of S
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2.2 The First Fundamental Form

With the given parameterization, we can compute a pair of tangent vectors
[

Su Sv

]

=
[

∂S
∂u

∂S
∂v

]

assuming the u and v directions are distinct. These two vectors locally parameterize

the tangent plane to S at p. An arbitrary tangent vector T can be constructed as a linear combination

of
[

Su Sv

]

scaled by infinitesimal coefficients U =
[

∂u ∂v

]t

.

T = ∂uSu + ∂vSv =
[

Su Sv

]




∂u

∂v



 (2.1)

Consider rotating the direction of the tangent T around p by setting
[

∂u ∂v

]

=
[

cos θ sin θ

]

. In general, the magnitude and direction of T will vary based on the skew and

scale of the basis vectors
[

Su Sv

]

, see Figure 2.3(a). The distortion of the local parameteriza-

tion is described by the metric tensor or the first fundamental form IS . This measures the length of

a tangent vector on a given parametric basis by examining the quantity T · T .

T · T = (Su · Su) ∂u2 + 2 (Su · Sv) ∂u∂v + (Sv · Sv) ∂v2 (2.2)

= E∂u2 + 2F∂u∂v + G∂v2 (2.3)

=
[

∂u ∂v

]




Su

Sv



 ·
[

Su Sv

]




∂u

∂v



 (2.4)

=
[

∂u ∂v

]




Su · Su Su · Sv

Su · Sv Sv · Sv








∂u

∂v



 (2.5)

=
[

∂u ∂v

]




E F

F G








∂u

∂v



 (2.6)

= U tISU (2.7)

Equation 2.7 defines IS .
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IS = gij =




Su

Sv



 ·
[

Su Sv

]

(2.8)

=




Su · Su Su · Sv

Su · Sv Sv · Sv



 (2.9)

=




E F

F G



 (2.10)

If an orthonormal arc length parameterization (s, t) is chosen then there will be no local

metric distortion and IS will reduce to the identity matrix.

The determinant of IS is proportional the local differential area square because it is equal

to the square of the area of the parallelogram bordered by {Su, Sv}.

Det (IS) = (Su · Su) (Sv · Sv)− (Su · Sv)
2 = ‖Su × Sv‖2 (2.11)

2.3 The Second Fundamental Form

The unit normal N of a surface S at p is the vector perpendicular to S, i.e. the tangent

plane of S, at p. N can be calculated given a general nondegenerate parametrization (u, v).

N =
Su × Sv

‖Su × Sv‖
(2.12)

The curvature of a surface S at a point p is defined by the rate that N rotates in re-

sponse to a unit tangential displacement as in Figure 2.2. A normal section curve at p is constructed

by intersecting S with a plane normal to it, i.e a plane that contains N and a tangent direction

T . The curvature of this curve is the curvature of S in the direction T . The curvature κ of a

curve is the reciprocal of the radius ρ of the best fitting osculating circle, i.e. κ = 1
ρ

. The direc-

tional derivative NT of N in the direction T is a linear combination of the partial derivative vectors
[

Nu Nv

]

=
[

∂N
∂u

∂N
∂v

]

and is parallel to the tangent plane. By differentiating Equation 2.12

we obtain Equations [2.13,2.14].
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Nu =
(Suu × Sv) + (Su × Svu)

‖Su × Sv‖
+ (Su × Sv)

∂‖Su × Sv‖−1

∂u
(2.13)

Nv =
(Suv × Sv) + (Su × Svv)

‖Su × Sv‖
+ (Su × Sv)

∂‖Su × Sv‖−1

∂u
(2.14)

NT = ∂uNu + ∂vNv =
[

Nu Nv

]




∂u

∂v



 (2.15)

T

N
TN

uS

Sv

Figure 2.2: Normal section of S

As with the tangent vector T , NT is subject to scaling by the metric of the parameter

space. In an arc length parameter direction s, −Ss · Ns is the curvature of the normal section.

Given a general parameterization (u, v), we can compute −T ·NT . This quantity defines the second

fundamental form IIS which describes curvature information distorted by the local metric.

−T ·NT = − (Su ·Nu) ∂u2 − (Su ·Nv + Sv ·Nu) ∂u∂v

− (Sv ·Nv) ∂v2 (2.16)

=
[

∂u ∂v

]




−Su

−Sv



 ·
[

Nu Nv

]




∂u

∂v



 (2.17)

=
[

∂u ∂v

]




−Su ·Nu −Su ·Nv

−Sv ·Nu −Sv ·Nv








∂u

∂v



 (2.18)

= U tIISU (2.19)
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Equation 2.19 defines IIS . IIS can be simplified to a set of quanties which are easier to

compute by substituting the expressions in Equations [2.13,2.14] for Nu and Nv respectively. Two

of the terms of the entries of the matrix in Equation 2.22 derived from Equations [2.13,2.14] vanish

because the dot product of orthogonal vectors is zero. Further simplification using properties of

the box product of vectors yields Equation 2.23. Equation 2.24 is derived by subsituting N from

Equation 2.12 and shows that IIS can be computed simply by the dot product of the second partial

derivatives of S with N . We assume that Suv = Svu for all surfaces S that we will consider. Hence

Equation 2.24 becomes Equation 2.25, so IIS is a symmetric matrix.

IIS = hij =




Su

Sv



 ·
[

−Nu −Nv

]

(2.20)

=




−Su ·Nu −Su ·Nv

−Sv ·Nu −Sv ·Nv



 (2.21)

=




−Su·(Suu×Sv)

‖Su×Sv‖ −Su·(Suv×Sv)
‖Su×Sv‖

−Sv·(Su×Svu)
‖Su×Sv‖ −Sv ·(Su×Svv)

‖Su×Sv‖



 (2.22)

=





Suu·(Su×Sv)
‖Su×Sv‖

Suv ·(Su×Sv)
‖Su×Sv‖

Svu·(Su×Sv)
‖Su×Sv‖

Svv ·(Su×Sv)
‖Su×Sv‖



 (2.23)

=




Suu ·N Suv ·N
Svu ·N Svv ·N



 (2.24)

=




Suu ·N Suv ·N
Suv ·N Svv ·N



 (2.25)

=




L M

M N



 (2.26)

Equations [2.25,2.26] can be substituted for IIS to yield alternate formulas for −T ·NT .
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−T ·NT = (Suu ·N) ∂u2 + 2 (Suv ·N) ∂u∂v + (Svv ·N) ∂v2 (2.27)

= L∂u2 + 2M∂u∂v + N∂v2 (2.28)

=
[

∂u ∂v

]




Suu ·N Suv ·N
Svu ·N Svv ·N








∂u

∂v



 (2.29)

=
[

∂u ∂v

]




L M

M N








∂u

∂v



 (2.30)

IIS contains information about the curvature of S, but it will be distorted by the metric if

the given parameterization is not an orthonormal arc length parameterization. It is still necessary to

counteract this distortion in order to compute the curvature of the S.

2.4 Coordinate Transformations

Our purpose in studying differential geometry and the fundamental forms has been to

compute the principle curvature values (κ1, κ2) and directions (Sk1, Sk2) of a parametric surface

S at a point p. Thus far we have derived IIS which contains curvature information, but it can be

distorted by the metric of the parameterization. IS describes this metric information. We must

combine IIS and IS to find the arc length curvature values.

The given parameterization (u, v) defines a set of basis tangent vectors
[

Su Sv

]

. We

can construct an orthonormal basis
[

Ss St

]

due to an arc length parameterization (s, t) where

Ss and Su are aligned, see Figure 2.3(a). A point T can be expressed in either coordinate system,

see Figure 2.3(b).

T =
[

∂u ∂v

]




Su

Sv



 =
[

∂s ∂t

]




Ss

St



 (2.31)

The coordinates
[

∂s ∂t

]

measure the length of T as opposed to the coordinates
[

∂u ∂v

]

.

T · T = ∂s2 + ∂t2 6= ∂u2 + ∂v2 (2.32)

We would like to work in the
[

Ss St

]

, so we must find the transformations to and

from
[

Su Sv

]

. The quantities a, b, and θ in Figure 2.3(a) are defined by
[

Su Sv

]

.
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b

a
θ

Sv

uS

tS

sS

(a) Constructing an orthonormal basis
on top of the given parametric basis

S

S

θ

sSu
a

b

S v

v

t

Tus

t

(b) A point T in (u, v) and (s, t) coor-
dinates

Figure 2.3: Effects of the metric




Su

Sv



 =




a 0

b cos θ b sin θ








Ss

St



 (2.33)

= A




Ss

St



 (2.34)




Ss

St



 =
1

ab sin θ




b sin θ 0

−b cos θ a








Su

Sv



 (2.35)

= A−1




Su

Sv



 (2.36)

The first fundamental form IS can be represented by these vector transformations.
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IS =




Su

Sv



 ·
[

Su Sv

]

(2.37)

= A




Ss

St



 ·
[

Ss St

]

At (2.38)

= A




1 0

0 1



At (2.39)

= AAt (2.40)

=




a2 ab cos θ

ab cos θ b2



 (2.41)

We can also derive transformations between coordinates of the different sets of basis vec-

tors by substituting Equations [2.34,2.36] respectively into Equation 2.31.

[

∂s ∂t

]

=
[

∂u ∂v

]

A (2.42)
[

∂u ∂v

]

=
[

∂s ∂t

]

A−1 (2.43)

To verify that this makes sense, consider T · T again and transform the coordinates using

Equations [2.42,2.43].

T · T =
[

∂u ∂v

]




Su

Sv



 ·
[

Su Sv

]




∂u

∂v



 (2.44)

=
[

∂u ∂v

]

IS




∂u

∂v



 (2.45)

=
[

∂s ∂t

]

A−1IS

(
A−1

)t




∂s

∂t



 (2.46)

=
[

∂s ∂t

]

A−1
(
AAt

) (
A−1

)t




∂s

∂t



 (2.47)

=
[

∂s ∂t

]




∂s

∂t



 (2.48)

= ∂s2 + ∂t2 (2.49)
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It is now possible to transform our given parameters to coordinates on an orthonormal

basis where we can measure lengths. We can also transform coordinates on the orthonormal basis

back to coordinates on our given parameterization.

2.5 Curvature

The curvature at a point p on the surface S in any tangential direction T is −T ·NT .

−T ·NT =
[

∂u ∂v

]




Su

Sv



 ·
[

−Nu −Nv

]




∂u

∂v



 (2.50)

=
[

∂u ∂v

]

IIS




∂u

∂v



 (2.51)

This function is parameterized by the given parameterization. We would like to study

the function that sweeps a unit length tangent around p, so it is more convenient to use arc length

coordinates. We must transform coordinates so that setting the arc length coordinates
[

∂s ∂t

]

=
[

cos φ sinφ

]

sweeps out the curvature values.

−T ·NT =
[

∂s ∂t

]

A−1IIS

(
A−1

)t




∂s

∂t



 (2.52)

=
[

∂s ∂t

]

II
Ŝ




∂s

∂t



 (2.53)

φ

b

a

θ

E2

E1

Sv

uS

tS

sS

Figure 2.4: The relationship between the principle parameter directions (E1, E2), the given general
parameter directions (Su, Sv), and the constructed orthonormal basis (Ss, St)in the tangent plane
to S at p
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The curvature function will have maximum and minimum values that occur at directions

that are orthogonal to each other, {E1, E2} in Figure 2.4. The eigenvalues of II
Ŝ

are the principle

curvature values (κ1, κ2). The eigenvectors of II
Ŝ

are the coordinates of the principle curvature

directions in the arc length coordinates. These coordinates will not be directly useful because we

only know the
[

Su Sv

]

vectors, so we would actually prefer the eigenvectors in coordinates on

this basis.

II
Ŝ

= A−1IIS

(
A−1

)t
(2.54)

=
1

a2b2 sin2 θ



b sin θ 0

−b cos θ a








L M

M N








b sin θ −b cos θ

0 a



 (2.55)

=
1

a2b2 sin2 θ
·




b2 sin2 θ b sin θ (−b cos θL + aM)

b sin θ (−b cos θL + aM) b2 cos2 θL− 2ab cos θM + a2N



 (2.56)

To solve for the eigenvalues, we must form the characteristic equation, Equation 2.58 (see

Appendix B.2.2). The principle curvature values are the eigenvalues.

0 =
(

a2b2 − (ab cos θ)2
)

λ2 −
(
b2L− 2ab cos θM + a2N

)
λ

+
(
LN −M2

)
(2.57)

=
(
EG− F 2

)
λ2 − (GL− 2FM + EN) λ +

(
LN −M2

)
(2.58)

2.6 The Weingarten Operator

An alternate way of computing the principle curvature values and directions is by using the

Weingarten Operator W , also known as the shape operator. W is the inverse of the first fundamental

form multiplied by the second fundamental form.

W = I−1
S IIS (2.59)

I−1
S is the inverse of the first fundamental form.
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I−1
S =

(
AAt

)−1
=
(
A−1

)t
A−1 (2.60)

=
1

EG− F 2




G −F

−F E



 (2.61)

We will prove that W has the same eigenvalues as II
Ŝ

, i.e. the same principle curvature

values. We will also prove that the eigenvectors of W are transformed versions of the eigenvectors

of II
Ŝ

to coordinates on the given basis
[

Su Su

]

.

II
Ŝ

= V ΛV −1 (2.62)

IIS = AII
Ŝ
At (2.63)

W = I−1
S IIS (2.64)

=
(
A−1

)t
A−1IIS (2.65)

=
(
A−1

)t
A−1AII

Ŝ
At (2.66)

=
(
A−1

)t
II

Ŝ
At (2.67)

W =
(
A−1

)t
V ΛV −1At (2.68)

Equation 2.68 is the eigendecomposition of W . The diagonal matrix Λ has the eigenvalues

of W on its diagonal. It is the same eigenvalue matrix as for II
Ŝ

, so the eigenvalues of W are

the principle curvature values.
(
A−1

)t
V =

(
V −1At

)−1
, so the columns of

(
A−1

)t
V are the

eigenvectors of W . This is a transformed version of V , the eigenvectors of II
Ŝ

over the arc length

basis. The transformation A−1 transforms the arc length coordinates to coordinates over the given

basis, see Equation 2.43.

V =




s1 s2

t1 t2



 (2.69)

(
A−1

)t
V =

(
A−1

)t




s1 s2

t1 t2



 (2.70)

=




u1 u2

v1 v2



 (2.71)
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To solve for the principle curvature values and directions using the given parameterization,

we substitute Equations [2.26,2.61] into Equation 2.59 and simplify to derive W written as the

coefficients of the first and second fundamental forms.

W = I−1
S IIS (2.72)

=
1

EG− F 2




G −F

−F E








L M

M N



 (2.73)

=
1

EG− F 2




GL− FM GM − FN

EM − FL EN − FM



 (2.74)

Then we use the representation of W in Equation 2.74 and compute the eigendecompo-

sition. The eigenvalues are the principle curvatures, and the eigenvectors are the coordinate coeffi-

cients over the given parametric basis vectors.

κ1,2 = λ1,2 =
GL− 2FM + EN

2 (EG− F 2)

∓

√

(GL− 2FM + EN)2 − 4 (EG− F 2) (LN −M 2)

2 (EG − F 2)
(2.75)

κM =
κ1 + κ2

2
=

GL− 2FM + EN

2 (EG− F 2)
=

Trace (W )

2
(2.76)

κG = κ1κ2 =
LN −M2

EG− F 2
= Det (W ) (2.77)

2.7 Minimizing Total Bending Energy

A minimal surface is a surface that minimizes the integral of an area weighted energy

functional over the surface. A physical example of a minimal surface is a soap bubble film spanning

a wire boundary loop which minimizes surface area, Equation 2.78.

Earea =

∫

S

∂A (2.78)

For the soap film, the pressure on either side of the surface must be equal for it to be at

equilibrium, so the mean curvature κM = 0 as every point on the surface is a saddle point with equal

and opposite min and max curvatures, κ1 = −κ2. We will show that a soap film also minimizes total
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bending energy. Total bending energy is defined as the area weighted integral of the magnitudes of

the minimum and maximum curvatures, Equation 2.79.

Ebend =

∫

S

κ2
1 + κ2

2∂A (2.79)

The total curvature quantity κ2
1 + κ2

2 can be computed from the mean κM and Gaussian

κG curvatures.

κ2
1 + κ2

2 =
(
κ2

1 + 2κ1κ2 + κ2
2

)
− 2κ1κ2 (2.80)

= 4

(
κ2

1 + 2κ1κ2 + κ2
2

4

)

− 2κ1κ2 (2.81)

= 4

(
κ1 + κ2

2

)2

− 2κ1κ2 (2.82)

= 4κ2
M − 2κG (2.83)

We will show that for S with a fixed topology, minimizing the bending energy is equiva-

lent to minimizing the mean curvature energy.

Ebend =

∫

S

κ2
1 + κ2

2∂A (2.84)

=

∫

S

4κ2
M − 2κG∂A (2.85)

= 4

∫

S

κ2
M∂A− 2

∫

S

κG∂A (2.86)

= 4Emean − 2EGauss (2.87)

Equation 2.87 shows that Ebend is proportional to the sum of Emean and EGauss, so it is

not at first obvious that minimizing Ebend is the same as minimizing Emean. However, the Gauss-

Bonnet theorem states that EGauss for a given topology is a constant reguardless of the geometric

embedding of the surface, Section 2.7.1. Hence the change in Emean is proportional to the change

in Ebend, so minimizing Emean is equivalent to minimizing Ebend. Recalling the soap film example

where the mean curvature κM = 0 everywhere, this surface then minimizes bending energy.

2.7.1 The Gauss-Bonnet Theorem

The Gauss-Bonnet theorem states that the area weighted integral of Gaussian curvature

EGauss is proportional to the Euler characteristic χ (S) of a manifold surface S. χ (S) is a topolog-
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ical invariant of S, so EGauss is independent of the particular geometric embedding of the topology

S. χ (S) is a simple function of the number of vertices V , edges E, and faces F for any valid

tessellation of the manifold S, Equation 2.88.

χ (S) = V −E + F (2.88)

More simply, χ (S) is a function of the genus G of the manifold. The formulas for χ (S)

of an orientable surface (a surface that can be embedded in R3 without self-intersections) Equa-

tion 2.89 and a nonorientable surface Equation 2.90 are slightly different, but both depend on the

genus only.

χorientable (S) = 2− 2G (2.89)

χnonorientable (S) = 2−G (2.90)

The Gauss-Bonnet theorem states that EGauss is proportional χ (S), Equation 2.91, so all

surfaces of a given genus G have the same EGauss.

EGauss =

∫

S

κG∂A = 2πχ (S) (2.91)

(a) Genus 0 (b) Genus 1 (c) Genus 2

Figure 2.5: Orientable manifolds of different genus

EGauss is the sum of the angle deficit at every point on the surface. This is easy to

understand in the discrete case. Consider orientable polyhedral objects made up of squares only,

Figure 2.5. G = 0 is a cube which has 8 valence n = 3 vertices on the corners, Figure 2.5(a).

G = 1 is a torus which also has 8 valence n = 3 vertices on the corners plus an additional 8 valence
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n = 5 saddle vertices around the hole, Figure 2.5(b). All other vertices in the torus are valence

n = 4. With every additional genus handle, 8 new valence n = 5 vertices are added, Figure 2.5(c).

(a) Valence n = 3 (b) Valence n = 5

Figure 2.6: Angle deficit created by flattening the local disc around a vertex. For n < 4 there is a
deficit, and for n > 4 there is a surplus so the squares overlap.

The angle deficit of a vertex is defined by its valence n, i.e. the number of squares it is

incident on, Figure 2.6. The angle at the corner of a square is π
2 . The angle deficit is 2π − nπ

2 . For

n = 3 the angle deficit is π
2 , Figure 2.6(a). For n = 4 the angle deficit is 0. For n = 5 the angle

deficit is −π
2 , Figure 2.6(b). Equation 2.95 shows that the total angle deficit for the different genus

objects in Figure 2.5 follow the Gauss-Bonnet theorem.

EGauss = 8Deficit (3) + 8GDeficit (5) (2.92)

= 8
π

2
− 8G

π

2
(2.93)

= 2π (2− 2G) (2.94)

= 2πχorientable (S) (2.95)

2.8 Conclusion

We have shown how to calculate the position, tangent vectors and normal, and principle

curvature directions and values for a parametric surface with C 2 continuity. In Chapter 3, we show

that subdivision surfaces are C2 continuous except at a discrete set of extraordinary points. Chap-

ters 4-8 derive the Jordan decompositions of the subdivision matrices for piecewise smooth Loop

and Catmull-Clark subdivision surfaces, and present a new exact evaluation algorithm for arbitrary

parameter locations over these general 2-manifold surfaces. Combining the results from this chapter

with the evaluation algorithm, we have a full parameterization of the subdivsion surface with full



24

differential information up to curvature.
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Chapter 3

Eigen-Analysis of Stationary

Subdivision Schemes

3.1 Introduction

A subdivision manifold (curve or surface) is a smooth limit manifold defined by repeated

averaging by a subdivision scheme over a control mesh of control vertices. Each step of subdivision

applies a topological split followed by a set of averaging rules that define the vertex positions in the

next generation. Most subdivision schemes are generalizations of box spline knot insertion schemes,

and so they share the continuity behavior of these parametric functions in their regular areas. A box

spline is constructed by convolving a box filter a specified number of times in a specified number

of parametric directions. A convolution is an integral function, so each convolution pass adds a

degree of differential continuity. For example, uniform bi-cubic B-splines are N3,3 box splines, so

they are constructed by convolving three times in both u and v parametric directions. The resulting

surface is C2 continuous in both parameters because the position, first, and second derivatives are

continuous.

We will show that for stationary subdivision schemes, we can analyze the continuity be-

havior of the scheme with only knowing the matrix of stationary averaging rules. A stationary

subdivision scheme, e.g. box splines, is where the subdivision mask matrix S of averaging rules is

constant at every generation of subdivision. S is applied to a local vector of control points P g at

a generation g to generate the next generation of control points P g+1 around a given control point

(Figure 3.1 and Equation 3.1). The local neighborhood P g at any generation g is then the intial
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neighborhood P 0 multiplied by g applications of S (Equation 3.2). The limit behavior of a station-

ary subdivision scheme can be analyzed by examining the structure of the eigen-decomposition of

S (Equation 3.3). For a review of eigen-decompositions see Appendix B.2.4.

P g+1 = SP g (3.1)

P g = SgP 0 (3.2)

S = V ΛV −1 (3.3)

Sg = V ΛgV −1 (3.4)

−2 p0
−1 p0

2p1p0
0

P

0

0

P1

P2

P 8

p1
1 p1

0p

0
1p−2

1p −1
1p 2

Figure 3.1: The local neighborhood of points P g in the subdivision mask S at different generations
{g : 0→∞} that converge to the limit position. The arrows show the finite difference between
points in the parameter direction u, and the limit of that difference is the first derivative.

3.2 Subdivision Limit Position

Each application of S shrinks the local neighborhood P until after an infinite number of

subdivisions, the limit surface is reached (Figure 3.1 and Equation 3.5). If the subdivision manifold

is C0 continuous then all the vertices in the local neighborhood vector P ∞ will shrink to the same

point.

P∞ = lim
g→∞

P g = S∞P 0 (3.5)

If each of the rows of S, i.e. the averaging rule for each vertex in the subdivision mask,

sum to one with the weights being positive or negative, then S will have one eigenvector consisting
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of all ones v0 =
[

1 1 ... 1
]t

and at least one eigenvalue equal to one λ0 = 1. Proof: Assume

v0 =
[

1 1 ... 1
]t

, then the result of multiplying Sv0 is a vector whose elements are each the

sum of the corresponding row of S which we defined to always be one. Hence, Sv0 = v0 and v0 is an

eigenvector of S. Furthermore, the scalar or eigenvalue λ0 must be one. Sv0 = λ0v0 = 1v0 = v0.

If 1 = λ0 > λi {i : 1, n} ≥ 0, then S is C0 continuous. Consider the eigen-decomposition

of S with v0 and λ0 substituted in (Equation 3.8).

S = V ΛV −1 (3.6)

=




v0 v1 ... vn

↓ ↓ ↓














λ0 0 ... 0

0 λ1 ...

... ...

0 ... λn



















v−1
0 →

v−1
1 →
...

v−1
n →










(3.7)

=










1 v1 ... vn

1 ↓ ↓
...

1



















1 0 ... 0

0 λ1 ...

... ...

0 ... λn



















v−1
0 →

v−1
1 →
...

v−1
n →










(3.8)

To find the limit neighborhood P∞, we must compute S∞ (Equation 3.5). Fortunately,

the eigen-decomposition of S reduces this to computing Λ∞ (Equation 3.9). Raising the diagonal

matrix Λ to a power is the same as raising its diagonal elements to that power, and since 1 >

λi {i : 1, n} ≥ 0 then λ∞
i = 0 (Equation 3.11). Mulitplying V Λ∞ maintains the first column of

V , v0 which is all ones, and the rest of the matrix becomes all zeroes (Equation 3.12). The final

multiplication copies the top row of V −1, v−1
0 , to all the other rows (Equation 3.13).
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S∞ =V Λ∞V −1 (3.9)

=










1 v1 ... vn

1 ↓ ↓
...

1



















1∞ 0 ... 0

0 λ∞
1 ...

... ...

0 ... λ∞
n



















v−1
0 →

v−1
1 →
...

v−1
n →










(3.10)

=










1 v1 ... vn

1 ↓ ↓
...

1



















1 0 ... 0

0 0 ...

... ...

0 ... 0



















v−1
0 →

v−1
1 →
...

v−1
n →










(3.11)

=










1 0 ... 0

1 0 ... 0

... ... ... ...

1 0 ... 0



















v−1
0 →

v−1
1 →
...

v−1
n →










(3.12)

=










v−1
0 →

v−1
0 →
...

v−1
0 →










(3.13)

Because all of the rows of S∞ are identical, all of the vertices of the limit local neigh-

borhood P∞ converge to the same position and S is thus C0 continuous (Equation 3.14). The limit

position weight mask is the row of inverse eigenvector matrix V −1 associated with the eigenvalue

λ0 = 1.

P∞ =










v−1
0 →

v−1
0 →
...

v−1
0 →










P 0 (3.14)
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f(u)
f(u+h)

Figure 3.2: The derivative of a function f (u) is limh→0
f(u+h)−f(u)

h

3.3 Subdivision Derivatives

It is also possible to compute derivatives of subdivision manifolds directly from the sub-

division mask S. Recall the definition of the derivative of a function f (u) in Equation 3.15.

∂f (u)

∂u
= lim

h→0

f (u + h)− f (u)

h
(3.15)

Figure 3.2 shows that as h→ 0 the point f (u + h) approaches f (u) within the manifold until it is

computing the difference vector of two points that coincide. Analogously in Figure 3.1, two control

points p
g
i and p

g
i+1 along a parameter direction u in the local neighborhood approach each other and

the limit position as g → ∞. Hence the limit of the finite difference between these control points

normalized by the parametric distance in u is the derivative of the subdivision manifold with respect

to u, but the quantity in Equation 3.16 will always be zero. Only the components scaled by the

eigenvalue λ0 = 1 will exist as g → ∞, and that value is the limit position for all points p∞
i so it

will cancel due to the subtraction.

lim
g→∞

p
g
i+1 − p

g
i

‖p0
i+1 − p0

i ‖
(3.16)

If we scale this quantity by 1
λ

g
1

for the next highest eigenvalue λ1 then the components scaled by λ1

will not vanish, components scaled by λi < λ1 will vanish, and componets scaled by λ0 = 1 that

would diverge will cancel due to the subtraction. Equation 3.17 defines the first derivative of the

subdivision manifold for a parameter direction u.

∂S

∂u
= lim

g→∞
1

λ
g
1

p
g
i+1 − p

g
i

‖p0
i+1 − p0

i ‖
(3.17)

The limit of the finite difference between different pairs of points along the same parameter direction

u will be the same if the subdivision manifold is C 1 continuous. By similar reasoning, a second

finite difference between these quantities scaled by 1
λ

g
2

defines the second derivative with respect to

u (Equation 3.18). Further derivatives are calculated by performing finite differences of the previous
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derivate and scaling by the appropriate eigenvalue (Equation 3.19).

∂2S

∂u2
= lim

g→∞
1

λ
g
2

(
p

g
i+1 − p

g
i

)
−
(
p

g
i − p

g
i−1

)

‖p0
i+1 − p0

i ‖2
(3.18)

∂3S

∂u3
= lim

g→∞
1

λ
g
3

(
p

g
i+2 − 2pg

i+1 + p
g
i

)
−
(
p

g
i+1 − 2pg

i + p
g
i−1

)

‖p0
i+1 − p0

i ‖3
(3.19)

3.4 Example: Uniform Cubic B-Spline Curves

_
,−3

b
b

−1_
b

−2 ,0

−1,0,1

,

−3,−2,−1 1,2,3

0,1,2−2,−1,0

, 1_,
b
2_

b
1_

,0,
b
1_−1

b
_

0,_ −2
b
_ −1

b
_ ,

b
,

b
3_

b
2_

Figure 3.3: Set of points P 0 in the subdivision mask S for a parameter step of 1
b

for a uniform cubic
B-spline, and the next generation P 1

As a concrete example, we will analyze the subdivision curve that is the same as a uniform

cubic B-spline curve. The techniques applied to curves or surfaces are analogous, but the examples

are much smaller and easier to understand for curves.

Consider the case of subdividing near a control vertex of a uniform cubic B-spline curve

in parameter steps of 1
b

for an integer b > 1. We will consider a subdivision mask S over a local

neighborhood of five vertices (Figure 3.3). S multiplies a vector of input blossom control vertices

P g at generation g and produces a vector of output blossom control vertices P g+1 at generation g+1.

Equations 3.21 and 3.22 show the blossoming knot labels for the control points for generations P g

and P g+1, respectively. These knot labels are used in Figure 3.3 to identify the blossom vertices.

P g+1 = SP g (3.20)

P g =
[

V−3,−2,−1 V−2,−1,0 V−1,0,1 V0,1,2 V1,2,3

]t

(3.21)

P g+1 =
[

V− 3

b
,− 2

b
,− 1

b
V− 2

b
,− 1

b
,0 V− 1

b
,0, 1

b
V0, 1

b
, 2
b

V 1

b
, 2
b
, 3
b

]t

(3.22)

The rows of S are the subdivision averaging rules for each of the control vertices. The

weights can be derived from the blossom averaging rules. Notice that there is a bilateral symmetry
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around V−1,0,1 in the parameter space, so we only need to derive the weights for V− 1

b
,0, 1

b
, V0, 1

b
, 2
b
,

and V 1

b
, 2
b
, 3
b
. Figure 3.4 shows the set of blossom points that must be calculated to derive the weights.

Equations 3.23-3.29 show the interpolation along the individual blossom number lines.

b
_2
b

,

,

1_

b
1_

,1

−3,−2,−1 1,2,3

0,1,2−2,−1,0

−1,0,1

,1,2_,0,
b
_−1

b
_

−1,0,
b
1_

,10,
b
1_

1

,
b
3_

b
2_

b

1
1_,0,

b
_2
b

Figure 3.4: Blossoming points used to derive the subdivisions rules for a parameter step of 1
b

for a
uniform cubic B-spline

V−1,0, 1
b

=
3b− (2b + 1)

3b
V−2,−1,0 +

2b + 1

3b
V−1,0,1 (3.23)

V0, 1
b
,1 =

3b− (b + 1)

3b
V−1,0,1 +

b + 1

3b
V0,1,2 (3.24)

V 1

b
,1,2 =

3b− 1

3b
V0,1,2 +

1

3b
V1,2,3 (3.25)

V− 1

b
0 1

b
=

2b− (b− 1)

2b
V−1,0, 1

b
+

b− 1

2b
V0, 1

b
,1 (3.26)

V0, 1
b
, 2
b

=
2b− (b + 2)

2b
V−1,0, 1

b
+

b + 2

2b
V0, 1

b
,1 (3.27)

V 1

b
, 2
b
,1 =

2b− 2

2b
V0, 1

b
,1 +

2

2b
V 1

b
,1,2 (3.28)

V 1

b
, 2
b
, 3
b

=
b− 3

b
V0, 1

b
, 2
b

+
3

b
V 1

b
, 2
b
,1 (3.29)

In Equations 3.30, 3.31, and3.32, the formulas for V− 1

b
,0, 1

b
, V0, 1

b
, 2
b
, and V 1

b
, 2
b
, 3
b

are expanded to be

weighted sums of the original control vertices.

V− 1

b
,0, 1

b
=

b2 − 1

6b2
V−2,−1,0 +

2(2b2 + 1)

6b2
V−1,0,1 +

b2 − 1

6b2
V0,1,2 (3.30)

V0, 1
b
, 2
b

=
b2 − 3b + 2

6b2
V−2,−1,0 +

4(b2 − 1)

6b2
V−1,0,1 +

b2 + 3b + 2

6b2
V0,1,2 (3.31)

V 1

b
, 2
b
, 3
b

= (b−3)(b−2)(b−1)
6b3

V−2,−1,0 + 4b3−22b+18
6b3

V−1,0,1 + b3+6b2+11b−18
6b3

V0,1,2 + 6
6b3

V1,2,3 (3.32)
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Using the bilateral parametric symmetry, we can then write down the subdivision matrix S (Equa-

tion 3.33).

S =
1

6b3













6 b3 + 6b2 + 11b− 18 4b3 − 22b + 18 (b− 3) (b− 2) (b− 1) 0

0 b
(
b2 + 3b + 2

)
4b
(
b2 − 1

)
b
(
b2 − 3b + 2

)
0

0 b
(
b2 − 1

)
2b
(
2b2 + 1

)
b
(
b2 − 1

)
0

0 b
(
b2 − 3b + 2

)
4b
(
b2 − 1

)
b
(
b2 + 3b + 2

)
0

0 (b− 3) (b− 2) (b− 1) 4b3 − 22b + 18 b3 + 6b2 + 11b− 18 6













(3.33)

To verify our formula for S, we let b = 2 and get the standard midpoint subdivision mask (Equa-

tion 3.34).

Sb=2 =
1

8













1 6 1 0 0

0 4 4 0 0

0 1 6 1 0

0 0 4 4 0

0 0 1 6 1













(3.34)

3.4.1 Eigen-Decomposition of S

To study the limit behavior of the curve, we need to consider P g = SgP 0 as g →∞. The

most efficient way to raise a stationary square matrix S to a high integer power is by diagonalizing

it into its eigen-decomposition (Equation 3.35).

S =V ΛV −1

=













1 −1 1 1 0

1 −1
2

2
11 0 0

1 0 − 1
11 0 0

1 1
2

2
11 0 0

1 1 1 0 1

























1 0 0 0 0

0 1
b

0 0 0

0 0 1
b2

0 0

0 0 0 1
b3

0

0 0 0 0 1
b3

























0 1
6

4
6

1
6 0

0 −1 0 1 0

0 11
6 −22

6
11
6 0

1 −3 3 −1 0

0 −1 3 −3 1













(3.35)

S in Equation 3.33 is parameterized by the number of steps b per parametric unit. Note

that only the eigenvalues {λ0, λ1, λ2, λ3, λ3} =
{
1, 1

b
, 1

b2
, 1

b3
, 1

b3

}
of the matrix Λ in Equation 3.35

depend on b. The eigenvectors, columns of matrix V , are constants that are defined by uniform

cubic B-splines curves independent of our choice of equal parametric step size.
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The magnitude of the eigenvalues determine the speed at which the subdivision process

converges to its limit position which is parameterized by our choice of b. For standard midpoint

subdivision, b = 2 because we are spliting a parametric edge at the midpoint into two sub-edges.

For b = 2, λb=2 =
{
1, 1

2 , 1
4 , 1

8 , 1
8

}
. For b = 3, we are inserting two new points along each

parametric edge and creating three sub-edges. There is more refinement at each step and faster

convergence which is reflected by the set of smaller eigenvalues λb=3 =
{
1, 1

3 , 1
9 , 1

27 , 1
27

}
. For

b = 4, we are inserting three new points along each parametric edge and creating four sub-edges.

The eigenvalues are λb=4 =
{
1, 1

4 , 1
16 , 1

64 , 1
64

}
. Note that these eigenvalues are the squares of the

midpoint subdivision eigenvalues, λb=4 = λ2
b=2. In fact, setting b = 4 is equivalent to doing two

steps of b = 2, (Equations 3.36-3.42).

S2
b=2 = Sb=2Sb=2 (3.36)

=
(
V Λb=2V

−1
) (

V Λb=2V
−1
)

(3.37)

= V Λb=2

(
V −1V

)
Λb=2V

−1 (3.38)

= V Λb=2Λb=2V
−1 (3.39)

= V Λ2
b=2V

−1 (3.40)

= V Λb=4V
−1 (3.41)

= Sb=4 (3.42)

3.4.2 Limit Position

The eigen-structure of S for the B-spline case shown in Equation 3.35 meets all the re-

quirements described in Section 3.2, so we can use Equation 3.14 to calculate the limit position

V0,0,0 (Equation 3.45). v−1
0 is the top row of V −1 from Equation 3.35.

V0,0,0 = v−1
0 · P 0 (3.43)

=
[

0 1
6

4
6

1
6 0

]













V−3,−2,−1

V−2,−1,0

V−1,0,1

V0,1,2

V1,2,3













(3.44)

=
1

6
V−2,−1,0 +

4

6
V−1,0,1 +

1

6
V0,1,2 (3.45)
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In preparation to take derivatives, we will also repeat the steps of Section 3.2 for the uniform cubic

B-spline example. Because we know the eigenvector matrix V and its inverse V −1, we can remulti-

ply the eigen-decomposition matrices to form Sg parameterized by its eigenvalues (Equation 3.49).

Note that for any choice of b the set of eigenvalues is of the form {1, λ1, λ2, λ3, λ3} where λi = 1
bi .

S = V













1 0 0 0 0

0 λ1 0 0 0

0 0 λ2 0 0

0 0 0 λ3 0

0 0 0 0 λ3













V −1 (3.46)

Sg = V ΛgV −1 (3.47)

= V













1 0 0 0 0

0 λ
g
1 0 0 0

0 0 λ
g
2 0 0

0 0 0 λ
g
3 0

0 0 0 0 λ
g
3













V −1 (3.48)

Sg =
1

6













6λg
3 1 + 6λg

1 + 11λg
2 − 18λg

3 4− 22λg
2 + 18λg

3 1− 6λg
1 + 11λg

2 − 6λg
3 0

0 1 + 3λg
1 + 2λg

2 4− 4λg
2 1− 3λg

1 + 2λg
2 0

0 1− λ
g
2 4 + 2λg

2 1− λ
g
2 0

0 1− 3λg
1 + 2λg

2 4− 4λg
2 1 + 3λg

1 + 2λg
2 0

0 1− 6λg
1 + 11λg

2 − 6λg
3 4− 22λg

2 + 18λg
3 1 + 6λg

1 + 11λg
2 − 18λg

3 6λg
3













(3.49)

Note that the entries of Sg from Equation 3.49 are weighted sums of λ
g
i . Also note that the constant

terms of each row are identical, so that when we let g → ∞ we get the matrix where all of the

rows are v−1
0 , Equation 3.50. And as expected, we derive the formula for the limit position V0,0,0,

Equation 3.52.
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S∞ =
1

6













0 1 4 1 0

0 1 4 1 0

0 1 4 1 0

0 1 4 1 0

0 1 4 1 0













(3.50)

P∞ = S∞P 0 (3.51)

V0,0,0 =
1

6
V−2,−1,0 +

4

6
V−1,0,1 +

1

6
V0,1,2 (3.52)

−3,−2,−1 1,2,3

0,1,2−2,−1,0

−1,0,1

0,0,0
(u)RB(u)LB

Figure 3.5: Left and right B-spline curve segments BL (u) and BR (u) that meet at the subdivision
limit vertex V0,0,0

The limit position of our subdivision process V0,0,0 for the uniform cubic B-spline should

be equal to the left B-spline segment BL (u) evaluated at u = 1 and also to the right B-spline

segment BR (u) evaluated at u = 0 (Figure 3.5).

BL (u) = (1−u)3

6 V−3,−2,−1 + 3u3
−6u2+4

6 V−2,−1,0 + −3u3+3u2+3u+1
6 V−1,0,1 + u3

6 V0,1,2 (3.53)

BR (u) = (1−u)3

6 V−2,−1,0 + 3u3
−6u2+4

6 V−1,0,1 + −3u3+3u2+3u+1
6 V0,1,2 + u3

6 V1,2,3 (3.54)

V0,0,0 =BL (1) = BR (0) =
1

6
V−2,−1,0 +

4

6
V−1,0,1 +

1

6
V0,1,2 (3.55)

Equations 3.45 and 3.55 show that the eigen-analysis of the subdivision matrix S matches the be-

havior of the known B-spline polynomial.

3.4.3 First Derivative

The limit of the finite difference between adjacent vertices in the local neighborhood will

be the same if the subdivision process is C1 continuous. Differencing p
g
i+1 and p

g
i is the same as
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differencing the corresponding rows i + 1 and i of Sg and then applying that new matrix to P 0.

Du =










−1 1 0 0 0

0 −1 1 0 0

0 0 −1 1 0

0 0 0 −1 1










(3.56)

∂Sg

∂u
=DuSg (3.57)

=
1

2










−2λg
3 −λ

g
1 − 3λg

2 + 6λg
3 6λg

2 − 6λg
3 λ

g
1 − 3λg

2 + 2λg
3 0

0 −λ
g
1 − λ

g
2 2λg

2 λ
g
1 − λ

g
2 0

0 −λ
g
1 + λ

g
2 −2λg

2 λ
g
1 + λ

g
2 0

0 −λ
g
1 + 3λg

2 − 2λg
3 −6λg

2 + 6λg
3 λ

g
1 + 3λg

2 − 6λg
3 2λg

3










(3.58)

By scaling Equation 3.58 by 1
λ

g
1

and letting g →∞, only the terms with λ1 remain. They

are the same for every row (Equation 3.59), so the subdivision process is C 1.

∂S∞

∂u
= lim

g→∞
1

λ
g
1

∂Sg

∂u
=

1

2










0 −1 0 1 0

0 −1 0 1 0

0 −1 0 1 0

0 −1 0 1 0










(3.59)

∂P∞

∂u
=

∂S∞

∂u
P 0 (3.60)

∂V0,0,0

∂u
= −1

2
V−2,−1,0 +

1

2
V0,1,2 (3.61)

The first derivative of our subdivision process for the uniform cubic B-spline should be equal to that

of the left B-spline segment ∂BL(u)
∂u

evaluated at u = 1 and also to that of the right B-spline segment
∂BR(u)

∂u
evaluated at u = 0.

∂BL (u)

∂u
=− (1− u)2

2
V−3,−2,−1 +

3u2 − 4u

2
V−2,−1,0 +

−3u2 + 2u + 1

2
V−1,0,1 +

u2

2
V0,1,2

(3.62)

∂BR (u)

∂u
=− (1− u)2

2
V−2,−1,0 +

3u2 − 4u

2
V−1,0,1 +

−3u2 + 2u + 1

2
V0,1,2 +

u2

2
V1,2,3 (3.63)

∂BL (1)

∂u
=

∂BR (0)

∂u
= −1

2
V−2,−1,0 +

1

2
V0,1,2 (3.64)

Equations 3.61, and 3.64 show that the eigen-analysis of the subdivision matrix S matches the

behavior of the known B-spline polynomial.



37

3.4.4 Second Derivative

The same finite differencing can be done to the first derivative matrix to compute second

derivatives to see if the process is C2 continuous.

Duu =







−1 1 0 0

0 −1 1 0

0 0 −1 1







(3.65)

∂2Sg

∂u2
=Duu

∂Sg

∂u
(3.66)

=







λ
g
3 λ

g
2 − 3λg

3 −2λg
2 + 3λg

3 λ
g
2 − λ

g
3 0

0 λ
g
2 −2λg

2 λ
g
2 0

0 λ
g
2 − λ

g
3 −2λg

2 + 3λg
3 λ

g
2 − 3λg

3 λ
g
3







(3.67)

By scaling Equation 3.67 by 1
λ

g
2

and letting g → ∞, only the terms with λ2 remain. They are the

same for every row (Equation 3.68), so the subdivision process is C 2.

∂2S∞

∂u2
= lim

g→∞
1

λ
g
2

∂2Sg

∂u2
=







0 1 −2 1 0

0 1 −2 1 0

0 1 −2 1 0







(3.68)

∂2P∞

∂u2
=

∂2S∞

∂u2
P 0 (3.69)

∂2V0,0,0

∂u2
= V−2,−1,0 − 2V−1,0,1 + V0,1,2 (3.70)

The second derivative of our subdivision process for the uniform cubic B-spline should be equal to

that of the left B-spline segment ∂2BL(u)
∂u2 evaluated at u = 1 and also to that of the right B-spline

segment ∂2BR(u)
∂u2 evaluated at u = 0.

∂2BL (u)

∂u2
=(1− u)V−3,−2,−1 + (3u− 2)V−2,−1,0 + (−3u + 1)V−1,0,1 + uV0,1,2 (3.71)

∂2BR (u)

∂u2
=(1− u)V−2,−1,0 + (3u− 2)V−1,0,1 + (−3u + 1)V0,1,2 + uV1,2,3 (3.72)

∂2BL (1)

∂u2
=

∂2BR (0)

∂u2
= V−2,−1,0 − 2V−1,0,1 + V0,1,2 (3.73)

Equations 3.70 and 3.73 show that the eigen-analysis of the subdivision matrix S matches the be-

havior of the known B-spline polynomial.
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3.4.5 Third Derivative

We can iterate again to check if the subdivision process is C 3 continuous.

Duuu =




−1 1 0

0 −1 1



 (3.74)

∂3Sg

∂u3
=Duuu

∂2Sg

∂u2
(3.75)

=




−λ

g
3 3λg

3 −3λg
3 λ

g
3 0

0 −λ
g
3 3λg

3 −3λg
3 λ

g
3



 (3.76)

We scale Equation 3.76 by 1
λ

g
3

and let g → ∞. The rows are not the same (Equation 3.77), so the

subdivision process is not C3.

∂3S∞

∂u3
= lim

g→∞
1

λ
g
3

∂3Sg

∂u3
=




−1 3 −3 1 0

0 −1 3 −3 1



 (3.77)

∂3P∞

∂u3
=

∂3S∞

∂u3
P 0 (3.78)

=




−V−3,−2,−1 + 3V−2,−1,0 − 3V−1,0,1 + V0,1,2

−V−2,−1,0 + 3V−1,0,1 − 3V0,1,2 + V1,2,3



 (3.79)

The third derivative of the uniform cubic B-spline is discontinuous at the junction of the left and

right B-spline segments, ∂3BL(1)
∂u3 6= ∂3BR(0)

∂u3 . However, the formulas for the left and right third

derivatives computed by eigen-analysis and with the polynomials are the same.

∂3BL (u)

∂u3
=− V−3,−2,−1 + 3V−2,−1,0 − 3V−1,0,1 + V0,1,2 (3.80)

∂3BR (u)

∂u3
=− V−2,−1,0 + 3V−1,0,1 − 3V0,1,2 + V1,2,3 (3.81)

∂3BL (1)

∂u3
6=∂3BR (0)

∂u3
(3.82)

3.5 Subdivision Surfaces

We now have a general tool for analyzing the continuity behavior of any subdivision mask

matrix S. The same techniques work for subdivision surfaces as well. The C 0 limit position analysis

is exactly the same as that for curves, so the averaging rules must sum to one and 1 = µ0 = λ0 and

v0 is all ones.
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v

u
r

1θ

Figure 3.6: Two parametric directions chosen for a subdivision surface

The derivatives differ in that there are two parameter directions (u, v), so there are mul-

tiple types of derivatives per degree of differentiation. The subspace for first derivatives is 2D with

basis vectors {Su, Sv}, so for C1 continuity 1 > µ1 = λ1 = λ2 with linearly independent eigenvec-

tors {v1, v2}. The finite differencing from Equation 3.16 also becomes slightly more complicated

because not all pairs of vertices in the subdivision mask lie along the same parameter direction. For

generality, we will use a polar coordinate system with its origin at the central vertex of the subdivi-

sion mask. We choose two parameter directions u (θ = 0) and v (θ = θ1) from the central vertex

(Figure 3.6), then for C1 continuity the directional derivatives must satisfy Equation 3.92.

Equation 3.92 is derived by a change of coordinates from the subdivision mask coordi-

nates (u, v) which are unit length with an angle θ1 between them to a set of polar coordinates (r, θ)

(Figure 3.7). Equations 3.84-3.88 use a reference orthonormal coordinate system (s, t) to derive the

transformation from (r, θ) to (u, v) in Equation 3.88.



40

r
t

θ

u
s

v

1θ

Figure 3.7: Change of coordinates between the subdivision mask directions (u, v), an orthogonal
basis (s, t), and polar coordinates (r, θ)




s

t



 =




r cos θ

r sin θ



 (3.83)




s

t



 =




1 cos θ1

0 sin θ1








u

v



 (3.84)




u

v



 =
1

sin θ1




sin θ1 − cos θ1

0 1








s

t



 (3.85)




u

v



 =
1

sin θ1




sin θ1 − cos θ1

0 1








r cos θ

r sin θ



 (3.86)




u

v



 =
r

sin θ1




sin θ1 cos θ − sin θ cos θ1

sin θ



 (3.87)




u

v



 =
r

sin θ1




sin (θ1 − θ)

sin θ



 (3.88)

With this coordinate transformation, we can derive the directional derivative in any di-

rection θ using the chain rule (Equations 3.89-3.92). The relationship in Equation 3.92 must be

satisfied for a finite difference taken in a different direction θ in Figure 3.6 for C 1 continuity.
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∂u

∂r
=

sin (θ1 − θ)

sin θ1
(3.89)

∂v

∂r
=

sin θ

sin θ1
(3.90)

∂S (u, v)

∂r
=

∂S (u, v)

∂u

∂u

∂r
+

∂S (u, v)

∂v

∂v

∂r
(3.91)

∂S (r, θ)

∂r
=

sin (θ1 − θ)

sin θ1

∂S (u, v)

∂u
+

sin θ

sin θ1

∂S (u, v)

∂v
(3.92)

The subspace for second derivatives is 3D with basis vectors {Suu, Suv = Svu, Svv}, so

for C2 continuity µ1 > µ2 = λ3 = λ4 = λ5 > ...λn ≥ 0 with linearly independent eigen-

vectors {v3, v4, v5}. For C2 continuity, the second directional derivative in any direction θ must

match the linear combination of the second derivatives and the mixed derivative with respect to

(u, v) (Equation 3.98). We derive this formula by applying the chain rule to Equation 3.92 in Equa-

tions 3.93-3.98.

∂2u

∂r2
=0 (3.93)

∂2v

∂r2
=0 (3.94)

∂2S (u, v)

∂r2
=

(
∂2S (u, v)

∂u2

∂u

∂r
+

∂2S (u, v)

∂u∂v

∂v

∂r

)
∂u

∂r
+

∂S (u, v)

∂u

∂2u

∂r2

+

(
∂2S (u, v)

∂v∂u

∂u

∂r
+

∂2S (u, v)

∂v2

∂v

∂r

)
∂v

∂r
+

∂S (u, v)

∂v

∂2v

∂r2
(3.95)

∂2S (u, v)

∂r2
=

(
∂u

∂r

)2
∂2S (u, v)

∂u2
+

∂u

∂r

∂v

∂r

(
∂2S (u, v)

∂u∂v
+

∂2S (u, v)

∂v∂u

)

+

(
∂v

∂r

)2
∂2S (u, v)

∂v2

(3.96)

∂2S (u, v)

∂r2
=

(
∂u

∂r

)2
∂2S (u, v)

∂u2
+ 2

∂u

∂r

∂v

∂r

∂2S (u, v)

∂u∂v
+

(
∂v

∂r

)2
∂2S (u, v)

∂v2
(3.97)

∂2S (r, θ)

∂r2
=

sin2 (θ1 − θ)

sin2 θ1

∂2S (u, v)

∂u2
+

2 sin2 (θ1 − θ) sin2 θ

sin2 θ1

∂2S (u, v)

∂u∂v
+

sin2 θ

sin2 θ1

∂2S (u, v)

∂v2

(3.98)

The mixed derivative first in direction u and then in another arbitrary direction θ follows

the same rule as the first derivative (Equation 3.100).
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∂2S (u, v)

∂u∂r
=

∂2S (u, v)

∂u2

∂u

∂r
+

∂2S (u, v)

∂u∂v

∂v

∂r
(3.99)

∂2S (r, θ)

∂u∂r
=

sin (θ1 − θ)

sin θ1

∂2S (u, v)

∂u2
+

sin θ

sin θ1

∂2S (u, v)

∂u∂v
(3.100)

3.6 Catmull-Clark Subdivision Surfaces

Catmull-Clark subdivision surfaces [5] are a generalization of N3,3 box splines, i.e. uni-

form bi-cubic tensor product B-splines, for extraordinary vertices with valence n 6= 4. The topo-

logical split creates new vertices at the edge midpoints and at the face centers and connects them

forming all quadrilateral faces in the next generation (Figure 3.8). All the extraordinary vertices,

those specified in the control mesh and the face centers of non-valence 4 faces in the control mesh,

are created after one generation of subdivision. After two generations of subdivision, every quadri-

lateral will have at most one extraordinary vertex.

(a) Generation g (b) Generation g + 1

Figure 3.8: One generation of the Catmull-Clark subdivision topological split

There are different averaging rules for the three types of created vertices (Figure 3.9). A

face-center vertex F
g+1
i gets the average of the face’s vertices (Equation 3.101). An edge-midpoint

vertex E
g+1
i gets the average of the edge’s endpoints and the two face-center vertices of the two

adject faces (Equation 3.102). A child vertex V
g+1
0 gets a weighted average of its parent vertex,

the centroid of the neighboring edge vertices, and the centroid of the face-center vertices (Equa-

tion 3.103).
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F
g+1
i =

1

n

n∑

i=1

V
g
i (3.101)

E
g+1
i =

1

4

(

V
g
0 + E

g
i + F

g+1
i−1 + F

g+1
i

)

(3.102)

V
g+1
0 =

(n− 2) V
g
0 + 1

n

∑n
i=1 E

g
i + 1

n

∑n
i=1 F

g+1
i

n
(3.103)

Both the face and edge rules are derived from midpoint knot insertion to bi-cubic B-

splines. The generalized vertex rule also agrees with midpoint knot insertion mask when n = 4.

g+1

3F

F

4

2

g
F

g

g

F4

g+1
E3

g+1
E1

1
g+1

F2

g+1
F3

g+1
F

g
E4

g
F1

g
E3

g

2

g
E2

g
E1

V0

g+1
V0

g+1
E4

g+1
E

Figure 3.9: The 1-ring mask for one step of Catmull-Clark subdivision

3.6.1 Analysis of a Catmull-Clark Regular Vertex

The limit surface around a valence n = 4 regular vertex is an N3,3 box spline, so our

analysis should show it to be C2 continuous. The 1-ring subdivision mask S is shown in Figure 3.9

and Equation 3.104.
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S =
1
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Equation 3.105 shows the eigen-decomposition of S. Note that the magnitude of the

eigenvalues
{
1, 1

2 , 1
2 , 1

4 , 1
4 , 1

4 , 1
8 , 1

8 , 1
16

}
are consistent with pattern for midpoint subdivision of B-

spline curves µi = 2−i, and that the algebraic multiplicities are consistent with the derivatives for

surfaces.
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(3.105)
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The weights for the limit position V ∞
0 are the elements of v−1

0 (Equation 3.106). By taking

the limit of finite differences of rows of S∞ in the patterns shown in Figure 3.10, it can be shown that

the surface satisfies Equations 3.92 and 3.98, and it is thus C 2 continuous (Equations 3.107-3.111).

V ∞
0 =

16V g
0 + 4

∑n
i=1 E

g
i +

∑n
i=1 F

g
i

36
(3.106)

Su =
(F g

4 + 4Eg
1 + F

g
1 )− (F g

2 + 4Eg
3 + F

g
3 )

12
(3.107)

Sv =
(F g

1 + 4Eg
2 + F

g
2 )− (F g

3 + 4Eg
4 + F

g
4 )

12
(3.108)

Suu =
(F g

4 + 4Eg
1 + F

g
1 )

6
− (2Eg

4 + 8V g
0 + 2Eg

2)

6
+

(F g
2 + 4Eg

3 + F
g
3 )

6
(3.109)

Svv =
(F g

1 + 4Eg
2 + F

g
2 )

6
− (2Eg

1 + 8V g
0 + 2Eg

3)

6
+

(F g
3 + 4Eg

4 + F
g
4 )

6
(3.110)

Suv =
(F g

1 + F
g
3 )− (F g

2 + F
g
2 )

4
(3.111)

(a) ∂S
∂u

(b) ∂S
∂v

Figure 3.10: Finite differences for Catmull-Clark subdivision derivatives

3.6.2 Analysis of a Catmull-Clark Extraordinary Vertex

The surface is only C1 at extraordinary vertices. The results for the limit position V ∞
0

and the tangents T0 and T1 are shown in Equations 3.112 and 3.115.
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V ∞
0 =

n2V
g
0 + 4

∑n
i=1 E

g
i +

∑n
i=1 F

g
i

n (n + 5)
(3.112)

αn = 1 + cos

(
2π

n

)

+ cos
(π

n

)
√

2

(

9 + cos

(
2π

n

))

(3.113)

c (i) = cos

(
2πi

n

)

(3.114)

Tj =

n∑

i=1

αnc (i + j) E
g
i + (c (i + j) + c (i + j + 1)) F

g+1
i (3.115)

N = T0 × T1 (3.116)

3.7 Loop Subdivision Surfaces

Loop subdivision surfaces [15] are a generalization of N2,2,2 box splines for extraordinary

vertices with valence n 6= 6. Loop subdivision is defined for triangulated control meshes only. The

topological split creates new vertices at the edge midpoints and connects them by cutting off the

corners to form four subtriangles in the next generation (Figure 3.11). The set of extraordinary

vertices is the set defined in the original control mesh only. After one generation of subdivision

each triangle will have at most one extraordinary vertex.

(a) Generation g (b) Generation g + 1

Figure 3.11: One generation of the Loop subdivision topological split

There are different averaging rules for the two types of created vertices (Figure 3.12). An

edge-midpoint vertex E
g+1
i gets the weighted average of the vertices on the two faces adject to the

edge (Equation 3.117). A child vertex V
g+1
0 gets a weighted average of its parent vertex and the

centroid of the neighboring edge vertices (Equation 3.119).
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E
g+1
i =

1

8

(
3V g

0 + 3Eg
i + E

g
i−1 + E

g
i+1

)
(3.117)

βn =
5

8
−
(
3 + 2 cos

(
2π
n

))2

64
(3.118)

V
g+1
0 = (1− βn) V

g
0 + βn

1

n

n∑

i=1

E
g
i (3.119)

Note that the edge rule and the vertex rule for valence n = 6 are the midpoint subdivision

rules for the N2,2,2 box spline.
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g+1
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g+1
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Figure 3.12: The 1-ring mask for one step of Loop subdivision

3.7.1 Analysis of a Loop Regular Vertex

The limit surface around a valence n = 6 regular vertex is an N2,2,2 box spline, so our

analysis should show it to be C2 continuous. The 1-ring subdivision mask S is shown in Figure 3.12

and Equation 3.120.
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S =
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Equation 3.121 shows the eigen-decomposition of S. Note that the magnitude of the

eigenvalues
{
1, 1

2 , 1
2 , 1

4 , 1
4 , 1

4 , 1
8

}
are consistent with the pattern for midpoint subdivision of B-spline

curves µi = 2−i, and that the algebraic multiplicities are consistent with the derivatives for surfaces.
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(3.121)

The weights for the limit position V ∞
0 are the elements of v−1

0 (Equation 3.122). By taking

the limit of finite differences of rows of S∞ in the patterns shown in Figure 3.13, it can be shown that

the surface satisfies Equations 3.92 and 3.98, and it is thus C 2 continuous (Equations 3.123-3.127).
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(a) ∂S
∂u

(b) ∂S
∂v

Figure 3.13: Finite differences for Loop subdivision derivatives

3.7.2 Analysis of a Loop Extraordinary Vertex

The surface is only C1 at extraordinary vertices. The results for the limit position V ∞
0 ,

the position at any generation V
g
0 , and the tangents T0 and T1 are shown in Equations 3.129, 3.133,

and 3.134.
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8βn

3 + 8βn
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E
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5− 8βn
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(3.130)
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n (3.131)
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nδn

(
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Tj =

n∑

i=1

cos

(
2π (i + j)

n

)

E
g
i (3.134)

N = T0 × T1 (3.135)

3.8
√

3 Subdivision Surfaces

√
3 subdivision surfaces [12] also work on triangulated control meshes only. The limit

surface at regular vertices with valence n = 6 is very similar to N2,2,2 box splines. The topological

split creates new vertices at the triangle centers. In the first half of the topological step, the triangle

centers are connected to the original triangle corners (Figure 3.14(b)). For the moment, this doubles

the valence at every vertex. In the second half of the topological step, all of the original edges

are flipped with in their quadrilateral (Figure 3.14(c)). This restores the original valence to child

vertices, and makes the valence of all triangle-center vertices equal to 6. The set of extraordinary

vertices is the set defined in the original control mesh only. After one generation of subdivision each

triangle will have at most one extraordinary vertex.

The topological split rotates the edges about a vertex by π
n

. Another full topological split

rotates the edges another π
n

making them coincide with their original orientation (Figure 3.14(e)).

Two subdivision steps in effect trisect the original edges, which is like setting b = 3 in our uniform

B-spline curve example. So one subdivision does a
√

3 split which is where the scheme gets its

name.

There are different averaging rules for the two types of created vertices (Figure 3.15(a)).

A triangle-center vertex F
g+1
i gets the centroid of the triangle (Equation 3.136). A child vertex



51

(a) Gen-
eration g

(b) Genera-

tion g + 1

2

(c) Genera-
tion g + 1

(d) Genera-

tion g + 3

2

(e) Genera-
tion g + 2

Figure 3.14: Two generations of the
√

3 subdivision topological split

V
g+1
0 gets a weighted average of its parent vertex and the centroid of the neighboring edge vertices

(Equation 3.138).

F
g+1
i =

1

3

(
V

g
0 + E

g
i + E

g
i+1

)
(3.136)

αn =
4− 2 cos

(
2π
n

)

9
(3.137)

V
g+1
0 = (1− αn)V

g
0 + αn

1

n

n∑

i=1

E
g
i (3.138)

3.8.1 Analysis of a
√

3 Regular Vertex

The π
n

rotation makes it difficult to analyze the single step subdivision matrix. Instead, we

will analyze the two step 1-ring subdivision mask S, shown in Figure 3.15(b) and Equation 3.139.
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Figure 3.15: The 1-ring mask for one and two steps of
√

3 subdivision

S =
1
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(3.139)

Equation 3.140 shows the eigen-decomposition of S. Note that the magnitude of the

eigenvalues
{
1, 1

3 , 1
3 , 1

9 , 1
9 , 1

9 , 0
}

up until the final one are consistent with pattern for trisection of

B-spline curves µi = 3−i. Also note that the eigenvectors in V are precisely the same as the ones

for Loop valence n = 6 (Equation 3.121), i.e. N2,2,2 box splines. There is no need to repeat the

finite differencing analysis because it is exactly the same as Loop up to C 2 continuity. The two

schemes only differ in the third order terms which have been truncated in the
√

3 scheme. The limit

position and derivatives are the same as Loop (Equations 3.122-3.127).
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(3.140)

3.8.2 Analysis of a
√

3 Extraordinary Vertex

The surface is only C1 at extraordinary vertices. The results for the limit position V ∞
0 ,

the position at any generation V
g
0 , and the tangents T0 and T1 are shown in Equations 3.143, 3.145,

and 3.146.

β (n, g) =
3αn

(
1−

(
2
3 − αn

)g)

1 + 3αn
(3.141)

β (n,∞) =
3αn

1 + 3αn
(3.142)

V
g
0 = (1− β (n, g))V 0

0 + β (n, g)
1

n

n∑
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E0
i (3.143)

γ (n, g) =

(
2

3
− αn

)g

(3.144)

V
g
0 = γ (n, g) V 0

0 + (1− γ (n, g)) V ∞
0 (3.145)

Tj =
n∑

i=1

cos

(
2π (i + j)

n

)

E
g
i (3.146)

N = T0 × T1 (3.147)
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3.9 Improving Surface Behavior

We have seen that the Catmull-Clark, Loop, and
√

3 subdivision schemes are C2 continu-

ous in the regular areas where they act as box splines, and are only C 1 continuous near extraordinary

vertices. In the standard schemes that we have described, the face and edge rules are same for all

faces and edges. The edge rules adjacent to extraordinary vertices can be made a function of the

valence of that vertex to change the spectrum of eigenvalues. To achieve bounded curvature at the

extraordinary vertex the first six eigenvalues must be of the form
{
1, λ, λ, λ2, λ2, λ2

}
with 1 > λ

and all other eigenvalues between λ2 and zero. The Catmull-Clark [23] and Loop [16] schemes

have been improved apon to achieve this bounded curvature condition.

The value λ of the first eigenvalue is important as well. As we saw with the B-spline

curve example, the eigenvalue specifies how many knots per knot interval are being inserted. Since

the topological splits of Catmull-Clark and Loop subdivision insert one vertex per edge, the optimal

first eigenvalue would be λ = 1
2 . Hence given a regular arrangement of polygons in the parameter

domain, the edge averaging rule must generate the edge midpoint. The relative sizes of polygons

throughout all generations would then remain constant. This is not the case with the standard rules

for Catmull-Clark and Loop which generate smaller than desired polygons for valences less than

the regular case and larger than desired polygons for valence larger than the regular case.

Because subdivision schemes are based on different box splines, they have different pref-

ered directions of averaging corresponding to the directions of convolutions of the box splines.

There has been work to try to combine the Loop and Catmull-Clark subdivision schemes to make

a hybrid triangle and quadrilateral scheme [30, 14, 20]. The newest results maintain C 2 continuity

across the semi-regular vertex that has three consecutive triangles and two consecutive quadrilaterals

around it.

It is not possible to define a stationary 1-ring averaging rule scheme that is C 2 everywhere.

The second derivatives do not exist at the extraordinary vertices. It is possible to do a least squares

fit of a quadric surface and use its second derivatives as an estimate. A new approach [32] performs

a finite number of uniform subdivisions, and then uses an exponential mapping of parameter charts

to generate a C∞ arbitrary topology surface. This representation could then be used as a primitive

in an optimization process to generate minimal energy surfaces that meet user constraints.
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3.10 Conclusion

In this chapter, we have shown that subdivision surfaces are a generalization of box spline

surfaces to meshes with general topology. The degree of continuity of box splines can be understood

by the definition of box splines as a series of convolutions. Using our knowledge of box splines,

we applied eigen-analysis to the regular subdivision matrix cases to show what criteria is necessary

from the set of averaging rules to achieve C2 continuity. We also briefly listed the limit positions,

tangents, and normals at extraordinary vertices, which were derived using the same methods. It is

not possible to achieve C2 at extraordinary vertices of a 1-ring stationary subdivision scheme, but

we mentioned schemes to improve the surface behavior there. In Chapters 4-5, we show how to

derive the eigen-decomposition of the subdivision matrices of arbitrary valence piecewise smooth

Loop and Catmull-Clark vertices. These decompositions can be used to study the limit behavior

of the surfaces at these extraordinary vertices and provide derivations to the formulas given in this

chapter.
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Chapter 4

Signal Processing and Subdivision

4.1 Introduction

The pattern of edge and face subdivision averaging rules around a vertex can be viewed

as repeated, shifted applications of a difference equation. In this chapter, we will use 1D signal

processing to derive the eigen-decomposition of the subdivision matrix, which we will later use to

eigen-analyze the continuity behavior of subdivision surfaces. The subdivision matrices S described

here are 1-ring matrices of extraordinary vertices and have the form:

S =




T0 T02

T11 T12



 (4.1)

The T0 subblock contains portions of the vertex and sharp edge averaging rules. The T12 subblock

contains the regular face and edge averaging rules.

4.2 Difference Equations

A difference equation, like a differential equation, defines a family of functions by an

implicit relationship between values of the function taken at consecutive samples. One classical

example is the Fibonacci sequence {1, 1, 2, 3, 5, . . .} which is defined by the rule that the next value

in the sequence is the sum of the previous two values.

f [t] = f [t− 2] + f [t− 1] (4.2)
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This relationship defines a family of functions, and to fully specify the Fibonacci sequence, it is

necessary to give initial values for the function.

f [0] = 1, f [1] = 1 (4.3)

For a general linear difference equation, the value at the current sample f [t] is a linear combination

of values of the function at earlier samples.

f [t] =
m∑

i=1

aif [t− i] (4.4)

A common function that can be described as a difference equation is the cosine function.

This relationship can be derived by starting with the quantity cos (φ− 2θ) and applying trigono-

metric identities to get Equation 4.9.

cos (φ− 2θ) = cos (φ) cos (2θ) + sin (φ) sin (2θ) (4.5)

=cos (φ)
(
2 cos2 (θ)− 1

)
+ 2 sin (φ) sin (θ) cos (θ) (4.6)

=2 cos (θ) (cos (φ) cos (θ) + sin (φ) sin (θ))− cos (φ) (4.7)

=2 cos (θ) cos (φ− θ)− cos (φ) (4.8)

0 = cos (φ− 2θ)− 2 cos (θ) cos (φ− θ) + cos (φ) (4.9)

This relationship shows that for a fixed angle step θ, the value of cos (φ) can be computed from a

combination of the values at the previous two steps. We can discretize Equation 4.9 to the difference

equation in Equation 4.10. When setting an initial condition that f [t] has even symmetry about the

origin, the solution is then cosine sampled at intervals of θ.

f [t− 2]− 2 cos (θ) f [t− 1] + f [t] = 0 (4.10)

f [−1] = f [1] = cos (−θ) (4.11)

f [t] = cos [tθ] (4.12)

The sine function is just a phase shift of cosine, so it follows the same steady state governing rule.

We derive the difference equation for sine by using the identity sin (φ) = cos
(

π
2 − φ

)
and substitute

φ→
(

π
2 − φ + 2θ

)
into Equation 4.9.

0 = cos
(π

2
− φ + 2θ − 2θ

)

− 2 cos (θ) cos
(π

2
− φ + 2θ − θ

)

+ cos
(π

2
− φ + 2θ

)

(4.13)

0 = cos
(π

2
− φ

)

− 2 cos (θ) cos
(π

2
− (φ− θ)

)

+ cos
(π

2
− (φ− 2θ)

)

(4.14)

0 = sin (φ)− 2 cos (θ) sin (φ− θ) + sin (φ− 2θ) (4.15)



58

The discrete difference equation is then the same as for cosine with the intial conditions modified to

have odd symmetry about the origin.

f [t− 2]− 2 cos (θ) f [t− 1] + f [t] = 0 (4.16)

f [−1] = −f [1] = sin (−θ) (4.17)

f [t] = sin [tθ] (4.18)

The general solution to this difference equation can then be any linear combination of

these sine and cosine functions.

4.3 Loop Eigenvectors

The cosine difference equation arises when solving for the eigenvector elements asso-

ciated with the edge averaging rules of Loop subdivision. When solving for an eigenvector vi

associated with an eigenvalue λi of the subdivision matrix S, we solve the linear system:

0 = (S − λiI) vi (4.19)

In the Loop case, the edge rules have a repeated set of three coefficients along the diagonal as shown

in Equation 4.20.

e =
1

8
, d = 3e− λi

0 =














. . .

e d e

e d e

e d e

. . .



























...

f [−1]

f [0]

f [1]
...














(4.20)

The elements f [t] of the eigenvector can then be thought of as discrete samples from a 1D signal

that is described by the difference equation:

0 =ef [t− 2] + (3e− λi) f [t− 1] + ef [t] (4.21)

We normalize this equation by dividing by e and substituting α = 3e−λi

e
.

0 =f [t− 2] + αf [t− 1] + f [t] (4.22)
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The eigenvectors of S are a linearly independent set of functions from the family of functions that

satisfy this difference equation. If we let α = −2 cos (θi), then both cos [tθi] and sin [tθi] are

candidate functions dependent on boundary conditions. For both sine and cosine, the relationship

between the eigenvalue λi and the frequency θi of the signal in the associated eigenvector can be

derived by examining α.

α =
3e− λi

e
= −2 cos (θi) (4.23)

λi = e (3 + 2 cos (θi)) (4.24)

cos (θi) = −3e− λi

2e
(4.25)

Equation 4.25 shows that a sine or cosine based eigenvector is only possible if the eigenvalue is

within certain limits because −1 ≤ cos (θi) ≤ 1.

−1 ≤ −3e− λi

2e
≤ 1 (4.26)

−2e ≤ λi − 3e ≤ 2e (4.27)

e ≤ λi ≤ 5e (4.28)

1

8
≤ λi ≤

5

8
(4.29)

The magnitude of the eigenvalues will be an issue in the dart extraordinary vertex case.

The boundary conditions for these eigenvectors is determined by the type of the extraor-

dinary vertex in the subdivision matrix. In the smooth and spike cases, there is a cyclic boundary

condition. In the crease and corner cases, a natural boundary condition is necessary as the averaging

rules terminate at the sharp edges. The dart case is similar to the corner and crease cases, but for

even symmetry cosine eigenvectors it is necessary to have the terminating value be non-zero.

4.3.1 Loop Smooth and Spike Eigenvectors

The Loop edge averaging rules in the T12 subblock for the smooth and spike vertex cases

wrap around in a cyclic manner, Equation 4.30. The elements of the eigenvector, for a vertex of

valence n, are f [t] for t ∈ [0, n− 1]. Equation 4.30 defines the values of the eigenvector for a
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Figure 4.1: Loop smooth and spike vertex eigenvectors for valence n = 5. The even functions
are cos

[
t2πi

n

]
, while the odd functions are sin

[
t2πi

n

]
. The last two samples are not part of the

eigenvector sequence, but instead demonstrate that the signal cyclically wraps around.
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Figure 4.2: Loop smooth and spike vertex eigenvectors for valence n = 6. The even functions
are cos

[
t2πi

n

]
, while the odd functions are sin

[
t2πi

n

]
. The last two samples are not part of the

eigenvector sequence, but instead demonstrate that the signal cyclically wraps around.
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given eigenvalue λi.

e =
1

8
, d = 3e− λi

0 =



















d e e

e d e

e d e

. . .

e d e

e d e

e e d



















f [n− 1]


















f [0]

f [1]

f [2]
...

f [n− 3]

f [n− 2]

f [n− 1]



















f [0]

(4.30)

As indicated by the highlighted extra elements, the cyclic nature of the matrix shows that f [n] =

f [0] and f [−1] = f [n− 1]. f [t] must then be periodic in n, so θi = 2πi
n

. The functions f [t] =

cos
[
t2πi

n

]
and f [t] = sin

[
t2πi

n

]
for i ∈

{
1,
⌊

n−1
2

⌋}
define linearly independent eigenvectors, see

Figures 4.1 and 4.2. If n is even, then an additional cosine eigenvector with i = n
2 exists, while

the corresponding sine function is all zeros. The final eigenvector in both cases is all ones which

corresponds to i = n.

4.3.2 Loop Crease and Corner Eigenvectors

The Loop edge averaging rules for a wedge in the crease and corner vertex cases get

clipped at the sharp edge boundary indicated by the zeros in the upper right and lower left corners

of the matrices in Equations 4.31 and 4.32. The elements of the eigenvector for a wedge of valence

n are f [t] for t ∈
[
−n−2

2 , n−2
2

]
. Equation 4.31 defines the values of the eigenvector for a given
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Figure 4.3: Loop crease or corner vertex eigenvectors for wedge valence n = 4. The two end
samples are not part of the eigenvector sequence, but instead show that the next sample outside the
vector is zero.

eigenvalue λi for a wedge with an even number n of triangles, i.e. an odd number of edges.

e =
1

8
, ē =

1

2
= 4e, d = 3e− λi

0 =

































v̄0 − λi v̄1 v̄1 0 0 0 0 0 0 0

ē ē− λi 0 0 0 · · · 0 0 0 · · · 0 0

ē 0 ē− λi 0 0 0 0 0 0 0

3e 0 e d e 0

3e 0 0 e d e

...
. . .

3e 0 0 e d e

3e 0 0 e d e

3e 0 0 e d e
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. . .

3e 0 0 e d e

3e e 0 0 e d




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
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





c0

f
[

n
2

]

f
[
−n

2

]

f
[
−n−2

2

]

f
[
−n−4

2

]

...

f [−1]

f [0]

f [1]
...

f
[

n−4
2

]

f
[

n−2
2

]

































f
[

n
2

]

(4.31)

Equation 4.32 defines the values of the eigenvector for a given eigenvalue λi for a wedge
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Figure 4.4: Loop crease or corner vertex eigenvectors for wedge valence n = 5. The two end
samples are not part of the eigenvector sequence, but instead show that the next sample outside the
vector is zero.

with an odd number n of triangles, i.e. an even number of edges. Notice that the indices have been

chosen on half integers, so that there is symmetry about the middle of the eigenvector.

e =
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8
, ē =

1
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


f
[

n
2

]

(4.32)

The next sample at the front and end of the sequence t = − n
2 and t = n

2 are not present in
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the first and last difference equations fo the T12 subblock. So functions that have these samples equal

to zero, f
[
−n

2

]
= f

[
n
2

]
= 0, must be chosen from the family of solutions. f

[
n
2

]
= cos

[
n
2 θi

]
= 0

when θi = iπ
n

for odd integers i, see the left hand columns of Figures 4.3 and 4.4. While f
[

n
2

]
=

sin
[

n
2 θi

]
= 0 when θi = iπ

n
for even integers i, see the right hand columns of Figures 4.3 and 4.4.

Because of the lower block triangular structure of the corner and crease subdivision ma-

trices, all of the eigenvectors of the T12 subblock when zero extend on the top are also eigenvectors

of the full subdivision matrix S. The last three eigenvectors are dependent on the subblock T0.

The eigenvalues of T0 for the corner and crease cases take on values of λ ∈
{
1, 1

2 , 1
4

}
. These

eigenvectors must have some of the top three elements nonzero which are all multiples of f
[

n
2

]
.

Equation 4.25 shows the relationship between the eigenvalue λ and the frequency θ of the sine or

cosine function. The following table shows the valences n which will have f
[

n
2

]
= 0 and can lead

to a missing eigenvalue such that the matrix S is defective.

θ = cos−1
(
−3e−λ

2e

)
cos
(

n
2 θ
)

= 0 sin
(

n
2 θ
)

= 0

λ = 1
2 = 4e π

3 n = 6k + 3 n = 6k

λ = 1
4 = 2e 2π

3 n = 3k + 3
2 n = 3k

(4.33)

Both n and k must be integers, so k can be removed from these expressions by using modulo

arithmetic.

θ = cos−1
(
−3e−λ

2e

)
cos
(

n
2 θ
)

= 0 sin
(

n
2 θ
)

= 0

λ = 1
2 = 4e π

3 n%6 = 3 n%6 = 0

λ = 1
4 = 2e 2π

3 n%3 = 3
2 n%3 = 0

(4.34)

The bottom left entry demonstrates that there is never a problem with the cosine function for an

eigenvalue λ = 1
4 . The defective matrix cases for corner and crease vertices will be discussed in

more detail in Sections 4.7.1 and 4.7.2.

4.4 General z-Transform Solution n Even

The general difference equation corresponding to the Loop edge averaging rules is:

0 =f [t− 2] + αf [t− 1] + f [t] (4.35)

We showed that f [t] = cos [tθ] and f [t] = sin [tθ] were solutions if α = −2 cos [θ]. This is

only possible if −2 ≤ α ≤ 2. We can solve for a more general family of solutions using the
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z-transform. The z-transform [1] is the discrete analog of the Laplace transform. The Laplace

transform is useful for solving continuous differential equations, and the z-transform is useful for

solving discrete difference equations.

The z-transform states that a discrete sampled time signal f [t] can be represented in the

z-domain as

f [t]→ f (z) =
∞∑

t=0

f [t] z−t (4.36)

Using this definition, we can derive the z-transform for a shifted time signal by substituting t →
t + m and manipulating the infinite sum.

f [t−m]→
∞∑

t=0

f [t−m] z−t (4.37)

→
∞∑

t=−m

f [t] z−t−m (4.38)

→ z−m

( −1∑

t=−m

f [t] z−t +

∞∑

t=0

f [t] z−t

)

(4.39)

→ z−m

( −1∑

t=−m

f [t] z−t + f (z)

)

(4.40)

We can convert our difference equation to the z-domain using this rule. The advantage of transform-

ing our difference equation to the z-domain is that the many shifted versions are transformed into a

single z-transformed function f (z). The function f (z) can be solved for as function of powers of

the variable z and constant coefficient samples from the time signal f [t].

In the case of our generic cosine type difference equation, the z-transformed function is

formed by applying the time shift rule, and then solving for f (z).

0 =
(
z−2f (z) + z−1f [−1] + f [−2]

)
+ α

(
z−1f (z) + f [−1]

)
+ f (z) (4.41)

f (z) =− (f [−2] + αf [−1]) + f [−1] z−1

1 + αz−1 + z−2
(4.42)

By evaluating our difference equation at t = 0, we derive a useful relation between some of the

samples of f [t].

0 =f [−2] + αf [−1] + f [0] (4.43)

−f [0] =f [−2] + αf [−1] (4.44)
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We can substitute this relation into the z-domain function to simplify it.

f (z) =
f [0]− f [−1] z−1

1 + αz−1 + z−2
(4.45)

We showed before that in the case where α = −2 cos (θ) that both f [t] = cos [tθ] and f [t] =

sin [tθ] are solutions to this difference equation. So we can use this formula to derive the z-

transforms of both cosine and sine.

cos (zθ) =
1− cos (θ) z−1

1− 2 cos (θ) z−1 + z−2
(4.46)

sin (zθ) =
sin (θ) z−1

1− 2 cos (θ) z−1 + z−2
(4.47)

The final step in using z-transforms to solve difference equations is to apply an inverse transform

to f (z) to get back the solution time signal f [t], so it is useful to have a catalog of know functions

and their z-transforms. Continuing to assume that α = −2 cos (θ), we derive a general solution for

any given initial conditions f [−1] and f [0] as a sum of cosines and sines.

f (z) =
f [0]− f [−1] z−1

1− 2 cos (θ) z−1 + z−2
(4.48)

=f [0]
1− cos (θ) z−1

1− 2 cos (θ) z−1 + z−2
+

(
cos (θ) f [0]− f [−1]

sin (θ)

)
sin (θ) z−1

1− 2 cos (θ) z−1 + z−2

(4.49)

We then apply the inverse z-transforms from Equations 4.46 and 4.46 to recover the time signal

f [t].

f [t] =f [0] cos [tθ] +

(
cos (θ) f [0]− f [−1]

sin (θ)

)

sin [tθ] (4.50)

Defining different values for f [−1] and f [0] can give the cosine function the sine function or any

linear combination of the two.

We saw that the general approach with z-transforms is to manipulate the expression for

f (z) into subterms that can be easily inverse transformed. For a more general solution to our

difference equation, let α be any real or complex constant. We can simplify the expression for f (z)

by factoring the denominator using the quadratic equation.

f (z) =
f [0]− f [−1] z−1

1 + αz−1 + z−2
(4.51)

=
f [0]− f [−1] z−1

(

1 + α+
√

α2−4
2 z−1

)(

1 + α−
√

α2−4
2 z−1

) (4.52)
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Note that the difference of these factors has a simpler form:
(

1 +
α +
√

α2 − 4

2
z−1

)

−
(

1 +
α−
√

α2 − 4

2
z−1

)

=
√

α2 − 4z−1 (4.53)

The transformed function can be split into two simpler terms by multiplying by this quantity over

itself.

f (z) =
f [0]− f [−1] z−1

(

1 + α+
√

α2−4
2 z−1

)(

1 + α−
√

α2−4
2 z−1

)

(√
α2 − 4z−1

√
α2 − 4z−1

)

(4.54)

=
f [0]− f [−1] z−1

√
α2 − 4z−1





(

1 + α+
√

α2−4
2 z−1

)

−
(

1 + α−
√

α2−4
2 z−1

)

(

1 + α+
√

α2−4
2 z−1

)(

1 + α−
√

α2−4
2 z−1

)



 (4.55)

=
−f [−1] + f [0] z√

α2 − 4

(

1

1 + α−
√

α2−4
2 z−1

− 1

1 + α+
√

α2−4
2 z−1

)

(4.56)

=− f [−1]√
α2 − 4

(

1

1 + α−
√

α2−4
2 z−1

− 1

1 + α+
√

α2−4
2 z−1

)

+
f [0]√
α2 − 4

(

z

1 + α−
√

α2−4
2 z−1

− z

1 + α+
√

α2−4
2 z−1

)

(4.57)

Each of these terms is a standard z-transform which corresponds to the following time signal:

f (z) =
zm

1− βz−1
→ f [t] =βtu [t]⊗ δ [t + m] (4.58)

=βt+mu [t + m] (4.59)

The unit impulse δ [t−m] has a value of 1 at t = m and 0 every where else. Convolving a function

with an impulse shifts the other function by m. The unit step u [t−m] is 0 for t < m and 1 for

t ≥ m.

We can then perform the inverse z-transform to get the general form for the family of

solutions. Note that the u [t + 1] can be changed to u [t] because the value of the associated term at

t = −1 is zero.

f [t] =− f [−1] u [t]√
α2 − 4

((

−α−
√

α2 − 4

2

)n

−
(

−α +
√

α2 − 4

2

)n)

f [0] u [t + 1]√
α2 − 4





(

−α−
√

α2 − 4

2

)n+1

−
(

−α +
√

α2 − 4

2

)n+1


 (4.60)

f [t] =
(−1)n u [t]√

α2 − 4






−f [−1]
((

α−
√

α2−4
2

)n

−
(

α+
√

α2−4
2

)n)

−f [0]

((
α−

√
α2−4
2

)n+1
−
(

α+
√

α2−4
2

)n+1
)




 (4.61)
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Figure 4.5: Loop crease or corner vertex eigenvectors for valence n = 4.
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Figure 4.6: Loop crease or corner vertex eigenvectors for valence n = 5.



69

As with the cosine and sine functions, we are interested in both functions that have even or odd

symmetry at the origin. Because the samples from the function will be used as an eigenvector, the

scale of the function is not important, so we will keep f [−1] as an unspecified scalar. We can then

solve for f [0] in terms of f [−1] and f [1] using the difference equation:

0 =f [−1] + αf [0] + f [1] (4.62)

f [0] =− 1

α
(f [−1] + f [1]) (4.63)

For even symmetry, we define f [t] ≡ f [−t], so the general solution can be simplified.

f [1] ≡f [−1] (4.64)

f [0] =− 2

α
f [−1] (4.65)

feven [t] =
(−1)n f [−1]u [t]

2nα
√

α2 − 4






−α
((

α−
√

α2 − 4
)n

−
(

α +
√

α2 − 4
)n)

+

((

α−
√

α2 − 4
)n+1

−
(

α +
√

α2 − 4
)n+1

)




 (4.66)

For odd symmetry, we define f [t] ≡ −f [−t], so the general solution can be simplified.

f [1] =− f [−1] (4.67)

f [0] =0 (4.68)

fodd [t] =
(−1)n+1 f [−1] u [t]

2n
√

α2 − 4

((

α−
√

α2 − 4
)n

−
(

α +
√

α2 − 4
)n)

(4.69)

The eigenvectors for the crease and corner cases can be generated again using this new

more general family of functions. We know from before that sine and cosine functions are solutions,

so we will let α = −2 cos (θi) where θi = iπ
n

. In Figure 4.5, we graph the real projection of the

complex general function in black superimposed over the real sine and cosine functions in blue.

Even though the two analog solution functions are different, they coincide at the discrete sampling

frequency. All of the discrete sample points are purely real values.

4.5 General z-Transform Solution n Odd

The sampling pattern for the general difference equation corresponding to the Loop edge

averaging rules for valence n odd is slightly different than the even case. We want the samples to

be symmetric about the origin on half integer values, so we must change the difference equation to
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scale the parameter by 2 and only sample at odd integers.

0 =f [t− 5] + αf [t− 3] + f [t− 1] (4.70)

We transform this equation to the z-domain using the z-transform.

0 =
(
f [−5] + f [−4] z−1 + f [−3] z−2 + f [−2] z−3 + f [−1] z−4 + z−5f (z)

)

+ α
(
f [−3] + f [−2] z−1 + f [−1] z−2 + z−3f (z)

)

+
(
f [−1] + z−1f (z)

)
(4.71)

We then solve for the z-domain function f (z).

f (z) =−




(f [−5] + αf [−3] + f [−1]) + (f [−4] + αf [−2]) z−1

+(f [−3] + αf [−1]) z−2 + f [−2] z−3 + f [−1] z−4





z−1 + αz−3 + z−5
(4.72)

To make it easier to specify our symmetry constraints, we solve for f [−5] and f [−3] in terms of

f [−1] and f [1] using two instantiations of the difference equation.

0 =f [−5] + αf [−3] + f [−1] (4.73)

0 =f [−3] + αf [−1] + f [1] (4.74)

The expressions for f [−5] and f [−3] are then:

f [−5] =− (αf [−3] + f [−1]) (4.75)

f [−3] =− (αf [−1] + f [1]) (4.76)

Substituting these express into the z-domain function reduces the number of terms.

f (z) =− (f [−4] + αf [−2]) z−1 − f [1] z−2 + f [−2] z−3 + f [−1] z−4

z−1 + αz−3 + z−5
(4.77)

We then factor the denominator using the quadratic equation.

f (z) =− (f [−4] + αf [−2]) z−1 − f [1] z−2 + f [−2] z−3 + f [−1] z−4

z−1 + αz−3 + z−5

(z

z

)

(4.78)

=− (f [−4] + αf [−2])− f [1] z−1 + f [−2] z−2 + f [−1] z−3

1 + αz−2 + z−4
(4.79)

=− (f [−4] + αf [−2])− f [1] z−1 + f [−2] z−2 + f [−1] z−3

(

1 + α+
√

α2−4
2 z−2

)(

1 + α−
√

α2−4
2 z−2

) (4.80)
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Note that the difference of these factored terms is a simple expression.
(

1 +
α +
√

α2 − 4

2
z−2

)

−
(

1 +
α−
√

α2 − 4

2
z−2

)

=
√

α2 − 4z−2 (4.81)

Multiplying top and bottom by this difference of factors splits the fraction into two smaller fractions.

We also manipulate the powers of the numerator z’s to make the inverse z-transform easier.

f (z) =f (z)

(

1 + α+
√

α2−4
2 z−2

)

−
(

1 + α−
√

α2−4
2 z−2

)

√
α2 − 4z−2

(4.82)

=−










(f [−4] + αf [−2])

−f [1] z−1

+f [−2] z−2

+f [−1] z−3










√
α2 − 4z−2




1

(

1 + α−
√

α2−4
2 z−2

) − 1
(

1 + α+
√

α2−4
2 z−2

)



 (4.83)

=−










(f [−4] + αf [−2]) z3

−f [1] z2

+f [−2] z

+f [−1]










√
α2 − 4




z−1

(

1 + α−
√

α2−4
2 z−2

) − z−1

(

1 + α+
√

α2−4
2 z−2

)





(4.84)

f (z) is the difference of two terms that are of the form g (z). We can solve for the inverse z-

transform g [t] using a similar set of fraction manipulations.

g (z) =
z−1

(1− β2z−2)
(4.85)

=
z−1

(1 + βz−1) (1− βz−1)
(4.86)

=
z−1

(1 + βz−1) (1− βz−1)

((
1 + βz−1

)
−
(
1− βz−1

)

2βz−1

)

(4.87)

=
1

2β

(
1

1− βz−1
− 1

1 + βz−1

)

(4.88)

g [t] =
u [t]

2β

(
βt − β−t

)
(4.89)

=
u [t]

2

(
βt−1 − β−t−1

)
(4.90)

(4.91)



72

We can now apply the inverse z-transform to find f [t] where β takes on the imaginary values

i

√

α±
√

α2−4
2 respectively.

f [t] =− 1

2
√

α2 − 4










(f [−4] + αf [−2]) δ [t + 3]

−f [1] δ [t + 2]

+f [−2] δ [t + 1]

+f [−1] δ [t]










⊗

u [t]









((

i

√

α−
√

α2−4
2

)t−1

−
(

i

√

α−
√

α2−4
2

)−t−1
)

−
((

i

√

α+
√

α2−4
2

)t−1

−
(

i

√

α+
√

α2−4
2

)−t−1
)









(4.92)

For the even symmetry solutions, we solve for f [−4] and f [−2] using the following two

equations:

f [−1] = f [1] (4.93)

f [−3] = f [3] (4.94)

This yields the even symmetry function:

f [t] =

(

i
k+12−

k−3

2 f [−1]
)((√

a−
√

a2 − 4
)k

−
(√

a +
√

a2 − 4
)k
)

(√
a + 2 +

√
a− 2

)√
a− 2

√

a−
√

a2 − 4
(4.95)

As with the even valence case, the eigenvectors for the crease and corner cases can be

generated again using this new more general family of functions for the odd valence case. We

know from before that sine and cosine functions are solutions, so we will let α = −2 cos (θ) where

θi = iπ
n

. In Figure 4.6, we graph the samples from the general function in black superimposed on

the sine and cosine functions in blue. Even though the two analog solutions functions are different,

they coincide at the discrete sampling frequency. The general function takes on imaginary values,

so the graphs just show the projection onto the real plane. The function is purely real at the sample

points, because it is consistent with the real valued sine and cosine for the chosen α.

4.6 Loop Dart Eigenvectors

In the dart vertex case, the eigenvectors associated with the edge averaging rules are cou-

pled to the vertex averaging rules. The T12 subblock of edge averaging rules from the subdivision
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Figure 4.7: Loop dart vertex eigenvectors for valence n = 4. The two end samples are not part of
the eigenvector sequence.

matrix S is exactly the same as in the crease and corner cases. The difference is appearant in the

T02 subblock because the v1 averaging coefficients in the crease and corner case are all zeros. The
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dart subdivision matrix when the valence n is even is:

e =
1

8
, v0 = 1− nv1, d0 = v0 − λi, d1 = 4e− λi, d = 3e− λi

0 =






























d0 v1 v1 v1 v1 v1 v1 v1 v1

4e d1 0 0 · · · 0 0 0 · · · 0 0

3e e d e 0

e 0 e d e

...
. . .

e 0 e d e

e 0 e d e

e 0 e d e

...
. . .

e 0 e d e

3e e 0 e d



























































c0

bn

2

b
−

n−2
2

b
−

n−4
2

...

b−1

b0

b1

...

bn−4
2

bn−2
2






























bn

2

(4.96)

The dart subdivision matrix when the valence n is odd is:

e =
1

8
, v0 = 1− nv1, d0 = v0 − λi, d1 = 4e− λi, d = 3e− λi

0 =



























d0 v1 v1 v1 v1 v1 v1 v1

4e d1 0 0 · · · 0 0 · · · 0 0

3e e d e 0

e 0 e d e

...
. . .

e 0 e d e

e 0 e d e

...
. . .

e 0 e d e

3e e 0 e d






















































c0

bn

2

b
−

n−2
2

b
−

n−4
2

...

b− 1
2

b 1
2

...

bn−4
2

bn−2
2




























bn

2

(4.97)

In the crease and corner cases, the sine and cosine based T12 subblock eigenvectors are

also eigenvectors of the entire matrix when extended at the top with zeros because the matrix is

lower block triangular. The vertex averaging rule from the dart case makes it more complicated.
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Figure 4.8: Loop dart vertex eigenvectors for valence n = 5. The two end samples are not part of
the eigenvector sequence.

The odd symmetry sine based eigenvectors are the same because they sum to zero, so when they

are multiplied against the top row vector of all v1’s the result is zero. But this leaves
⌊

n+4
2

⌋
even

symmetry eigenvectors undetermined. The problem with eigenvectors from the crease and corner

cases, which had cosine sequences that terminated with zeros on the ends, is that multiplication

with the top vertex rule row will create a nonzero value. It is not possible to make c0 nonzero while

keeping bn
2

zero because of the second row.

The same difference equation is still present, so a cosine-like sequence must be used. The

difference is that b n
2

, which contains the value for both ends of the sequence, must be nonzero.

Fortunately in the even symmetry case, b n
2

= b−n
2

, so we just need to adjust θi. Examining one of

the middle rows, we see that c0 which must be nonzero is multiplied by the nonzero value e, so the

difference equation must sum to a nonzero quantity. This can be accomplished by adding a constant

c1 to every term in the the sequence.

bt =c1 + f [t] (4.98)

Using the sharp edge rule from row 2 and any of the smooth edge rule rows, we can solve
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for c1 and c0 in terms of the eigenvalue λi and f
[

n
2

]
.

0 =4ec0 + (4e− λi)
(

c1 + f
[n

2

])

(4.99)

0 =3ec0 + (5e− λi) c1 (4.100)

The expressions for c1 and c0 are:

c1 =
3 (4e− λi)

(8e− λi)
f
[n

2

]

(4.101)

c0 =− 5e− λi

3e
c1 =

(5e− λi) (4e− λi)

e (8e− λi)
f
[n

2

]

(4.102)

All of the elements of the eigenvector are now multiples of f [−1] which can be divided out, so the

top vertex averaging row can be used to create a lower degree characteristic polynomial with the

sine based eigenvalue factors removed.

0 = (v0 − λi) c0 + v1




nc1 + f

[n

2

]

+ f [0] + 2

dn−2

2 e∑

k=1

f [k]




 (4.103)

We do not currently have a closed form solution for these eigenvalues, so we use a numeri-

cal solver to get the eigenvalues and use them to generate the eigenvectors. Some of the eigenvalues

are outside the range in which a cosine function is possible, so we use the general solution form

instead. Figure 4.7 shows the eigenvectors for an even valence case, while Figure 4.8 shows the

eigenvectors for an odd valence case. The left hand column has eigenvectors with even symmetry,

while the right hand column has the same sine based eigenvectors from the crease and corner case.

4.7 Loop Crease and Corner Jordan Decompositions

We have seen how to use the z-transform as a general tool for solving difference equations,

so let us return to the crease and corner cases where for certain valences n the subdivision matrix

S is defective and use the z-transform to solve for the remaining vectors. When the matrix S is

defective, there is an eigenvalue λ with multiplicity m > 1 where less than m linearly independent

eigenvectors exist. In this case, a generalized eigenvector, also called a Jordan vector, must be used

in the decomposition. A Jordan vector vJ for the eigenvalue λ satisfies the generalized eigenvalue

equation where vE is an eigenvector of S associated with the same eigenvalue λ.

(S − λI) vJ =vE (4.104)
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This affects the difference equation for an undetermined signal g [t] by setting it equal to an existing

signal f [t] for the known eigenvector instead of zero.

g [t− 2] + αg [t− 1] + g [t] =f [t− 1] (4.105)

We will now solve for these Jordan vectors for the defective corner and crease cases.

4.7.1 Loop Corner Jordan Decomposition

In the corner vertex case, the subdivision matrix S is lower block triangular, so the eigen-

values of the diagonal subblocks are also eigenvalues of the entire matrix. The T0 subblock is of the

form:

T0 =







8e 0 0

4e 4e 0

4e 0 4e







(4.106)

The eigen-decomposition of this block is:

T0V0 =V0Λ0 =







1 0 0

1 bn
2

bn
2

1 −bn
2

bn
2













1 0 0

0 4e 0

0 0 4e







(4.107)

The first eigenvector, associated with the eigenvalue λ = 1, is all ones due to the sum to one property

of the averaging rules. We need two eigenvectors where b−n
2
6= 0 and bn

2
6= 0, so that they will be

linearly independent of the eigenvectors of subblock T12. Equation 4.34 shows that when λ = 1
2

and n is divisible by 3, either the sine or cosine sequence will terminate with a zero value. In this

case, the matrix is defective, and a nontrivial Jordan block will have to be used.

When the matrix is defective, we solve the generalized eigenvalue equation which is sim-

ilar to Equation 4.31 with eigenvector signal f [t] replaced by g [t] and the zero vector replaced by

f [t]. Taking λ = 1
2 = 4e from subblock T0, we get the following difference equation.

eg [t− 2] + (3e− λ) g [t− 1] + eg [t] =f [t− 1] (4.108)

eg [t− 2]− eg [t− 1] + eg [t] =f [t− 1] (4.109)

g [t− 2]− g [t− 1] + g [t] =
1

e
f [t− 1] (4.110)

(4.111)
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Remember the cosine difference equation, the left hand side is like the cosine function with θ = π
3 .

g [t− 2]− 2 cos
(π

3

)

g [t− 1] + g [t] =
1

e
f [t− 1] (4.112)

Substituting t = 0 into the difference gives a relationship for g [−2].

g [−2]− g [−1] + g [0] =
1

e
f [−1] (4.113)

g [−2] =
1

e
f [−1] + g [−1]− g [0] (4.114)

We now move to the z-domain applying the z-transform to both sides of the equation.

(
g [−2] + z−1g [−1] + z−2g (z)

)
−
(
g [−1] + z−1g (z)

)
+ g (z) =

1

e

(
f [−1] + z−1f (z)

)

(4.115)
(
1− z−1 + z−2

)
g (z) +

(
g [−2]− g [−1] + z−1g [−1]

)
=

1

e
f [−1] +

1

e
z−1f (z)

(4.116)

We solve for g (z) and simplify by substituting for g [−2].

(
1− z−1 + z−2

)
g (z) =−

(

g [−2]− g [−1]− 1

e
f [−1] + z−1g [−1]

)

+
1

e
z−1f (z) (4.117)

(
1− z−1 + z−2

)
g (z) =−

(
−g [0] + z−1g [−1]

)
+

1

e
z−1f (z) (4.118)

We find that g (z) is made up of cosine and sine z-transform terms.

g (z) =
g [0]− g [−1] z−1

1− z−1 + z−2
+

z−1f (z)

e (1− z−1 + z−2)
(4.119)

g (z) =







g [0]

(
1−cos(π

3 )z−1

1−z−1+z−2

)

+
g[0] cos( π

3 )−g[−1]

sin( π
3 )

(
sin(π

3 )z−1

1−z−1+z−2

)

+ 1
e sin(π

3 )

(
sin(π

3 )z−1

1−z−1+z−2

)

f (z)







(4.120)

We can now apply the inverse z-transform. The third term is a sine function multiplied by the f (z).

We need to apply the property that multiplication in the z-domain is equivalent to convolution in the

time domain and vice versa.

g [t] =






g [0] cos
[
tπ
3

]
u [t] +

g[0] cos(π
3 )−g[−1]

sin(π
3 )

sin
[
tπ
3

]
u [t]

+ 1
e sin( π

3 )

(
sin
[
tπ
3

]
u [t]

)
⊗ (f [t]u [t])




 (4.121)

(4.122)
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The discrete convolution of two functions a [t] and b [t] is defined as:

a [t]⊗ b [t] =
∞∑

k=−∞
a [k] b [t− k] (4.123)

We substitute this definition into our equation and apply two simplifications based on zero values of

the unit step function to make the sum finite.

g [t] =
1

e sin
(

π
3

)




e sin

(
π
3

)
g [0] cos

[
tπ
3

]
u [t] + e

(
g [0] cos

(
π
3

)
− g [−1]

)
sin
[
tπ
3

]
u [t]

+
∑∞

k=∞ sin
[
k π

3

]
u [k] f [t− k]u [t− k]





(4.124)

=
1

e sin
(

π
3

)




e sin

(
π
3

)
g [0] cos

[
tπ
3

]
u [t] + e

(
g [0] cos

(
π
3

)
− g [−1]

)
sin
[
tπ
3

]
u [t]

+
∑t

k=∞ sin
[
k π

3

]
u [k] f [t− k]





(4.125)

=
u [t]

e sin
(

π
3

)




e sin

(
π
3

)
g [0] cos

[
tπ
3

]
+ e

(
g [0] cos

(
π
3

)
− g [−1]

)
sin
[
tπ
3

]

+
∑t

k=0 sin
[
k π

3

]
f [t− k]



 (4.126)

Odd Symmetry

When the wedge valence n is even and divisible by 3, a Jordan vector coupled with the

odd symmetry eigenvector solution f [t] = sin
[
tπ
3

]
is required. Evaluating the difference equation

gives some simplifying substitutions.

f [t] = sin
[

t
π

3

]

(4.127)

f [0] =0 (4.128)

g [1] =− g [−1] (4.129)

1

e
f [0] =g [−1]− g [0] + g [1] (4.130)

g [0] =0 (4.131)

(4.132)
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We substitute f [t] = sin
[
tπ
3

]
into the difference equation and apply some trigonometric substitu-

tions to simplify the summation.

g [t] =
u [t]

e sin
(

π
3

)




e sin

(
π
3

)
g [0] cos

[
tπ
3

]
+ e

(
g [0] cos

(
π
3

)
− g [−1]

)
sin
[
tπ
3

]

+
∑t

k=0 sin
[
k π

3

]
f [t− k]



 (4.133)

g [t] =
u [t]

e sin
(

π
3

)

(

eg [1] sin
[

t
π

3

]

+

t∑

k=0

sin
[

k
π

3

]

sin
[

(t− k)
π

3

]
)

(4.134)

g [t] =
u [t]

e sin
(

π
3

)

(

eg [1] sin
[

t
π

3

]

+

t∑

k=0

1

2

(

cos
[

(2k − t)
π

3

]

− cos
[

t
π

3

])
)

(4.135)

g [t] =
u [t]

2e sin
(

π
3

)

(

2eg [1] sin
[

t
π

3

]

− (t + 1) cos
[

t
π

3

]

+

t∑

k=0

cos
[

(2k − t)
π

3

]
)

(4.136)

g [t] =
u [t]

2e sin
(

π
3

)

(

2eg [1] sin
[

t
π

3

]

− (t + 1) cos
[

t
π

3

]

+

t∑

k=0

cos
[

(2k − t)
π

3

]
)

(4.137)

(4.138)

The term cos
[
(2k − t) π

3

]
is periodic, and each of these cycles of three consecutive integer k’s sum

to zero. The sum can then be reduce to the remainder of t
3 terms which is at most two terms.

g [t] =
u [t]

2e sin
(

π
3

)




2eg [1] sin

[

t
π

3

]

− (t + 1) cos
[

t
π

3

]

+
t∑

k=3b t
3c

cos
[

(2k − t)
π

3

]




 (4.139)

Even Symmetry

When the wedge valence n is odd and divisible by 3, a Jordan vector coupled with the

even symmetry eigenvector solution f [t] = cos
[
tπ
3

]
is required. Evaluating the difference equation

gives some simplifying substitutions.

f [t] = cos
[

t
π

3

]

(4.140)

f [0] =1 (4.141)

g [1] =g [−1] (4.142)

1

e
f [0] =g [−1]− g [0] + g [1] (4.143)

g [0] =2g [1]− 1

e
(4.144)

(4.145)
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We substitute f [t] = cos
[
tπ
3

]
into the difference equation and apply some trigonometric substitu-

tions to simplify the summation.

g [t] =
u [t]

e sin
(

π
3

)




e sin

(
π
3

)
g [0] cos

[
tπ
3

]
+ e

(
g [0] cos

(
π
3

)
− g [−1]

)
sin
[
tπ
3

]

+
∑t

k=0 sin
[
k π

3

]
f [t− k]



 (4.146)

g [t] =
u [t]

e sin
(

π
3

)




2e sin

(
π
3

)
g [1] cos

[
tπ
3

]
− sin

(
π
3

)
cos
[
tπ
3

]
− cos

(
π
3

)
sin
[
tπ
3

]

+
∑t

k=0 sin
[
k π

3

]
cos
[
(t− k) π

3

]



 (4.147)

g [t] =
u [t]

e sin
(

π
3

)




2e sin

(
π
3

)
g [1] cos

[
tπ
3

]
− sin

[
(t + 1) π

3

]

+
∑t

k=0
1
2

(
sin
[
(2k − t) π

3

]
+ sin

[
tπ
3

])



 (4.148)

g [t] =
u [t]

2e sin
(

π
3

)




4e sin

(
π
3

)
g [1] cos

[
tπ
3

]
− 2 sin

[
(t + 1) π

3

]
+ (t + 1) sin

[
tπ
3

]

+
∑t

k=0 sin
[
(2k − t) π

3

]



 (4.149)

The term sin
[
(2k − t) π

3

]
is periodic, and each of these cycles of three consecutive integer k’s sum

to zero. The sum can then be reduce to the remainder of t
3 terms which is at most two terms.

g [t] =
u [t]

2e sin
(

π
3

)




2 (2eg [1]− 1) sin

(π

3

)

cos
[

t
π

3

]

+ t sin
[

t
π

3

]

+

t∑

k=3b t
3c

sin
[

(2k − t)
π

3

]






(4.150)

The solution we derived is for integer samples, but when the wedge valence n is odd, we

choose to sample at half integer steps. For the smooth sine and cosine terms this time scaling works,

but the summation term needs to be modified. The summation term is simply a periodic correction

term, so we scale our half integers by two by substituting t→ 2t into the summation only.

g [t] =
u [t]

2e sin
(

π
3

)




2 (2eg [1]− 1) sin

(π

3

)

cos
[

t
π

3

]

+ t sin
[

t
π

3

]

+

2t∑

k=3b 2t
3 c

sin
[

(2k − 2t)
π

3

]






(4.151)

4.7.2 Loop Crease Jordan Decomposition

In the crease vertex case, the subdivision matrix S is lower block triangular, so the eigen-

values of the diagonal subblocks are also eigenvalues of the entire matrix. The T0 subblock is of the

form:

T0 =







6e e e

4e 4e 0

4e 0 4e







(4.152)
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The eigen-decomposition of this block is:

T0V0 =V0Λ0 =







1 0 −1
2bn

2

1 bn
2

bn
2

1 −bn
2

bn
2













1 0 0

0 4e 0

0 0 2e







(4.153)

The first eigenvector, associated with the eigenvalue λ = 1, is all ones due to the sum to one property

of the averaging rules. When λ = 1
2 = 4e, the eigenvector must have odd symmetry, so the matrix

is defective if n%6 = 3, Equation 4.34. The Jordan vector in this case is the same as the corner case

Equation 4.139. The eigenvalue λ = 1
4 = 2e never causes the matrix to be defective.

4.8 Catmull-Clark Eigenvectors

The eigenvectors associated with the Catmull-Clark face and edge averaging rules follow a

very similar set of difference equations to that of the edge rules of Loop subdivision. In the Catmull-

Clark case, the face rules have a repeated set of three coefficients along the diagonal interleaved with

the edge rules which have a repeated set of five coefficients as shown in Equation 4.154. We assume

that the eigenvector contains samples from two different signals on alternating elements.

e =
1

16
, f =

1

4
= 4e, de = 6e− λi, df = f − λi = 4e− λi

0 =



















. . .

e e de e e

f df f

e e de e e

f df f

e e de e

. . .





































...

g [−1]

h [0]

g [0]

h [1]

g [1]
...



















(4.154)

Looking at a window of three consecutive rows, we have the following system of three difference

equations over two different signals g [t] and h [t].

0 = 4eg [t− 2] + (4e− λi) h [t− 1] + 4eg [t− 1]

0 = eg [t− 2] + eh [t− 1] + (6e− λi) g [t− 1] + eh [t] + eg [t]

0 = 4eg [t− 1] + (4e− λi)h [t] + 4eg [t]

(4.155)
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The bottom equation gives a formula for h [t] in terms of g [t]:

h [t] =− 4e

4e− λi
(g [t− 1] + g [t]) (4.156)

We subtract the face rule equations multiplied by e from the edge rule equation multiplied by

(4e− λi) to form a difference equation for g [t].

0 =− eλig [t− 2] +
(
(4e− λi) (6e− λi)− 8e2

)
g [t− 1]− eλig [t] (4.157)

0 =g [t− 2]− 16e2 − 10eλi + λ2
i

eλi
g [t− 1] + g [t] (4.158)

This is the cosine or sine difference equation that we saw before if the middle coefficient has the

correct form. We can also solve for the relationship between the eigenvalue λi and the frequency of

the sines and cosines θi.

−2 cos (θi) =− 16e2 − 10eλi + λ2
i

eλi
(4.159)

cos (θi) =
16e2 − 10eλi + λ2

i

2eλi
(4.160)

0 =λ2
i − 2e (5 + cos (θi)) λi + 16e2 (4.161)

λi =e

(

5 + cos (θi)± cos

(
θi

2

)
√

2 (9 + cos (θi))

)

(4.162)

So g [t] is either a cosine or a sine function, and h [t] is a scaled sum of two of the same type of

function:

g [t] = cos [tθi] , h [t] =− 4e

4e− λi
(cos [(t− 1) θi] + cos [tθi]) (4.163)

g [t] = sin [tθi] , h [t] =− 4e

4e− λi
(sin [(t− 1) θi] + sin [tθi]) (4.164)

4.8.1 Catmull-Clark Smooth and Spike Eigenvectors

The Catmull-Clark face and edge averaging rules in the smooth and spike vertex cases

wrap around in a cyclic manner, Equation 4.165. The edge and face rules are in alternating rows,

so the elements of the eigenvector for a vertex of valence n are alternating pairs of g [t] and h [t] for
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t ∈ [0, n− 1]. Equation 4.165 defines the values of the eigenvector for a given eigenvalue λi.

e =
1

16
, f =

1

4
= 4e, de = 6e− λi, df = f − λi = 4e− λi

g [n− 1]

h [n− 1]

0 =

























de e e e e

f df f

e e de e e

f df f

. . .

e e de e e

f df f

e e e de e

f f df

















































g [0]

h [0]

g [1]

h [1]
...

g [n− 2]

h [n− 2]

g [n− 1]

h [n− 1]

























g [0]

(4.165)

As indicated by the highlighted extra elements, the cyclic nature of the matrix shows that g [n] =

g [0], g [−1] = g [n− 1], and h [−1] = h [n− 1]. g [t] must then be periodic in n, so θi = 2πi
n

.

The pairs of functions in Equations 4.166 and 4.167 for i ∈
{
1,
⌊

n−1
2

⌋}
define linearly independent

eigenvectors for even and odd symmetries respectively. Note that we have applied a shift of δ [t + 1]

to the h [t] function to make the indices in the eigenvector nicer.

g [t] = cos

[

t
2πi

n

]

, h [t] =− 4e

4e− λi

(

cos

[

t
2πi

n

]

+ cos

[

(t + 1)
2πi

n

])

(4.166)

g [t] = sin

[

t
2πi

n

]

, h [t] =− 4e

4e− λi

(

sin

[

t
2πi

n

]

+ sin

[

(t + 1)
2πi

n

])

(4.167)

If n is even, then an additional cosine eigenvector with i = n
2 exists, while the corresponding sine

function is all zeros. The final eigenvector in both cases is all ones which corresponds to i = n.

4.8.2 Catmull-Clark Crease and Corner Eigenvectors

The CatmullClark edge averaging rules for a wedge in the crease and corner vertex cases

get clipped at the sharp edge boundary, indicated by the zeros in the upper right and lower left

corners of the T12 subblock in Equations 4.168 and 4.169. The elements of the eigenvector for a

wedge of valence n are g [t] and h [t] for t ∈
[
−n−2

2 , n−2
2

]
.
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Equation 4.168 defines the values of the eigenvector for a given eigenvalue λi for a wedge

with an even number n of quads, i.e. an odd number of edges.

e =
1

16
, f =

1

4
= 4e, v̄0 =

6

8
= 12e, v̄1 =

1

8
= 2e, ē =

1

2
= 8e

de = 6e− λi, df = f − λi = 4e− λi, dv̄ = v̄0 − λi, dē = ē− λi

0 =






































dv̄ v̄1 v̄1 0 0 0 0 0 0 0 0 0

ē dē 0 0 0 0 · · · 0 0 0 · · · 0 0 0

ē 0 dē 0 0 0 0 0 0 0 0 0

f 0 f df f 0

6e 0 e e de e e 0

f 0 0 f df f

...
. . .

f 0 0 f df f

6e 0 0 e e de e e

f 0 0 f df f

...
. . .

f 0 0 f df f

6e e 0 0 e e de e

f f 0 0 f df












































































c0

g
[

n
2

]

g
[
−n

2

]

h
[
−n−1

2

]

g
[
−n−2

2

]

h
[
−n−3

2

]

...

h
[
− 1

2

]

g [0]

h
[
1
2

]

...

h
[

n−3
2

]

g
[

n−2
2

]

h
[

n−1
2

]







































g
[

n
2

]

(4.168)

Equation 4.169 defines the values of the eigenvector for a given eigenvalue λi for a wedge
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with an odd number n of quads, i.e. an even number of edges.

e =
1

16
, f =

1

4
= 4e, v̄0 =

6

8
= 12e, v̄1 =

1

8
= 2e, ē =

1

2
= 8e

de = 6e− λi, df = f − λi = 4e− λi, dv̄ = v̄0 − λi, dē = ē− λi

0 =






































dv̄ v̄1 v̄1 0 0 0 0 0 0 0 0 0

ē dē 0 0 0 0 · · · 0 0 0 · · · 0 0 0

ē 0 dē 0 0 0 0 0 0 0 0 0

f 0 f df f 0

6e 0 e e de e e 0

f 0 0 f df f

...
. . .

6e 0 0 e e de e e

f 0 0 f df f

6e 0 0 e e de e e

...
. . .

f 0 0 f df f

6e e 0 0 e e de e

f f 0 0 f df












































































c0

g
[

n
2

]

g
[
−n

2

]

h
[
−n−1

2

]

g
[
−n−2

2

]

h
[
−n−3

2

]

...

g
[
− 1

2

]

h [0]

g
[

1
2

]

...

h
[

n−3
2

]

g
[

n−2
2

]

h
[

n−1
2

]







































g
[

n
2

]

(4.169)

The next sample at the front and end of the sequence t = − n
2 and t = n

2 are not present in

the first and last difference equations. So functions that have these samples equal to zero, g
[
−n

2

]
=

g
[

n
2

]
= 0, must be chosen from the family of solutions. g

[
n
2

]
= cos

[
n
2 θi

]
= 0 when θi = iπ

n
for

odd integers i, see the left hand columns of Figures 4.3 and 4.4. While g
[

n
2

]
= sin

[
n
2 θi

]
= 0 when

θi = iπ
n

for even integers i, see the right hand columns of Figures 4.3 and 4.4. We can now write the

formulas for g [t] and h [t] for odd and even columns of the eigenvector matrix. Note that we have

applied a shift of δ
[
t + 1

2

]
to the h [t] function to make the indices in the eigenvector symmetric
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about the middle element.

i ∈ [1, n− 1] θi =
πi

n
λi =e

(

5 + cos (θi)± cos

(
θi

2

)
√

2 (9 + cos (θi))

)

i Odd : g [t] = cos

[

t
πi

n

]

, h [t] =
−4e

4e− λi

(

cos

[(

t− 1

2

)
πi

n

]

+ cos

[(

t +
1

2

)
πi

n

])

(4.170)

i Even : g [t] = sin

[

t
πi

n

]

, h [t] =
−4e

4e− λi

(

sin

[(

t− 1

2

)
πi

n

]

+ sin

[(

t +
1

2

)
πi

n

])

(4.171)

These equations account for 2 (n− 1) of the eigenvectors because there are two different versions

of h [t] for a single i. The coefficient in h [t] is based on λi which takes on two unique values.

For all valences, the final eigenvector for the T12 subblock is for the eigenvalue λ = 1
4 = 4e

corresponding to i = n. For this eigenvalue, the previous eigenvector the functions g [t] and h [t]

both reduce to zeros. Instead g [t] = 0 and h [t] = cos [tπ] is used for valence n odd and g [t] = 0

and h [t] = sin [tπ] is used for valence n even.

Similar to the Loop case, the final three eigenvectors of S are dependent on the subblock

T0. The eigenvalues of T0 for the corner and crease cases take on values of λ ∈
{
1, 1

2 , 1
4

}
. These

eigenvectors must have some of the top three elements nonzero which are all multiples of g
[

n
2

]
.

Equation 4.162 shows the relationship between the eigenvalue λ and the frequency θ of the sine or

cosine function. The following table shows the valences n which will have g
[

n
2

]
= 0 and can lead

to a missing eigenvalue such that the matrix S is defective.

θ = cos−1
(

16e2−10eλ+λ2

2eλ

)

cos
(

n
2 θ
)

= 0 sin
(

n
2 θ
)

= 0

λ = 1
2 = 8e π

2 n = 4k + 2 n = 4k

λ = 1
4 = 4e π n = 2k + 1 n = 2k

(4.172)

Both n and k must be integers, so k can be removed from these expressions by using modulo

arithmetic.

θ = cos−1
(

16e2−10eλ+λ2

2eλ

)

cos
(

n
2 θ
)

= 0 sin
(

n
2 θ
)

= 0

λ = 1
2 = 8e π

2 n%4 = 2 n%4 = 0

λ = 1
4 = 4e π n%2 = 1 n%2 = 0

(4.173)

4.8.3 Catmull-Clark Corner Jordan Vectors

In the corner vertex case, the subdivision matrix S is lower block triangular, so the eigen-

values of the diagonal subblocks are also eigenvalues of the entire matrix. The T0 subblock is of the
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form:

T0 =







16e 0 0

8e 8e 0

8e 0 8e







(4.174)

The eigen-decomposition of this block is:

T0V0 =V0Λ0 =







1 0 0

1 bn
2

bn
2

1 −bn
2

bn
2













1 0 0

0 8e 0

0 0 8e







(4.175)

The first eigenvector, associated with the eigenvalue λ = 1, is all ones due to the sum to one property

of the averaging rules. We need two eigenvectors where b−n
2
6= 0 and bn

2
6= 0, so that they will be

linearly independent of the eigenvectors of subblock T12. Equation 4.173 shows that when λ = 1
2

and n is divisible by 2, either the sine or cosine sequence will terminate with a zero value. In this

case, the matrix is defective, and a nontrivial Jordan block will have to be used.

When the matrix is defective, we solve the generalized eigenvalue equation

(S − λI) vJ =vE (4.176)

This is similar to Equation 4.168 with the zero vector replaced by an eigenvector from T12 composed

of elements a [t] and b [t].

a [t] = cos

[

t
πi

n

]

, b [t] =− 4e

4e− λi

(

cos

[

(t− 1)
πi

n

]

+ cos

[

t
πi

n

])

(4.177)

a [t] = sin

[

t
πi

n

]

, b [t] =− 4e

4e− λi

(

sin

[

(t− 1)
πi

n

]

+ sin

[

t
πi

n

])

(4.178)

The relationship between a [t] and b [t] is

b [t] =− 4e

4e− λi
(a [t− 1] + a [t]) (4.179)

Taking λi = 1
2 = 8e from subblock T0, we get the following system of difference equations for the

generalized eigenvector.

b [t− 1] = 4eg [t− 2]+ (4e− λi) h [t− 1]+ 4eg [t− 1]

a [t− 1] = eg [t− 2]+ eh [t− 1]+ (6e− λi) g [t− 1] + eh [t] + eg [t]

b [t] = 4eg [t− 1] + (4e− λi) h [t] + 4eg [t]

(4.180)
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The bottom equation gives a formula for h [t] in terms of g [t] and a [t]:

h [t] =− 4e

4e− λi
(g [t− 1] + g [t]) +

1

4e− λi
b [t] (4.181)

=− 4e

4e− λi

(

(g [t− 1] + g [t]) +
1

4e− λi
(a [t− 1] + a [t])

)

(4.182)

We subtract the face rule equations multiplied by e from the edge rule equation multiplied by

(4e− λi) to form a difference equation for g [t].

−eλig [t− 2] +
(
(4e− λi) (6e− λi)− 8e2

)
g [t− 1]− eλig [t] =

(

(4e− λi) a [t− 1]

−e (b [t− 1] + b [t])

)

(4.183)

g [t− 2]− 16e2
−10eλi+λ2

i

eλi
g [t− 1] + g [t] = − 1

eλi(4e−λi)

(

(4e− λi)
2
a [t− 1]

+4e2 (a [t− 2] + 2a [t− 1] + a [t])

)

(4.184)

g [t− 2]− 16e2
−10eλi+λ2

i

eλi
g [t− 1] + g [t] = − 1

eλi(4e−λi)

( (
24e2 − 8eλi + λ2

i

)
a [t− 1]

+4e2 (a [t− 2] + a [t])

)

(4.185)

We will put this equation in a general form to simplify the work. The function a [t] satisfies the

same difference equation.

α = −2 cos (θi) = −16e2 − 10eλi + λ2
i

eλi
(4.186)

g [t− 2] + αg [t− 1] + g [t] = f [t] (4.187)

a [t− 2] + αa [t− 1] + a [t] = 0 (4.188)

β =

(
24e2 − 8eλi + λ2

i

)

4e2
(4.189)

γ =
4e

λi (4e− λi)
(4.190)

f [t] =− 1

eλi (4e− λi)

((
24e2 − 8eλi − λ2

i

)
a [t− 1] + 4e2 (a [t− 2] + a [t])

)
(4.191)

=− 4e

λi (4e− λi)

((
24e2 − 8eλi − λ2

i

)

4e2
a [t− 1] + (a [t− 2] + a [t])

)

(4.192)

=− γ (βa [t− 1] + (a [t− 2] + a [t])) (4.193)
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We move to the z-domain using the z-transform. First consider the function f [t] alone.

f [0] =− γ (βa [−1] + (a [−2] + a [0])) (4.194)

f (z) =− γ
(
β
(
a [−1] + z−1a (z)

)
+
(
a [−2] + a [−1] z−1 + z−2a (z) + a (z)

))
(4.195)

=− γ
(
(a [−2] + βa [−1]) + a [−1] z−1 +

(
1 + βz−1 + z−2

)
a (z)

)
(4.196)

Next we apply the z-transform to the entire difference equation and solve for g (z).

(
g [−2] + g [−1] z−1 + z−2g (z)

)
+ α

(
g [−1] + z−1g (z)

)
+ g (z) = f (z) (4.197)

(
1 + αz−1 + z−2

)
g (z) +

(
g [−2] + αg [−1] + g [−1] z−1

)
= f (z) (4.198)

g (z) = −
(
g [−2] + αg [−1] + g [−1] z−1

)

1 + αz−1 + z−2
+

f (z)

1 + αz−1 + z−2
(4.199)

We are only concerned with the case when λi = 1
2 which greatly simplifies our formulas.

λi =
1

2
= 8e (4.200)

α =− 2 cos (θi) = −16e2 − 80e2 + 64e2

8e2
= 0 (4.201)

θi =
π

2
(4.202)

β =

(
24e2 − 64e2 + 64e2

)

4e2
= 6 (4.203)

γ =
4e

8e (4e− 8e)
= − 1

8e
= −2 (4.204)

(4.205)

We solve for the constants a [−2], f [0], g [−2] to help simplify the expression for g (z).

a [−2] + αa [−1] + a [0] =0 (4.206)

a [−2] =− a [0] (4.207)

f [0] =12a [−1] (4.208)

g [−2] + αg [−1] + g [0] =f [0] (4.209)

g [−2] =f [0]− g [0] = 12a [−1]− g [0] (4.210)
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Next we simplify our z-domain functions.

f (z) =2
(
(a [−2] + 6a [−1]) + a [−1] z−1 +

(
1 + 6z−1 + z−2

)
a (z)

)
(4.211)

g (z) =−
(
g [−2] + g [−1] z−1

)

1 + z−2
+

f (z)

1 + z−2
(4.212)

=

(
−g [−2]− g [−1] z−1

)

1 + z−2
+

2
(
(a [−2] + 6a [−1]) + a [−1] z−1

)

1 + z−2

+
2
(
1 + 6z−1 + z−2

)
a (z)

1 + z−2
(4.213)

=
(−g [−2] + 2a [−2] + 12a [−1]) + (−g [−1] + 2a [−1]) z−1

1 + z−2

+ 2

(
1 + z−2

1 + z−2
+

6z−1

1 + z−2

)

a (z) (4.214)

=
(g [0]− 2a [0])

1 + z−2
+

(−g [−1] + 2a [−1]) z−1

1 + z−2
+ 2a (z) + 12

(
z−1

1 + z−2

)

a (z) (4.215)

We apply the inverse z-transform to return to the time domain, and we apply some simplifications

to reduce the scope of the convolution summation.

g [t] = (g [0]− 2a [0]) cos
[

t
π

2

]

u [t] + (−g [−1] + 2a [−1]) sin
[

t
π

2

]

u [t] + 2a [t]u [t]

+ 12
(

sin
[

t
π

2

]

u [t]
)

⊗ (a [t]u [t]) (4.216)

g [t] = (g [0]− 2a [0]) cos
[

t
π

2

]

u [t] + (−g [−1] + 2a [−1]) sin
[

t
π

2

]

u [t] + 2a [t]u [t]

+ 12
∞∑

k=−∞
sin
[

k
π

2

]

u [k] a [t− k] u [t− k] (4.217)

g [t] = (g [0]− 2a [0]) cos
[

t
π

2

]

u [t] + (−g [−1] + 2a [−1]) sin
[

t
π

2

]

u [t] + 2a [t]u [t]

+ 12
t∑

k=−∞
sin
[

k
π

2

]

u [k] a [t− k] (4.218)

g [t] =u [t]




(g [0]− 2a [0]) cos

[
tπ
2

]
+ (−g [−1] + 2a [−1]) sin

[
tπ
2

]
+ 2a [t]

+12
∑t

k=0 sin
[
k π

2

]
a [t− k]



 (4.219)

Odd Symmetry

When the wedge valence n is divisible by 4, a Jordan vector coupled with the odd sym-

metry eigenvector solution a [t] = sin
[
tπ
2

]
is required. Evaluating the difference equation gives
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some simplifying substitutions.

a [t] = sin
[

t
π

2

]

(4.220)

a [0] =0 (4.221)

a [−1] =− 1 (4.222)

g [1] =− g [−1] (4.223)

We simplify g [t] by substituting these values and applying some trigonometric identities.

g [t] =u [t]




(g [0]− 2a [0]) cos

[
tπ
2

]
+ (−g [−1] + 2a [−1]) sin

[
tπ
2

]
+ 2a [t]

+12
∑t

k=0 sin
[
k π

2

]
a [t− k]



 (4.224)

=u [t]




(g [0]) cos

[
tπ
2

]
+ (−g [−1]− 2) sin

[
tπ
2

]
+ 2 sin

[
tπ
2

]

+12
∑t

k=0 sin
[
k π

2

]
sin
[
(t− k) π

2

]



 (4.225)

=u [t]

(

g [0] cos
[

t
π

2

]

+ g [1] sin
[

t
π

2

]

+ 12

t∑

k=0

1

2

(

cos
[

(2k − t)
π

2

]

− cos
[

t
π

2

])
)

(4.226)

=u [t]

(

g [0] cos
[

t
π

2

]

+ g [1] sin
[

t
π

2

]

− 6 (t + 1) cos
[

t
π

2

]

+ 6

t∑

k=0

cos
[

(2k − t)
π

2

]
)

(4.227)

The term cos
[
(2k − t) π

3

]
is periodic, and each of these cycles of two consecutive integer k’s sum

to zero. The sum can then be reduce to the remainder of t
2 terms which is at most one term where

k = t. The summation can be eliminated completely using the formula:

t∑

k=0

cos
[

(2k − t)
π

2

]

=
1

2
(1 + cos [tπ]) cos

[

t
π

2

]

(4.228)

This substitution simplifies g [t] further.

g [t] =u [t]
(

g [0] cos
[

t
π

2

]

+ g [1] sin
[

t
π

2

]

− 6 (t + 1) cos
[

t
π

2

]

+ 3 (1 + cos [tπ]) cos
[

t
π

2

])

(4.229)

=u [t]
(

(g [0]− 6t− 3 + 3 cos [tπ]) cos
[

t
π

2

]

+ g [1] sin
[

t
π

2

])

(4.230)
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When n is divisible by 4, we are searching for the odd symmetry solution, so we must set g
[

n
2

]
=

−g
[
−n

2

]
.

0 =g
[n

2

]

+ g
[

−n

2

]

(4.231)

0 =2
(

g [0]− 3 + 3 cos
[n

4
2π
])

cos
[n

4
π
]

(4.232)

g [0] =3− 3 cos
[n

4
2π
]

(4.233)

=0 (4.234)

Substituting g [0] = 0 provides the final simplification to our signal g [t].

g [t] =u [t]
(

−3 (2t + 1− cos [tπ]) cos
[

t
π

2

]

+ g [1] sin
[

t
π

2

])

(4.235)

The value of g [1] is unimportant as the sine function always sums to zero in the difference equation.

Even Symmetry

When the wedge valence n is even and not divisible by 4, a Jordan vector coupled with the

even symmetry eigenvector solution a [t] = cos
[
tπ
2

]
is required. Evaluating the difference equation

gives some simplifying substitutions.

a [t] = cos
[

t
π

2

]

(4.236)

a [0] =1 (4.237)

a [−1] =0 (4.238)

g [1] =g [−1] (4.239)
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We simplify g [t] by substituting these values and applying some trigonometric identities.

g [t] =u [t]




(g [0]− 2a [0]) cos

[
tπ
2

]
+ (−g [−1] + 2a [−1]) sin

[
tπ
2

]
+ 2a [t]

+12
∑t

k=0 sin
[
k π

2

]
a [t− k]



 (4.240)

=u [t]




(g [0]− 2) cos

[
tπ
2

]
+ (−g [1]) sin

[
tπ
2

]
+ 2 cos

[
tπ
2

]

+12
∑t

k=0 sin
[
k π

2

]
cos
[
(t− k) π

2

]



 (4.241)

=u [t]

(

g [0] cos
[

t
π

2

]

− g [1] sin
[

t
π

2

]

+ 12

t∑

k=0

1

2

(

sin
[

(2k − t)
π

2

]

+ sin
[

t
π

2

])
)

(4.242)

=u [t]

(

g [0] cos
[

t
π

2

]

− g [1] sin
[

t
π

2

]

+ 6 (t + 1) sin
[

t
π

2

]

+ 6

t∑

k=0

sin
[

(2k − t)
π

2

]
)

(4.243)

The term sin
[
(2k − t) π

2

]
is periodic, and each of these cycles of two consecutive integer k’s sum

to zero. The sum can then be reduce to the remainder of t
2 terms which is at most one term where

k = t. The summation can be eliminated completely using the formula:

t∑

k=0

sin
[

(2k − t)
π

2

]

=
1

2
(1 + cos [tπ]) sin

[

t
π

2

]

(4.244)

This substitution simplifies g [t] further.

g [t] =u [t]
(

g [0] cos
[

t
π

2

]

+ (6t + 6− g [1]) sin
[

t
π

2

]

+ 3 (1 + cos [tπ]) sin
[

t
π

2

])

(4.245)

=u [t]
(

g [0] cos
[

t
π

2

]

+ (6t + 9 + 3 cos [tπ]− g [1]) sin
[

t
π

2

])

(4.246)

When n is even and not divisible by 4, we are searching for the even symmetry solution, so we must

set g
[

n
2

]
= g

[
−n

2

]
.

0 =g
[n

2

]

− g
[

−n

2

]

(4.247)

0 =2
(

9 + 3 cos
[n

2
π
]

− g [1]
)

sin
[n

2

π

2

]

(4.248)

g [1] =9 + 3 cos
[n

2
π
]

(4.249)

g [1] =6 (4.250)

Substituting g [1] = 6 provides the final simplification to our signal g [t].

g [t] =u [t]
(

3 (2t + 1 + cos [tπ]) sin
[

t
π

2

]

+ g [0] cos
[

t
π

2

])

(4.251)

The value of g [0] is unimportant as the cosine function always sums to zero in the difference equa-

tion.
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4.8.4 Catmull-Clark Crease Jordan Vectors

In the crease vertex case, the subdivision matrix S is lower block triangular, so the eigen-

values of the diagonal subblocks are also eigenvalues of the entire matrix. The T0 subblock is of the

form:

T0 =







12e 2e 2e

8e 8e 0

8e 0 8e







(4.252)

The eigen-decomposition of this block is:

T0V0 =V0Λ0 =







1 0 −1
2bn

2

1 bn
2

bn
2

1 −bn
2

bn
2













1 0 0

0 8e 0

0 0 4e







(4.253)

The first eigenvector, associated with the eigenvalue λ = 1, is all ones due to the sum to one

property of the averaging rules. We need two eigenvectors where b−n
2
6= 0 and bn

2
6= 0, so that

they will be linearly independent of the eigenvectors of subblock T12. Equation 4.173 shows that

when λ = 1
2 = 8e and n is divisible by 4, the odd symmetry sine sequence will terminate with a

zero value. In this case, the matrix is defective, and a nontrivial Jordan block with the Jordan vector

from Equation 4.235 will have to be used. Further more when λ = 1
4 = 4e and n is odd, the even

symmetry cosine sequence will terminate with a zero value. In this case, the matrix is defective, and

we must find the Jordan vector by solving the generalized eigenvalue equation

(S − λI) vJ =vE (4.254)

The eigenvector from the block T12 associated with λ = 1
4 has elements

a [t] =0, b [t] = cos [tπ] (4.255)

Because n is odd, we want to sample at half integer values. To handle this, we will substitute s = 2t

when forming our difference equations. The generalized eigenvector equations are:

a [s] = 0, b [s] = cos
[

s
π

2

]

(4.256)

b [s− 2] = 4eg [s− 3] + 0h [s− 2]+ 4eg [s− 1]

a [s− 1] = eg [s− 3] + eh [s− 2]+ 2eg [s− 1] + eh [s] + eg [s + 1]

b [s] = 4eg [s− 1] + 0h [s] + 4eg [s + 1]

(4.257)
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The top face rule difference equation defines g [s], and by multiplying the edge rule equation by

4 and subtracting the two face rules we generate a difference equation for h [s]. The difference

equation for h [s] is equal to zero because alternating pairs of values of b [s] sum to zero.

g [s− 3] + g [s− 1] =
1

4e
b [s− 2] (4.258)

4eh [s− 2] + 4eh [s] =− (b [s− 2] + b [s]) = 0 (4.259)

h [s− 2] + h [s] =0 (4.260)

First we will solve for h [s] using the z-transform. This difference equation is for sine or cosine

where θ = π
2 .

h [s] =− h [−2] cos
[

s
π

2

]

− h [−1] sin
[

s
π

2

]

(4.261)

Second we will solve for g [s] using the z-transform. We substitute s = 0 into the difference

equation to derive a useful relationship between some of the samples.

g [s− 3] + g [s− 1] =
1

4e
b [s− 2] (4.262)

g [−3] + g [−1] =
1

4e
b [−2] (4.263)

We apply the z-transform, and solve for the z-domain function g (z).




(
g [−3] + g [−2] z−1 + g [−1] z−2 + z−3g (z)

)

+
(
g [−1] + z−1g (z)

)



 =
1

4e

(
b [−2] + b [−1] z−1 + z−2b (z)

)

(4.264)

g (z) =

(
1
4e

b [−2]− (g [−3] + g [−1])
)

+
(

1
4e

b [−1]− g [−2]
)
z−1 − g [−1] z−2 + 1

4e
z−2b (z)

z−1 (1 + z−2)

(4.265)

Substituting Equation 4.263 and b [−1] = 0, we simplify the expression for g (z) and split it into

terms that have simple inverse z-transforms.

g (z) =
1

4e

(b [−1]− 4eg [−2]) z−1 − 4eg [−1] z−2 + z−2b (z)

z−1 (1 + z−2)
(4.266)

=
1

4e

(
b [−1]− 4eg [−2]

1 + z−2
− 4eg [−1] z−1

1 + z−2
+

z−1

1 + z−2
b (z)

)

(4.267)
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We apply the inverse z-transform and perform simplifications similar to the corner vertex case to

get a compact form for g [s]. Note that 16e = 1.

g [s] =
1

4e




−4eg [−2] cos

[
sπ

2

]
u [s]− 4eg [−1] sin

[
sπ

2

]
u [s]

+ sin
[
sπ

2

]
u [s]⊗ b [s]u [s]



 (4.268)

=
1

4e




−4eg [−2] cos

[
sπ

2

]
u [s]− 4eg [−1] sin

[
sπ

2

]
u [s]

+ sin
[
sπ

2

]
u [s]⊗ cos

[
sπ

2

]
u [s]



 (4.269)

=
u [s]

4e




−4eg [−2] cos

[
sπ

2

]
− 4eg [−1] sin

[
sπ

2

]

+
∑s

k=0 sin
[
k π

2

]
cos
[
(s− k) π

2

]



 (4.270)

=
u [s]

4e




−4eg [−2] cos

[
sπ

2

]
− 4eg [−1] sin

[
sπ

2

]

+1
2

(
(s + 1) sin

[
sπ

2

]
+ 1

2 (1 + cos [sπ]) sin
[
sπ

2

])



 (4.271)

=
u [s]

16e




−16eg [−2] cos

[
sπ

2

]
− 16eg [−1] sin

[
sπ

2

]

+
(
2 (s + 1) sin

[
sπ

2

]
+ (1 + cos [sπ]) sin

[
sπ

2

])



 (4.272)

=u [s]
(

−g [−2] cos
[

s
π

2

]

+ (2s + 3− g [−1] + cos [sπ]) sin
[

s
π

2

])

(4.273)

We now resubstitute s = 2t to get a solution sampled at the desired half integer index frequency.

g [t] =u [t]

(

−g [−1] cos [tπ] +

(

4t + 3− g

[

−1

2

]

+ cos [t2π]

)

sin [tπ]

)

(4.274)

h [t] =− h [−1] cos [tπ]− h

[

−1

2

]

sin [tπ] (4.275)

The undetermined constants in h [t] are unimportant and can be set to zero. When the wedge valence

n is odd, we are searching for the even symmetry solution, so we must set g
[

n
2

]
= g

[
−n

2

]
.

0 =g
[n

2

]

− g
[

−n

2

]

(4.276)

0 =2

(

3− g

[

−1

2

]

+ cos [nπ]

)

sin
[nπ

2

]

(4.277)

g

[

−1

2

]

=3 + cos [nπ] (4.278)

g

[

−1

2

]

=2 (4.279)

Substituting g
[
−1

2

]
= 2 provides the final simplification to our signal g [t].

g [t] = (4t + 1 + cos [t2π]) sin [tπ]− g [−1] cos [tπ] (4.280)

h [t] =0 (4.281)
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The value of g [−1] is unimportant as the cosine function always sums to zero in the difference

equation.

4.8.5 Catmull-Clark Dart Eigenvectors

In the dart vertex case, the eigenvectors associated with the face and edge averaging rules

are coupled to the vertex averaging rules. The T12 subblock of edge averaging rules for the eigen-

vectors of the dart subdivision matrix is exactly the same as crease and corner case. The difference is

appearant in the T02 subblock because the v1 and v2 averaging coefficients in the crease and corner

case are all zeros. The dart subdivision matrix when the valence n is even is:

e =
1

16
, f =

1

4
= 4e, ē =

1

2
= 8e, v0 = 1− n (v1 + v2) , v1 =

6

4n2
, v2 =

1

4n2

de = 6e− λi, df = f − λi = 4e− λi, dē = ē− λi, dv = v0 − λi

0 =




































dv v1 v2 v1 v2 · · · v2 v1 v2 · · · v2 v1 v2

ē dē 0 0 0 0 0 0 0 0 0

f f df f

6e e e de e e

f 0 f df f

...
. . .

f 0 f df f

6e 0 e e de e e

f 0 f df f

...
. . .

f 0 f df f

6e e e e de e

f f f df







































































c0

an

2

b
−

n−1
2

a
−

n−2
2

b
−

n−3
2

...

b− 1
2

a0

b 1
2

...

bn−3
2

an−2
2

bn−1
2




































an

2

(4.282)
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The dart subdivision matrix when the valence n is odd is:

e =
1

16
, f =

1

4
= 4e, ē =

1

2
= 8e, v0 = 1− n (v1 + v2) , v1 =

6

4n2
, v2 =

1

4n2

de = 6e− λi, df = f − λi = 4e− λi, dē = ē− λi, dv = v0 − λi

0 =




































dv v1 v2 v1 v2 · · · v1 v2 v1 · · · v2 v1 v2

ē dē 0 0 0 0 0 0 0 0 0

f f df f

6e e e de e e

f 0 f df f

...
. . .

6e 0 e e de e e

f 0 f df f

6e 0 e e de e e

...
. . .

f 0 f df f

6e e e e de e

f f f df







































































c0

an

2

b
−

n−1
2

a
−

n−2
2

b
−

n−3
2

...

a−
1
2

b0

a 1
2

...

bn−3
2

an−2
2

bn−1
2




































an

2

(4.283)

In the crease and corner cases, the sine and cosine subblock eigenvectors are also eigen-

vectors of the entire matrix when extended at the top with zeros because it is lower block triangular.

The vertex averaging rule from the dart case makes it more complicated. The odd symmetry sine

based eigenvectors are the same because they sum to zero, so when they are dotted with the top row

vector of alternating v1 and v2 the result is zero. But this leaves n + 2 even symmetry eigenvectors

undetermined. The problem with eigenvectors from the crease and corner cases, which had cosine

sequences that terminated with zeros on the ends, is that multiplication with the top vertex rule row

will create a nonzero value. It is not possible to make c0 nonzero while keeping b n
2

zero because of

the second row.

The same difference equation is still present, so a cosine-like sequence must be used. The

difference is that a n
2

, which contains the value for both ends of the sequence, must be nonzero.

Fortunately in the even symmetry case, a n
2

= a−n
2

, so we just need to adjust θi. Examining one of

the middle rows, we see that c0 which must be nonzero is multiplied by the nonzero value f or 6e,

so the difference equation must sum to a nonzero quantity. This can be accomplished by adding a
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constant to every term in the the sequence.

at =c1 + g [t] (4.284)

bt =c2 + h [t] (4.285)

Using the sharp edge rule from row 2 and any of the smooth face and edge rule rows, we

can solve for c0, c1 and c2 in terms of the eigenvalue λi and g
[

n
2

]
.

0 =8ec0 + (8e− λi)
(

c1 + g
[n

2

])

(4.286)

0 =4ec0 + 8ec1 + (4e− λi) c2 (4.287)

0 =6ec0 + (8e− λi) c1 + 2ec2 (4.288)

The expressions for c0, c1 and c2 are:

c0 =− (8e− λi)
(
16e2 − 12eλi + λ2

i

)

2eλi (16e − λi)
g
[n

2

]

(4.289)

c1 =− 64e2 − 32eλi + 3λ2
i

λi (16e − λi)
g
[n

2

]

(4.290)

c2 =
2 (8e− λi) (4e + λi)

λi (16e − λi)
g
[n

2

]

(4.291)

All of the elements of the eigenvector are now multiples of g [−1] which can be divided out, so the

top vertex averaging row can be used to create a lower degree characteristic polynomial with the

sine based eigenvalue factors removed.

0 = (v0 − λi) c0 + v1




nc1 + g

[n

2

]

+ g [0] + 2

dn−2

2 e∑

k=1

g [k]




+ v2




nc2 + 2

dn−2

2 e∑

k=0

h

[

k +
1

2

]






(4.292)

We do not currently have a closed form solution for these eigenvalues, so we use a numerical solver

to get the eigenvalues and use them to generate the eigenvectors. Some of the eigenvalues are outside

the range in which a cosine function is possible, so we use the general solution form instead.

4.9 Conclusion

We have shown how the eigen-structure of the 1-ring subdivision matrices of piecewise

smooth Loop and Catmull-Clark subdivision can be understood using 1D signal processing tech-

niques. All of these matrices contain a T12 subblock that is composed of a regular pattern of edge
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or face averaging rules. When solving for the eigenvectors of the matrix, this pattern becomes the

definition of a difference equation whose solution signal can be solved for using the technique of

z-transforms. We derived formulas for the eigenvectors for the subdivision matrices for all vertex

types of piecewise smooth Loop and Catmull-Clark subdivision. We also derived formulas for the

generalized Jordan vectors in the defective cases for certain wedge valences in the corner and crease

vertex cases.

In Chapter 5, we will reexamine the eigen-decomposition of smooth, corner, and crease

vertices using properties of circulant and Toeplitz matrices which are related to the difference equa-

tions discussed in this chapter. This alternate form of analysis is used more frequently in the subdi-

vision literature, and it provides an easy way to analyze more general schemes with modified edge

rules. This matrix analysis is a short cut for the z-transform techniques presented here, but the

underlying structure is the same.



102

Chapter 5

Circulant and Toeplitz Matrices

5.1 Introduction

The pattern of edge and face subdivision averaging rules around a vertex form either a

circulant or Toeplitz matrix. The subdivision surface rules around a smooth interior vertex are

topologically equivalent to a disc, and these rules generate a circulant matrix. The subdivision

surface around a sharp boundary vertex is broken up by radiating sharp edges into sectors called

wedges. The topology of a wedge is equalivalent to a half disc, and the subdivision averaging

rules correspond to a Toeplitz matrix. In this chapter, we will review some of the properties of

circulant and Toeplitz matrices, which we will later use to eigen-analyze the continuity behavior of

subdivision surfaces.

5.2 Circulant Matrices

A circulant matrix [8] S has one unique row vector which is copied and shifted to form the

other rows of the matrix. The rows of S can be thought of as averaging rules over a cyclic domain,

e.g. the disc topology around a smooth vertex of a subdivision surface.

S =













a0 a1 a2 an−1

an−1 a0 a1 · · · an−2

an−2 an−1 a0 an−3

...
. . .

...

a1 a2 a3 · · · a0













(5.1)
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A circulant matrix can always be diagonalized into its eigen-decomposition.

SF = FΛ (5.2)

S = FΛF−1 (5.3)

The set of eigenvectors F of a circulant matrix correspond to the discrete Fourier transform (DFT).

=nθ π2
n

ω0

3

ω

ω

2

ω1

ωn−1

(a) Nth root of unity phasors ωk =

ek 2π

n
i on the imaginary plane for n=5

θ

2

1

θ3θ

n−1θ

(b) Angles θk = k π
n

over the real axis
for n=5

Figure 5.1: Comparison of full disc topology of the Nth roots of unity to the half disc topology of
sharp boundary edges.

The terms of the DFT are unit phasors (Figure 5.1(a)) which are the nth roots of unity where n is

the size of the matrix. These are the solutions to the equation:

xn = 1 (5.4)

The primitive root of unity is the phasor ω. It is a unit magnitude complex number represented in

exponential form at a phase angle θn = 2π
n

.

ω = eiθn = cos θn + i sin θn (5.5)

All other nth roots of unity xi are integer powers of ω.

i ∈ [0, n− 1] : xi = ωi (5.6)

Multiplying by ω corresponds to rotating by the angle θn. n multiplications of ω complete

a full rotation, hence:

ωi = ωi+n (5.7)
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The inverse of a phasor is its complex conjugate:

ω−i = ∗ωi (5.8)

The full set of n phasors sum to zero. It is obvious that the imaginary sine components

sum to zero because for each phasor its complex conjugate is also present. The zero sum of the real

cosine components is not as obvious, but the phasors can also be thought of as vertices of a regular

n-gon centered at the origin. The sum of those vertex positions is then the zero vector.

0 =
n−1∑

i=0

ωi (5.9)

The eigenvectors, the columns of F , correspond to stepping through the phasors at differ-

ent frequencies.

F =













1 1 1 1

1 ω1 ω2 · · · ωn−1

1 ω2 ω4 ω2(n−1)

...
. . .

...

1 ωn−1 ω2(n−1) · · · ω(n−1)(n−1)













(5.10)

The inverse of the eigenvectors can also be written analytically.

F−1 =
1

n













1 1 1 1

1 ω−1 ω−2 · · · ω−(n−1)

1 ω−2 ω−4 ω−2(n−1)

...
. . .

...

1 ω−(n−1) ω−2(n−1) · · · ω−(n−1)(n−1)













(5.11)

Applying the DFT to S transforms it to the diagonal eigenvalue matrix Λ.

Λ =










λ0

λ1

. . .

λn−1










(5.12)

In general, the eigenvalues λi of a circulant matrix can be imaginary, but the eigenvalues

of a symmetric circulant matrix are always real. The edge averaging rules for Loop subdivision

form this type of matrix. For an n even sized matrix, a symmetric circulant matrix has following
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form and eigenvalues:

Seven =






















a0 a1 a2 an

2
a2 a1

a1 a0 a1 · · · an

2 −1 · · · a3 a2

a2 a1 a0 an

2
−2 a4 a3

...
. . .

...
...

an

2
an

2
−1 an

2
−2 · · · a0 · · · an

2
−2 an

2
−1

...
...

. . .
...

a2 a3 a4 · · · an

2
−2 · · · a0 a1

a1 a2 a3 an

2 −1 a1 a0






















(5.13)

i ∈ [0, n− 1] : λi = a0 + 2

n
2
−1
∑

j=1

cos
(
ij 2π

n

)
aj + cos (iπ) an

2
(5.14)

For an n odd sized matrix, a symmetric circulant matrix has following form and eigenval-

ues:

Sodd =

























a0 a1 a2 an−1
2

an−1
2

a2 a1

a1 a0 a1 · · · an−1
2 −1 an−1

2
· · · a3 a2

a2 a1 a0 an−1
2 −2 an−1

2 −1 a4 a3

...
. . .

...
...

...

an−1
2

an−1
2 −1 an−1

2 −2 · · · a0 a1 · · · an−1
2 −1 an−1

2

an−1
2

an−1
2

an−1
2 −1 · · · a1 a0 · · · an−1

2 −2 an−1
2 −1

...
...

...
. . .

...

a2 a3 a4 · · · an−1
2 −1 an−1

2 −2 · · · a0 a1

a1 a2 a3 an−1
2

an−1
2 −1 a1 a0

























(5.15)

i ∈ [0, n− 1] : λi = a0 + 2

n−1

2∑

j=1

cos
(
ij 2π

n

)
aj (5.16)

5.2.1 Interlaced Circulant Matrices

An interlaced circulant matrix has two different rows that are copied and shifted to form

the other rows. Catmull-Clark subdivision has alternating rows of face and edge averaging rules, so

the subdivision matrix is of this type. In this case, n is half the size of the matrix because pairs of
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rows are repeated n times.

S =


















a0 a1 a2 a3 a2n−2 a2n−1

b2n−1 b0 b1 b2 b2n−3 b2n−2

a2n−2 a2n−1 a0 a1 · · · a2n−4 a2n−3

b2n−3 b2n−2 b2n−1 b0 b2n−5 b2n−4

...
. . .

...

a2 a3 a4 a5 · · · a0 a1

b1 b2 b3 b4 b2n−1 b0


















(5.17)

An interlaced circulant matrix can be transformed into a block diagonal matrix by apply-

ing an interlaced DFT matrix and its inverse.

Ŝ = F−1SF (5.18)

The interlaced DFT is two versions of the DFT from Equation 5.10 interwoven in a checkerboard

pattern as follows:

F =
























1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1

1 0 ω1 0 ω2 0 ωn−1 0

0 1 0 ω1 0 ω2 · · · 0 ωn−1

1 0 ω2 0 ω4 0 ω2(n−1) 0

0 1 0 ω2 0 ω4 0 ω2(n−1)

...
. . .

...

1 0 ωn−1 0 ω2(n−1) 0 · · · ω(n−1)(n−1) 0

0 1 0 ωn−1 0 ω2(n−1) 0 ω(n−1)(n−1)
























(5.19)

The alternating pattern makes the two interlaced DFT matrices independent of each other,

so the inverse can be trivially written as two interlaced versions of the inverse DFT from Equa-
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tion 5.11:

F−1 =
1

n
























1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1

1 0 ω−1 0 ω−2 0 ω−(n−1) 0

0 1 0 ω−1 0 ω−2 · · · 0 ω−(n−1)

1 0 ω−2 0 ω−4 0 ω−2(n−1) 0

0 1 0 ω−2 0 ω−4 0 ω−2(n−1)

...
. . .

...

1 0 ω−(n−1) 0 ω−2(n−1) 0 · · · ω−(n−1)(n−1) 0

0 1 0 ω−(n−1) 0 ω−2(n−1) 0 ω−(n−1)(n−1)
























(5.20)

The block diagonal matrix Ŝ resulting from applying the DFT to S has n blocks that are

2× 2 matrices.

Ŝ =











B0

B1

. . .

Bn−1











, Bi =

[

αi βi

γi δi

]

(5.21)

The eigenvalues λi± for a block Bi have the following form:

λi± =
αi + δi ±

√

(αi − δi)
2 + 4βiγi

2
(5.22)

When n is even, the entries of Bi are the following:

αi = a0 + 2

n
2
−1
∑

j=1

cos
(
ij 2π

n

)
a2j + cos (iπ) an (5.23)

δi = b0 + 2

n
2
−1
∑

j=1

cos
(
ij 2π

n

)
b2j + cos (iπ) bn (5.24)

βi =

n
2∑

j=1

(

ωi(j−1) + ω−ij
)

a2j−1 (5.25)

γi =

n
2∑

j=1

(

ω−i(j−1) + ωij
)

b2j−1 (5.26)
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When n is odd, the entries of Bi are the following:

αi = a0 + 2

n−1

2∑

j=1

cos
(
ij 2π

n

)
a2j (5.27)

δi = b0 + 2

n−1

2∑

j=1

cos
(
ij 2π

n

)
b2j (5.28)

βi = ωian +

n−1

2∑

j=1

(

ωi(j−1) + ω−ij
)

a2j−1 (5.29)

γi = ω−ibn +

n−1

2∑

j=1

(

ω−i(j−1) + ωij
)

b2j−1 (5.30)

Note that in both the even and odd cases, βi and γi are imaginary quantities. Fortunately,

we are only ever interested in the product of these two quantities, as in Equation 5.22, which is real

in the even case or in the odd case when an = bn = 0.

βiγi =





n
2∑

j=1

(

ωi(j−1) + ω−ij
)

a2j−1









n
2∑

k=1

(

ω−i(k−1) + ωik
)

b2k−1



 (5.31)

=

n
2∑

j=1

n
2∑

k=1

(

ωi(j−1) + ω−ij
)(

ω−i(k−1) + ωik
)

a2j−1b2k−1 (5.32)

=

n
2∑

j=1

n
2∑

k=1

(

ωi((j−1)−(k−1)) + ω−i(j−k) + ωi((j−1)+k) + ω−i(j+(k−1))
)

a2j−1b2k−1 (5.33)

=

n
2∑

j=1

n
2∑

k=1

((

ωi(j−k) + ω−i(j−k)
)

+
(

ωi(j+k−1) + ω−i(j+k−1)
))

a2j−1b2k−1 (5.34)

= 2

n
2∑

j=1

n
2∑

k=1

(
cos

(
i (j − k) 2π

n

)
+ cos

(
i (j + k − 1) 2π

n

) )
a2j−1b2k−1 (5.35)

In general, an interlaced circulant matrix with r row types repeated n times is transformed

by the interlaced DFT into a block diagonal matrix with n blocks that are r × r matrices.
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5.3 Toeplitz Matrices

A Toeplitz matrix [8] has the same value for all elements along each diagonal parallel to

the main diagonal.

S =













a0 a1 a2 an−1

a−1 a0 a1 · · · an−2

a−2 a−1 a0 an−3

...
. . .

...

a−(n−1) a−(n−2) a−(n−3) · · · a0













(5.36)

We are interested in a specific Toeplitz matrix which is a symmetric tridiagonal matrix.

An example of this matrix type is the edge averaging rules for Loop subdivision in a wedge between

two sharp boundary edges. The size of the matrix is n− 1 where n is the number of triangles in the

wedge.

S =
















a0 a1 0 0

a1 a0 a1 0

0 a1 a0 a1

. . .

a1 a0 a1

0 a1 a0
















(5.37)

The eigenvectors of S correspond to the discrete cosine transformation (DCT).

SV = V Λ (5.38)

S = V ΛV −1 (5.39)

The cosine terms are in increments of π
n

which are similar to the nth roots of unity but are instead on

the real axis over a half disc domain (Figure 5.1(b)). This half disc is topologically equivalent to the

wedge of triangles around a sharp Loop vertex and corresponds to these sharp boundary conditions.
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When n is even the eigenvectors are as follows:

α (r, c) = cos r cπ
n

(5.40)

β (r, c) = sin r cπ
n

(5.41)

V =














α
(
−n−2

2 , 1
)

β
(
−n−2

2 , 2
)
· · · α

(
−n−2

2 , n− 1
)

...
...

...

α (0, 1) β (0, 2) · · · α (0, n− 1)
...

...
...

α
(

n−2
2 , 1

)
β
(

n−2
2 , 2

)
· · · α

(
n−2

2 , n− 1
)














(5.42)

V −1 =
2

n
V t (5.43)

When n is odd the eigenvectors are the same, but the row indexing would then be on half

fractions instead of integers, so we rewrite it in the following way:

α (r, c) = cos
(
r + 1

2

)
cπ
n

(5.44)

β (r, c) = sin
(
r + 1

2

)
cπ
n

(5.45)

V =
















α
(
−n−1

2 , 1
)

β
(
−n−1

2 , 2
)
· · · β

(
−n−1

2 , n− 1
)

...
...

...

α (−1, 1) β (−1, 2) · · · β (−1, n− 1)

α (0, 1) β (0, 2) · · · β (0, n− 1)
...

...
...

α
(

n−3
2 , 1

)
β
(

n−3
2 , 2

)
· · · β

(
n−3

2 , n− 1
)
















(5.46)

V −1 =
2

n
V t (5.47)

In either case, the eigenvalue associated with the cth column eigenvector is as follows:

c ∈ [1, n− 1] : λc = a0 + 2 cos cπ
n

a1 (5.48)

The following are some useful trigonometry identities for manipulating these eigenvec-
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tors:

cos (A + B) = cos A cos B − sinA sinB (5.49)

sin (A + B) = sinA cos B + cos A sinB (5.50)

cos A cos B =
cos (A−B) + cos (A + B)

2
(5.51)

sinA sinB =
cos (A−B)− cos (A + B)

2
(5.52)

cos A sinB =
sin (A + B)− sin (A−B)

2
(5.53)

5.3.1 Interlaced Toeplitz Matrices

We are also interested in the matrix of edge and face averaging rules around a sharp

Catmull-Clark vertex. Similar to the generalization from the circulant matrix of smooth Loop to the

interlaced matrix of smooth Catmull-Clark, these sharp Catmull-Clark rules can be represented by

a special interlaced Toeplitz matrix S. S has two row types and 2n− 1 rows over all, where n is the

number of quads in the wedge.

S =





















a0 a1 0 0

b1 b0 b1 b2

0 a1 a0 a1

0 b2 b1 b0

0 0 0 a1

0 0

0 0

0 0

b1 b2

a0 a1

0

. . .

0
b2 b1

0 0

b0 b1

a1 a0





















(5.54)

S can be transformed to a block diagonal matrix Ŝ using a transform matrix T which is

very similar to the DCT based matrix used in the Toeplitz case.

ST = T Ŝ (5.55)

S = T ŜT−1 (5.56)

T is composed of two interlaced matrices. The smaller, embedded matrix is size n− 1× n− 1 and

is the same as V from the Toeplitz case, Equations 5.42 and 5.46. The outer matrix is size n × n

and is a combination of elements from V . The first column which is the eigenvector associated with
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the eigenvalue a0 is a series of cosine terms.

T =



























cos 0π 0 v1,1 0 v1,n−1

0 v1,1 0 v1,n−1 0

cos 1π 0 v1,1 + v2,1 0 v1,n−1 + v2,n−1

0 v2,1 0 v2,n−1 0

cos 2π 0 v2,1 + v3,1 0 v2,n−1 + v3,n−1

0 v3,1 0 · · · v3,n−1 0

...
...

cos (n− 2) π 0 vn−2,1 + vn−1,1 0 vn−2,n−1 + vn−1,n−1

0 vn−1,1 0 vn−1,n−1 0

cos (n− 1) π 0 vn−1,1 0 vn−1,n−1



























(5.57)

The inverse transform T−1 is the transpose of T scaled nonuniformly by the matrix Σ.

The inner matrix is scaled by 2
n

, as in the Toeplitz case. The first vector of the outer matrix is scaled

by 1
n

, while a vector from block Bi is scaled by 1
n(1+cos iπ

n )
.

T−1 = ΣT t (5.58)

Σ =

















1
n

2
n

0

0 1

n(1+cos 1π

n )
. . .

2
n

0

0 1

n(1+cos (n−1)π

n )

















(5.59)

Ŝ is a block diagonal matrix with one 1 × 1 block and n − 1 blocks Bi of size 2 × 2 in

the form:

Ŝ =











a0

B1

. . .

Bn−1











, Bi =

[

b0 + 2 cos iπ
n

b2 2
(
1 + cos iπ

n

)
b1

a1 a0

]

(5.60)

The eigenvalues of S can be easily solved for within these 2× 2 blocks:

λ0 = a0 (5.61)

λi± =
a0 + b0 + 2 cos iπ

n
b2 ±

√
(
−a0 + b0 + 2 cos iπ

n
b2

)2
+ 8

(
1 + cos iπ

n

)
a1b1

2
(5.62)
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The associated eigenvectors v̂i of the transformed matrix Ŝ have zeros in rows outside of their block,

and the two nonzero entries are as follows:

v̂i± =






−a0+b0+2 cos
iπ
n

b2±

√
(

−a0+b0+2 cos
iπ
n

b2

)2
+8
(

1+cos
iπ
n

)

a1b1

2a1

1




 (5.63)

These eigenvectors can be transformed back by T to give the eigenvectors vi of S.

V = T V̂ (5.64)

v0 =



























cos 0π

0

cos 1π

0

cos 2π

0
...

cos (n− 2) π

0

cos (n− 1) π



























, vi± =




























vi,1

vi,1

−a0+b0+2 cos
iπ
n

b2±

√
(

−a0+b0+2 cos
iπ
n

b2

)2
+8
(

1+cos
iπ
n

)

a1b1

2a1

vi,1 + vi,2

vi,2

−a0+b0+2 cos
iπ
n

b2±

√
(

−a0+b0+2 cos
iπ
n

b2

)2
+8
(

1+cos
iπ
n

)

a1b1

2a1

vi,2 + vi,3

...

vi,n−2 + vi,n−1

vi,n−1

−a0+b0+2 cos
iπ
n

b2±

√
(

−a0+b0+2 cos
iπ
n

b2

)2
+8
(

1+cos
iπ
n

)

a1b1

2a1

vi,n−1




























(5.65)

5.4 Conclusion

We have shown the derivation of the eigen-decomposition of circulant and Toeplitz ma-

trices that correspond to the edge and face averaging rules near smooth, spike, corner, and crease

vertices in Loop and Catmull-Clark subdivision surfaces. This provides an easy way to analyze more

general schemes with modified edge rules. In Chapters 6-8, we will use the eigen-decompositions

presented here to perform exact evaluation of piecewise smooth Loop and Catmull-Clark surfaces.
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Chapter 6

Subdivision Exact Evaluation

6.1 Introduction

In a Chapter 3, we described subdivision surfaces as a two step process: a topological split

followed by local geometric averaging. This view is very straight forward to understand, but it does

not provide a parameterization of the limit surface that can be evaluated at an arbitrary parametric

location with a constant amount of work. In order to perform constant-time exact evaluation, a

subdivision scheme must have the following two properties. First, the subdivision operator must at

each iteration introduce new regions that can be described by known parameteric functions, and in

the limit, the union of these regions must converge to cover the entire surface area. Second, it must

be possible to perform an arbitrary number of applications of the subdivision operator in a constant

amount of time.

A previous method [29, 28] has shown that these properties hold for the smooth Loop and

Catmull-Clark subdivision scheme. We now show how to extend this work to handle the remaining

cases of patches near infinitely sharp features.

6.2 Matrix Formulation

The matrix formulation of the exact evaluation is very similar for the Catmull-Clark and

Loop schemes. The the extraordinary vertex cases that we will consider are: smooth, spike, corner,

crease, and dart patches [10, 6]. For example, Figure 6.1 shows the 1-ring neighborhood for each

of these extraordinary vertex types for Catmull-Clark subdivision. The function s (u, v) evaluates a

subdivision patch at a parametric location (u, v) ∈ {[0, 1] , [0, 1]} other than the origin. The origin
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(a) Smooth
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(b) Dart
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(c) Crease

(d) Spike
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(e) Corner
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(f) Corner

Figure 6.1: Examples of the five different extraordinary vertex types for piecewise smooth Catmull-
Clark surfaces. Black thick lines and squares denote sharp edges and vertices. Light thin lines and
circles represent smooth edges and vertices. The numbers indicate the patch number p within each
wedge; the maximum number is the valence n of the wedge.

of the patch is the extraordinary vertex (Figure 6.1), either a smooth vertex of extraordinary va-

lence or a spike, corner, crease, or dart vertex of any valence. Conceptually, g = f (log2 u, log2 v)

subdivisions are applied such that the parametric point falls in one of the known spline patches

({U,UV, V } in Figure 6.2). In matrix form, this is equivalent to applying A, the 1-patch-ring subdi-

vision matrix from Figure 6.3, g− 1 times, followed by one application of the extended subdivision

matrix Ā to the set of control points C to generate all control points necessary for any of the regular

spline subpatches. A picking matrix Pk, where k specifies the subpatch related to the given para-

metric location, then chooses the correct set of spline control points. Note that for a patch adjacent

to a sharp edge, the picking matrix will include rules for generating the appropriate phantom ver-

tices, see Figure 6.4(b). Once the spline control points have been generated and picked, they are

weighted by a row vector containing the spline blending functions B (u, v) evaluated at the correctly

transformed subpatch parameters (ū, v̄), as shown in the following equation:

s (u, v) = B (ū, v̄) PkĀAg−1C (6.1)
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For constant-time evaluation, the term Ag−1 must be reduced to a constant number of matrix

multiplications, which we accomplish using the Jordan decomposition, see Appendix B.3. Note

that in the case of a diagonalizable matrix, the Jordan decomposition is the same as the eigen-

decomposition. We also substitute a power basis vector puv (ū, v̄) multiplied by a spline coefficient

matrix Buv for the spline blending function vector B (ū, v̄). The vector puv (ū, v̄) is very quick

and easy to build and differentiate. Note that differentiating the patch reduces to differentiating

puv (ū, v̄). The expanded matrix formula is:

s (u, v) = puv (ū, v̄)BuvPkĀV Jg−1V −1C (6.2)

To reduce the constant number of matrix multiplications necessary at evaluation time, we introduce

the three matrices Qk = BuvPkĀV dependent on the subpatch k, and also store the projected

control points Ĉ = V −1C for each patch in advance. This results in the simplified equation:

s (u, v) = puv (ū, v̄)QkJ
g−1Ĉ (6.3)

Our algorithm is table driven, where we generate the matrices Qk, J , and V −1 off-line for each

subdivision scheme, patch type, valence n, and patch p in the case of the wedge based types of

corners, creases, and darts.

3UV3V

u

v

3

v
_
u

1V

1U

UV1

2U

UV22V
_

U

_
v

_
u

_
v

_
u

Figure 6.2: Catmull-Clark parameterization
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6.2.1 Jordan Decomposition of A

The major hurdle we faced in implementing our algorithm was generating the Jordan

decomposition of the 1-patch-ring subdivision matrix A for certain patch types. For all patch types,

A is dependent on the valence n of the extraordinary vertex or wedge. For the corner, crease, and

dart cases, A also depends on which patch p within the wedge is being evaluated, while for the

smooth and spike cases p can be ignored. In all cases, An,p is a block lower triangular matrix.

The extended subdivision matrix Ān,p is simply An,p extended to generate one additional layer of

control points.

An,p =




S0,n 0

S11,n,p S12,n,p



 (6.4)

Ān,p =







S0,n 0

S11,n,p S12,n,p

S21,n,p S22,n,p







(6.5)

The Jordan decomposition of A can be solved by combining the Jordan decompositions of S0,n (the

1-ring subdivision matrix) and the eigen-decomposition of S12,n,p:

S0V0 = V0J0 (6.6)

S12V12 = V12Λ12 (6.7)

We know the block form of the generalized eigenvector matrix V of A:

AV = V J (6.8)



S0 0

S11 S12








V0 0

V11 V12



 =




V0 0

V11 V12








J0 0

0 Λ12



 (6.9)




S0V0 0

S11V0 + S12V11 S12V12



 =




V0J0 0

V11J0 V12Λ12



 (6.10)

The bottom left blocks of the matrices in Equation 6.10 defines V11. We move V11 to the left side of

the equation:

S11V0 + S12V11 = V11J0 (6.11)

V11J0 − S12V11 = S11V0 (6.12)
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J0 is mainly diagonal with some 1’s (but in our cases at most one) on the subdiagonal. From

Equation B.69, we can substitute J0 = Λ0 + L0 which is a diagonal matrix plus a subdiagonal

matrix.

V11 (Λ0 + L0)− S12V11 = S11V0 (6.13)

V11Λ0 − S12V11 = S11V0 − V11L0 (6.14)

The vectors v11,c, which is column c of V11, can be solved for from right to left, as a subdiagonal 1

can place a dependence on v11,c+1. L0 [c + 1, c] is the entry of J0 below the diagonal element λc,

and it is either 1 or 0.

λcv11,c − S12v11,c = S11v0,c − L0 [c + 1, c] v11,c+1 (6.15)

(λcI − S12) v11,c = S11v0,c − L0 [c + 1, c] v11,c+1 (6.16)

v11,c = (λcI − S12)
−1 (S11v0,c − L0 [c + 1, c] v11,c+1) (6.17)

Equation 6.17 is dependent on inverting (λcI − S12). (λcI − S12) is singular only if λc is

an eigenvalue S12. For the cases that we are considering, S0 and S12 do not share any eigenvalues.

S12,n,p is composed of averaging rules in regular spline regions of the subdivision surface, so its

eigen-decomposition is trivial to calculate. So, if we can derive the Jordan decomposition of S0,n

then we will have the decomposition for An,p.

6.2.2 Jordan Decomposition of S0

For both Catmull-Clark and Loop subdivision, S0,n is non-defective for the smooth, spike,

and dart cases, so it can be diagonalized into its eigen-decomposition. The difficult cases are the

corner and crease patch cases, where for certain valences, S0,n is defective, and a nontrivial Jordan

form must be used. Our experience using Mathematica [31] was that for small valences n < 5, it

was able to produce the correct Jordan decompositions analytically, but as the valence increased,

the computation became intractable. Mathematica’s numerical solver gave quick results for all

valences, but it returned a diagonal matrix J = Λ with multiple eigenvectors that differed by ε,

making the eigenvector matrix V0,n noninvertible and thus the decomposition invalid. Fortunately

in these cases, the ordering of control vertices can be chosen to make S0,n become a block lower

triangular matrix:

S0,n =




T 0

T11,n T12,n



 (6.18)
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Figure 6.3: Application of the Ā matrix to a quad patch next to a smooth extraordinary vertex
produces a ribbon of three subpatches {U,UV, V } that are regular B-spline patches and a fourth
patch Φ which is analogous to its parent.

The Jordan decomposition of S0,n can then be derived by combining the eigen-decompositions of T

and T12,n. Note that any eigenvector of T12,n can be prepended with zeros, and it will then also be

an eigenvector of S0,n. For the eigenvectors associated with the eigenvalues of T , the top elements

v1 of v1 are taken from the corresponding eigenvector from T . We can solve for the remaining lower

elements v1 of the Jordan vector either using the eigenvector equation

S0,nv1 = λv1 (6.19)

or if a Jordan block is necessary, the generalized eigenvector equation where for the cases we are

considering v2 is the single eigenvector of T12,n corresponding to λ:

S0,nv1 = λv1 + v2 (6.20)

When beginning to solve this equation for v1, it is unknown whether the matrix is defective or not,

so we combine the two equations by introducing a scalar β which will either be 0 in the eigenvector

case or 1 in the generalized eigenvector case:

S0,nv1 = λv1 + βv2 (6.21)
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Figure 6.4: Application of the Ā matrix to a quad patch next to an extraordinary vertex produces
a ribbon of three subpatches {U,UV, V } that are regular B-spline patches and a fourth patch Φ
which is analogous to its parent. Patches not adjacent to any sharp edges (a) generate B-spline
subpatches with a full set of 16 control points, while patches adjacent to sharp edges generate B-
spline subpatches, e.g. {U, V } in (b), that must calculate phantom vertices. Light vertices and
edges represent the current generation, while black ones represent its child mesh.

We now use the use the lower block triangle form of S0,n to derive an equation for v1:

S0,nv1 = λv1 + βv2 (6.22)

(S0,n − λI) v1 = βv2 (6.23)

(T − λI) v1 = 0 (6.24)

T11,nv1 + (T12,n − λI) v1 = βv2 (6.25)

(T12,n − λI) v1 = βv2 − T11,nv1 (6.26)

Solving for v1 requires the inverse of (T12,n − λI) as shown in Equation B.57:

(T12,n − λI)−1 = V12,n (Λ12,n − λI)−1 V −1
12,n (6.27)

If the eigenvalue λ of T is not an eigenvalue of T12,n then (T12,n − λI) is invertible. In this case,

the generalized eigenvector equation is not valid because an eigenvector v2 of T12,n corresponding

to the eigenvalue λ does not exist. Instead, the normal eigenvector equation is used, which can be
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accomplished by letting β = 0.

v1 = − (T12,n − λI)−1 T11,nv1 (6.28)

v1 = −V12,n (Λ12,n − λI)−1 V −1
12,nT11,nv1 (6.29)

Equation 6.29 defines the lower elements of the eigenvectors corresponding to λ in T if S0,n is not

defective.

A generalized Jordan vector will only occur in cases when the eigenvalue λ of T is also

an eigenvalue of T12,n. For the cases we are considering, the multiplicity of λ in T12,n is at most

1, so v2 is the eigenvector of T12,n corresponding to λ. In this case, (T12,n − λI) is a noninvertible

matrix, so we use its pseudoinverse (T12,n − λI)† instead to solve for v1.

v1 = (T12,n − λI)†
(
βv2 − T11,nv1

)
(6.30)

v1 = V12,n (Λ12,n − λI)† V −1
12,n

(
βv2 − T11,nv1

)
(6.31)

v2 is one of the columns of V12,n, so V −1
12,nv2 is a column vector with a single entry of 1 and the rest

0. This row with the 1 corresponds to the diagonal entry of (Λ12,n − λI) that is 0, hence:

(Λ12,n − λI)† V −1
12,nv2 = 0 (6.32)

So the equation for v1 reduces to:

v1 = −V12,n (Λ12,n − λI)† V −1
12,nT11,nv1 (6.33)

This is only a partial solution, so it is necessary to substitute v1 back into Equation 6.26. This

creates a term which is (T12,n − λI) right multiplied by its pseudoinverse, Equation 6.35. Looking

at this term in its eigen-decomposition, we find (Λ12,n − λI) right multiplied by its pseudoinverse

which is the identity matrix with the diagonal element corresponding to v2 set to zero. This near

identity matrix zeroes out v2 from V12,n. The right multiplication by V −1
12,n results in the identity

matrix minus the outer product of v2 and its corresponding row vector v2
−1 in V −1

12,n. Subtracting
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that quantity from the identity matrix simply yields the outer product v2

(
v2

−1
)t

.

(T12,n − λI) v1 = βv2 − T11,nv1 (6.34)
(

V12,n (Λ12,n − λI)V −1
12,n

)(

−V12,n (Λ12,n − λI)† V −1
12,nT11,nv1

)

= βv2 − T11,nv1 (6.35)

−
(

V12,n (Λ12,n − λI) (Λ12,n − λI)† V −1
12,n

)

T11,nv1 = βv2 − T11,nv1 (6.36)
(

I −
(

V12,n (Λ12,n − λI) (Λ12,n − λI)† V −1
12,n

))

T11,nv1 = βv2 (6.37)

v2

(
v2

−1
)t

T11,nv1 = βv2 (6.38)
(
v2

−1
)t

T11,nv1 = β (6.39)

Equation 6.39 is a scalar equation that is the final constraint. If m, the multiplicity of λ in T , linearly

independent eigenvectors of T represented by v1 can be constructed to satisfy the condition β = 0,

then S0,n is not defective. Otherwise for the first generalized Jordan vector v1 must be constructed

such that β = 1. For the cases we are considering, there is at most one generalized eigenvector

necessary, so the largest Jordan block will be a single 2× 2 block.

6.3 Darts

The real subdivison matrix An,q is numerically diagonalizable for dart patches, but it has

two complementary imaginary eigenvalues for some valences, which also causes the V and V −1

matrices to have imaginary values. Handling imaginary values increases the cost of doing a surface

evaluation by a constant factor of 4.

s (u, v) (6.40)

= puv (u, v) BuvPkĀV Λg−1V −1C (6.41)

= puv (u, v) (Qk,a + iQk,b) (Λa + iΛb)
g−1

(

Ĉa + iĈb

)

(6.42)

= (puv (u, v)a + ipuv (u, v)b) (Λa + iΛb)
g−1

(

Ĉa + iĈb

)

(6.43)

= (a1 + ib1) (a2 + ib2)
(

Ĉa + iĈb

)

(6.44)

= ((a1a2 − b1b2) + i (a1b2 + b1a2))
(

Ĉa + iĈb

)

(6.45)

= (a3 + ib3)
(

Ĉa + iĈb

)

(6.46)

=
(

a3Ĉa − b3Ĉb

)

+ i

(

a3Ĉb + b3Ĉa

)

︸ ︷︷ ︸

0

(6.47)
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Note that the value of s (u, v) is real, so the zero coefficient imaginary term in the final

multiply does not need to be calculated. Raising an imaginary eigenvalue λ = a + ib to an integer

power g is accomplished in O (g) scalar operations with the sum:

λg = (a + ib)g =

g
∑

j=0

i
j

(

g

j

)

ag−jbj (6.48)

6.4 Conclusion

This chapter has shown the general form for subdivision surface evaluation algorithms

and the necessary matrix decompositions. Chapters 7 and 8 will derive the specific matrices for

the Loop and Catmull-Clark subdivision schemes, respectively. Each chapter will provide all of the

necessary matrices to perform evaluation on patches near smooth, spike, dart, corner, and crease

extraordinary vertex cases.
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Chapter 7

Loop Evaluation

7.1 Introduction

Constant-time evaluation of Loop subdivision surfaces [15] near smooth extraordinary

vertices [27] greatly increased the ease of use of this free-form surface primitive in graphics and

CAD. The per triangle (u, v) parameterization has made subdivision surfaces compatible with

standard CAD primitives such as NURBS. Sharp and semi-sharp edge and vertex averaging rules

[10, 6, 4] make Loop surfaces an even more powerful and descriptive modeling primitive for CAD,

allowing for intentional breaks in continuity to define sharp features. We present a new method

for evaluation of the original piecewise smooth Loop subdivision scheme [10] based on the Jordan

decomposition of the local subdivision operator.

7.2 Basic Approach

The smooth Loop evaluation [27] has shown that Loop subdivision meets the two nec-

essary properties to enable constant-time exact evaluation. First, the subdivision operator at each

iteration introduces new regions that can be described by the known parameteric functions of box

splines, and in the limit, the union of these regions converge to cover the entire surface area. Second,

it is possible to perform an arbitrary number of applications of the subdivision operator in a constant

amount of time using its Jordan decomposition. We now show how to extend this work to handle

the remaining cases of patches near infinitely sharp features.

The averaging rules of the Loop subdivision scheme generalize N2,2,2 quartic box spline

surfaces to meshes with vertices of arbitrary valence. In the regular regions of the mesh where the
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Figure 7.1: Examples of the five different extraordinary vertex types for piecewise smooth Loop
surfaces. Black thick lines and squares denote sharp edges and vertices. Light thin lines and circles
represent smooth edges and vertices. The numbers indicate the patch number p within each wedge;
the maximum number is the valence n of the wedge.

vertices are all valence n = 6, the surface is a N2,2,2 quartic box spline (Figure 7.4(a)). Smooth

extraordinary vertices have valence n 6= 6 (Figure 7.1(a)), and they are averaged by a valence-

specific smoothing rule. The subdivision operator near one of these vertices creates ever shrinking

rings of regular box spline patches that converge to the limit position of that vertex [22]. The local

averaging rules can be expressed by the extended subdivision matrix Ā, and each application of it

generates the control points for three regular box spline patches {U,UV, V } and a fourth patch Φ

that is a contracted topological copy of its parent and which then may get partitioned again in the

same manner (Figure 7.5). Any barycentric location (u, v, w) with u, v, w ∈ [0, 1] and u+v+w = 1

within the patch, other than the origin, can be evaluated by repeatedly subdividing a number of

generations g = d− log2 (u + v)e, at which time the parametric point is contained in one of the

three regular box spline subpatches (Figure 7.2). Then the transformed parametric values (ū, v̄) can
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Figure 7.2: Loop parameterization

be substituted into the box spline polynomial to compute the result.

Ug : u > 2−g :ū = 2gu− 1

v̄ = 2gv (7.1)

Vg : v > 2−g :ū = 2gu

v̄ = 2gv − 1 (7.2)

UVg : u, v ≤ 2−g :ū = 1− 2gu

v̄ = 1− 2gv (7.3)

For a stationary scheme such as this, performing g subdivisions is equivalent to raising the con-

stant 1-patch-ring subdivision matrix A to the power g, which can be achieved in constant-time by

diagonalizing A into its eigen-decomposition.

For the smooth Loop subdivision rules, the A matrix is stationary for the regular neighbor-

hood of a patch with a single extraordinary valence vertex. After at most two complete subdivisions

of a closed, smooth Loop mesh, all of the patches have such a regular neighborhood, so this tech-

nique can be applied. The same technique with the same A matrix can be used to perform exact

evaluation of Loop surfaces with semi-sharp edge tags [6]. Semi-sharp edges make the subdivi-

sion scheme non-stationary, but only for a finite number of generations, after which the entire mesh
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becomes a smooth Loop surface. Infinitely sharp edges and vertices on the other hand are present

throughout the subdivision generations, so a new method must be introduced.

7.2.1 Behavior Near Sharp Features

We extend the smooth method to the case of piecewise smooth Loop subdivision. Vertices

along chains of sharp tagged edges are averaged by the uniform cubic B-spline curve rules rather

than the surface averaging rules. The averaging of these crease vertices is only dependent on ver-

tices along the curve, and this curve creates a sharp boundary across which no surface smoothing

information is passed. These modified averaging rules lead to four additional extraordinary vertex

cases, and we will address the evaluation of patches near vertices of these types.

A dart vertex (Figure 7.1(b)) has one sharp edge incident on it, but it is still averaged by

the smooth Loop vertex rule, forming a transition from the feature curve to the smooth surface. A

crease vertex (Figure 7.1(c)) has two sharp edges incident on it, and it is smoothed by the B-spline

subdivision curve rule. A spike vertex (Figure 7.1(d)) is tagged not to move, while the rest of the

surface around it follows the standard Loop rules, leading to geometry resembling the tip of a cone.

A corner vertex is defined to be a vertex with 3 or more sharp edges incident on it (Figure 7.1(e)),

or a vertex with 1 or more sharp edges where the vertex is also tagged to not move (Figure 7.1(f)).

Similar to the smooth extraordinary vertex case, the behavior of the surface near these extraordinary

vertices is a shrinking ribbon of box spline patches (Figure 7.3), (details in Section 7.4).

For any triangle patch p next to an extraordinary vertex, the behavior of the ribbon of box

spline patches as they converge to the extraordinary vertex is defined by the subdivision rules of

the local neighborhood, which can be written in a subdivision matrix A (Figure 7.3). For a patch

adjacent to a smooth or spike vertex, A is dependent on the valence n of the vertex, but it is the same

for any adjacent patch p, due to the structural symmetry around these types of vertices. Sharp edges

prevent smoothing across them, so the behavior of the surface adjacent to dart, crease, or corner

vertices is broken into isolated wedges. A wedge is a radially consecutive set of triangles starting

and ending at a sharp edge. The number of triangles in a wedge is its valence n, and each triangular

patch is identified by a number p counting counterclockwise around the extraordinary vertex. The

subdivision matrix A is different for each patch p of a wedge and also depends on the valence n of

the wedge. There is mirror symmetry about the central patch or edge, so for example A for patch

p = 1 is the mirror of patch p = n (Figure 7.1(f)). This symmetry reduces the number of cases.

For some valences, A is defective and cannot be diagonalized, so it is not possible to use
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Figure 7.3: Application of the Ā matrix to a triangle patch next to an extraordinary vertex produces
a ribbon of three subpatches {U,UV, V } that are regular box spline patches and a fourth patch Φ
which is analogous to its parent. Patches not adjacent to any sharp edges (a) generate box spline
subpatches with a full set of 12 control points, while patches adjacent to sharp edges generate box
spline subpatches, e.g. {U, V } in (b), that must calculate phantom vertices. Light vertices and
edges represent the current generation, while black ones represent its child mesh.

the eigen-decomposition to apply Ag. In these cases, we utilize the Jordan decomposition of A

which always exists and is only slightly more expensive to raise to a power g.

We show that the subdivision rules near sharp features produce box spline patches and

can be applied for an arbitrary number of generations by providing the Jordan decompositions of

the subdivision matrices for the different extraordinary vertex types.

7.3 Related Work

Our method is a generalization of the exact evaluation of smooth Loop surfaces [27].

Infinitely sharp edge and vertex rules [10, 6] change the subdivision matrix A, and for some cases

these matrices cannot be diagonalized. Parameterized expanded tagging rules with more control

have also been defined [4], and follow up work [34] has shown how to evaluate Loop subdivision

surfaces with these extended rules. Some of these subdivision matrices are defective, and the authors

chose to use a novel matrix decomposition rather than the Jordan decompositions which correspond

to singularities and are hard to parameterize over a family of matrices. Though we only handle the

subset these averaging rules, we still do implement the full RendMan standard [21] which is a very
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useful set of rules. The Jordan decomposition uses less matrix components because it has at most

a single 2 × 2 block while the other method has many 6 × 6 blocks. Hence our method is faster at

run-time.

7.4 Regular Box Spline Cases

To show that Loop surfaces with infinitely sharp edges and vertices can be exactly evalu-

ated in constant-time, we show that the subdivision operator A produces uniform quartic box spline

patches. In the limit, these box spline subpatches completely tile the extraordinary patch, so the

entire subdivision surface is a cascading collection of box spline patches at different levels of sub-

division.
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Figure 7.4: Loop patches that are uniform quartic box spline patches. Black thick lines and boxes
are sharp edges and vertices. Light solid lines and circles are smooth edges and vertices. Light
dashed lines and hollow circles are phantom edges and vertices.

Figure 7.5 shows that subdividing a patch near a smooth extraordinary vertex creates

shrinking rings of uniform quartic box spline patches {U, V, UV }, which are known polynomial

functions, enabling exact evaluation. For many patches near sharp features, the same kind of box

spline patches are generated during the subdivision process (Figure 7.3(a)). For patches adjacent to

sharp edges, on the other hand, some of the subpatches will then be adjacent to sharp edges with an

incomplete neighborhood of control points to define a box spline patch, e.g. subpatches U and V in

Figure 7.3(b).

Fortunately, these subpatches are also uniform quartic box spline patches, and a set of

phantom vertices can be easily constructed based on the existing control points to complete the con-

trol structure [33]. Further investigation has shown that there are three local cases of Loop patches
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that reduce to uniform box splines if appropriate phantom vertices are introduced (Figure 7.4). Fig-

ure 7.4(a) shows a uniform quartic box spline control structure.

The 12 uniform quartic box spline basis functions [27] can be expressed as B4 (u, v) =

puv (u, v) Buv , where puv (u, v) is the bi-quartic power basis vector:

pu (u) =
[

1 u u2 u3 u4
]

(7.4)

puv (u, v) =
[

pu (u) vpu (u) v2pu (u) v3pu (u) v4pu (u)
]

(7.5)

Buv is the coefficient matrix on the power basis that constructs the uniform quartic box splines:

Buv =
1
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(7.6)

The position of a phantom vertex is function of the other control vertex position to gener-

ate the control structure for a specific curve or surface. In the case of the bottom sharp edge B-spline
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curve in Figure 7.4(c), the left control vertex V3 is not specified by the user. This curve C (u) should

interpolate V3 when u = 0, and it should be a uniform B-spline curve so that the normal subdivi-

sion averaging rules apply. Solving this equation yields an expression for the position of the curve

phantom vertex V3.

C (u) =

3∑

i=0

bi (u) V3+i (7.7)

V4 = C (0) (7.8)

V4 =
1

6
(V3 + 4V4 + V5) (7.9)

V3 = 2V4 − V5 (7.10)

Figure 7.4(b) illustrates the case of a patch adjacent to a regular crease edge. The nec-

essary location for phantom vertices 0 → 2 are computed by mirroring their respective neighbor

vertex across the sharp crease edge. For the example of vertex V1, we must set:

V1 = V4 + V5 − V8 (7.11)

Equation 7.11 is derived by equating the v = 0 isoparameter curve of the phantom patch to the

sharp boundary B-spline curve of the patch.

Figure 7.4(c) shows a patch adjacent to a corner vertex and two regular crease edges.

Identical to the single crease case, locations for phantom vertices {1, 2, 7, 10} are computed by

mirroring their associated neighbor vertex across the sharp crease edges. The location for the corner

phantom vertices V0 and V3 are computed by mirroring the associated neighbor vertex across the

corner vertex V4. The rule for V0 is as follows:

V0 = 2V4 − V8 (7.12)

Equation 7.12 is derived by equating the u = 0 and v = 0 isoparameter curves of the phantom

patch to the sharp boundary curves of the patch. But first the sharp boundary curves must have their

fourth phantom curve control point calculated for them using Equation 7.10.

These are the basic elements that build all uniform box spline patches, but combinations

of the regular crease and corner situations are also uniform box spline patches. A triangle with all

three corner vertices actually reduces to a bilinear patch. We have found that treating the regular

corner case specially can greatly reduce the amount of subdivision that is necessary. For example, if

a model is generated that texture maps each triangle with its own {[0, 1] , [0, 1]} texture space, then

each texture domain is a bilinear patch and no subdivision is necessary. In principle though, only

the smooth and regular crease cases are necessary to perform exact evaluation.
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7.5 Loop Smooth and Spike Vertices

The smooth and spike vertex patch cases can be treated with the same matrix analysis.

The only difference between the two cases is the averaging rule for the extraordinary vertex V0 of

Figure 7.5.
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Figure 7.5: Application of the Ā matrix to a triangle patch next to an extraordinary smooth or spike
vertex produces a ribbon of three subpatches {U,UV, V } that are regular box Spline patches and
a fourth patch Φ which is analogous to its parent. Light vertices and edges represent the current
generation, while black ones represent its child mesh.

7.5.1 Loop Smooth and Spike Ā

The extended 1-ring subdivision operator Ā generates all the necessary control vertices in

the next generation that define the three regular box spline patches, see Figure 7.5. We choose to

order the vertices in the 1-ring neighborhood as illustrated in Figure 7.5 to simplify our analysis.
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(7.13)

When the valence n = 3, the shape of the S0, S11, and S21 matrices change slightly

because V1 is being used twice.
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(7.14)

7.5.2 Loop Smooth and Spike A Jordan Decompositions

The subdivision operator A is the top square portion of Ā.

A =




S0 0

S11 S12



 (7.15)

For all valences n > 3, the subdivision operator A is not defective and can be diago-

nalized into its eigen-decomposition. For the single case of n = 3, A is defective, so the Jordan

decomposition must used instead.

7.5.3 Loop Smooth and Spike S12

The submatrix S12 is the same for all valences.
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S12 can be diagonalized into its eigen-decomposition. Due to the block lower triangular

structure of A, the columns of V12 when zero extended on the top become eigenvectors of A.
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7.5.4 Loop Smooth and Spike S0 Eigen-decomposition

For the most general set of 1-ring averaging rules, the S0 matrix has a symmetric circulant

submatrix plus an additional row and column associated with control vertex V0.
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For a convergent subdivision scheme, the subdivision rules for the face, edge, and vertex

rules must sum to one. If n is odd then e n
2

does not exist.

v0 = 1− nv1 (7.19)

e0 = 1−
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
e1 + 2
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ek + en
2


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 (7.20)

The S0 matrix can be transformed into a block diagonal matrix Ŝ0 using a modified DFT.

Ŝ0 = FS0F
−1 (7.21)
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Ŝ0 has n blocks where B0 is 2× 2 and the other blocks are scalars and hence the eigenvalues λi for

i ∈ {1, n− 1}.

Ŝ0 =
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(7.23)

Block B0 has the following form and eigenvalues λ±0:

B0 =




v0 nv1

e0 e1 + 2
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2 c
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 (7.24)

λ±0 =
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(7.25)

The other eigenvalues λi for i ∈ {1, n− 1} from the scalar blocks are of the form:

λi = e1 + 2

bn−1

2 c∑

k=2

cos

(
2πik

n

)

ek + cos (πi) en
2

(7.26)



137

These eigenvalues appear in pairs centered around i = n
2 , so λi = λn−i because they correspond to

opposite multiples of the same angles and the cosines of each are the same.

The eigenvectors of S0 can be found by first finding the eigenvectors of Ŝ0 and then

applying the inverse DFT.

S0 = F−1Ŝ0F (7.27)

= F−1V̂0Λ0V̂
−1
0 F (7.28)

= V0Λ0V
−1
0 (7.29)

The eigenvectors of the Ŝ0 are:
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Transforming back by the inverse DFT, we find that the eigenvectors of S0 are:

V0 = F−1V̂0
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0 = V̂ −1

0 F

=
1

n













ne0

1−v0+e0

1−v0

1−v0+e0

1−v0

1−v0+e0

1−v0

1−v0+e0

− ne0

1−v0+e0

e0

1−v0+e0

e0

1−v0+e0

e0

1−v0+e0

0 1 ω1 · · · ωn−1

...
. . .

...

0 1 ωn−1 · · · ω(n−1)(n−1)













(7.32)

These eigenvectors have imaginary entries which is undesireable. Fortunately, the two eigenvectors

vi and vn−i associated with the pairs of identical eigenvalues are complex congugates of each other,

so it is possible to replace these eigenvectors with their sum and differences. If n is even, then the
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eigenvector vn
2

associated with λn
2

remains the same because it is real.

i ∈
{
1,
⌊

n
2

⌋}

ui =
1

2
(vi + vn−i) =
















0

cos
(
0 2πi

n

)

cos
(
1 2πi

n

)

cos
(
2 2πi

n

)

...

cos
(
(n− 1) 2πi

n

)
















, un−i =
i

2
(vi − vn−i) =
















0

sin
(
0 2πi

n

)

sin
(
1 2πi

n

)

sin
(
2 2πi

n

)

...

sin
(
(n− 1) 2πi

n

)
















(7.33)

The corresponding row vectors from the inverse eigenvector matrix are then:

i ∈
{
1,
⌊

n
2

⌋}

u−1
i =

(
v−1
i + v−1

n−i

)
=

1

n
















0

2 cos
(
0 2πi

n

)

2 cos
(
1 2πi

n

)

2 cos
(
2 2πi

n

)

...

2 cos
(
(n− 1) 2πi

n

)
















, u−1
n−i = −i

(
v−1
i − v−1

n−i

)
=

1

n
















0

2 sin
(
0 2πi

n

)

2 sin
(
1 2πi

n

)

2 sin
(
2 2πi

n

)

...

2 sin
(
(n− 1) 2πi

n

)
















(7.34)

For the original Loop scheme, the S0 matrix has many of the general face and edge aver-

aging weights set to zero, so the matrix has the form:

S0 =


















v0 v1 v1 v1 v1 · · · v1

e0 e1 e2 0 0 · · · e2

e0 e2 e1 e2 0 0

e0 0 e2 e1 e2 0
...

...
. . .

...

e0 0 0 e2 e1 e2

e0 e2 0 · · · 0 e2 e1


















(7.35)

For a convergent subdivision scheme, the subdivision rules for the face, edge, and vertex rules must

sum to one.

v0 = 1− nv1 (7.36)

e0 = 1− (e1 + 2e2) (7.37)



139

The values of the averaging rule weights adjacent to the extraordinary vertex can be modified to try

to improve the surface behavior there, and it is convenient for us to leave these as variables so that

we can combine the analysis for smooth and spike vertices. The standard edge rules are:

e0 = 3e, e1 = 3e, e2 = e (7.38)

The standard smooth vertex rules are:

v0 = 1− nv1, v1 =
40 −

(
3 + 2 cos

(
2π
n

) )2

64n
(7.39)

The spike vertex rules are:

v0 = 1, v1 = 0 (7.40)

The S0 matrix can be transformed to a block diagonal matrix Ŝ0 using a modified DFT. The 2 × 2

block B0 and its eigenvalues λ±0 are:

B0 =




v0 nv1

e0 e1 + 2e2



 (7.41)

λ±0 = {1, e1 + 2e2 − nv1} (7.42)

The other eigenvalues λi for i ∈ {1, n− 1} from the scalar blocks are of the form:

λi = e1 + 2 cos

(
2πi

n

)

e2 (7.43)

The eigenvectors from the general case are already simplified.

7.5.5 Loop Smooth and Spike S11

The eigenvector components V11 corresponding to S11 can be expressed with respect to

the eigen-decompositions of S0 and S12. For valences n > 3, the columns of V11 can be computed

using:

v11,c = −V12 (Λ12 − λcI)−1 V −1
12 S11v0,c (7.44)

In the smooth case when n = 3, the single eigenvalue λ = 1
16 is also an eigenvalue of S12, so the

pseudoinverse must be used instead.

v11,c = −V12 (Λ12 − λcI)† V −1
12 S11v0,c (7.45)
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7.5.6 Loop Smooth and Spike Picking Matrices

The picking matrices Pk where k ∈ {U, V, UV } select out the 12 control points for the

corresponding regular box spline patch from the n + 11 control points generated by the Ā matrix,

see Figure 7.5. Pk is a 12×n+11 matrix where each row has a single 1 in the column corresponding

to control point listed in the sets below. Note that if the valence n = 3 then V4 must be replaced by

V1.

PU,n = {V1, Vn+1, Vn+6, V0, V2, Vn+2, Vn+7, V3, Vn+3, Vn+8, Vn+4, Vn+9 } (7.46)

PV,n = {V0, V2, Vn+2, V4, V3, Vn+3, Vn+8, Vn+5, Vn+4, Vn+9, Vn+11, Vn+10 } (7.47)

PUV,n = {Vn+9, Vn+4, Vn+5, Vn+8, Vn+3, V3, V4, Vn+2, V2, V0, Vn+1, V1 } (7.48)

7.6 Loop Corner and Crease Vertices

The corner and crease vertex patch cases can be treated with the same matrix analysis.

The only difference between the two cases is the averaging rule for the extraordinary vertex V0 of

Figure 7.3.

7.6.1 Loop Corner and Crease Ā

The extended 1-ring subdivision operator Ā generates all the necessary wedge control

vertices in the next generation that define the three regular box spline patches, see Figure 7.3. We

choose to order the vertices in the 1-ring neighborhood as illustrated in Figure 7.3 to simplify our

analysis. The first nonzero column of S11 and S21 is the one associated with vertex Vp.
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v̄0 =
6

8
, v̄1 =

1

8
, ē0 = ē1 =

1

2

Ān,p =








S0 0

S11 S12

S21 S22








=











T0 0

T11 T12

0

S11 S12

S21 S22











=























































v̄0 v̄1 v̄1 0 0 0 0 0 0 0 0 0 0

ē0 ē1 0 0 0 0 0 · · · 0 0 0 0 0 0

ē0 0 ē1 0 0 0 0 0 0 0 0 0 0

e0 0 e2 e1 e2 0 0 0 0 0 0 0

e0 0 0 e2 e1 e2 0 0 0 0 0 0

e0 0 0 0 e2 e1 e2 0 0 0 0 0
...

. . .
...

e0 0 0 e2 e1 e2 0 0 0 0 0

e0 e2 0 0 e2 e1 0 0 0 0 0

e 0 0 3e 3e 0 0 e 0 0 0 0

v 0 0 v 6v v 0 v v v 0 0

e 0 0 · · · 0 3e 3e 0 · · · 0 0 e 0 0

v 0 0 0 v 6v v 0 0 v v v

e 0 0 0 0 3e 3e 0 0 0 0 e

0 0 0 e 3e 0 0 3e e 0 0 0

0 0 0 0 3e 0 0 e 3e e 0 0

0 0 0 · · · 0 3e e 0 · · · 0 e 3e 0 0

0 0 0 0 e 3e 0 0 0 3e e 0

0 0 0 0 0 3e 0 0 0 e 3e e

0 0 0 0 0 3e e 0 0 0 e 3e























































(7.49)

When p = 1 or p = n, one side of the patch is adjacent to a crease edge, so the S22

submatrix is modified. Similar alterations are made to the S21, S11, and S12 submatrices. The

eigen-decomposition of S12 will be discussed in greater detail in Section 7.6.3.
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S22,n,1 =













ē 0 0 0

e 3e 0 0

0 3e e 0

0 e 3e e

0 0 e 3e













(7.50)

S22,n,n =













3e e 0 0

e 3e e 0

0 e 3e 0

0 0 3e e

0 0 0 ē













(7.51)

When the wedge valence n = 1 as in Figure 7.3(b), the shape of the S0, S11, and S21

matrices change slightly because the crease edge rules are present on both ends of the wedge in the

second and third vertex rings.

Ā1,1 =








S0 0

S11 S12

S21 S22








=



























v̄0 v̄1 v̄1 0 0 0

ē ē 0 0 0 0

ē 0 ē 0 0 0

v̄1 0 v̄0 v̄1 0 0

e 3e 3e 0 e 0

v̄1 v̄0 0 0 0 v̄1

0 0 ē ē 0 0

0 e 3e e 3e 0

0 3e e 0 3e e

0 ē 0 0 0 ē



























(7.52)

7.6.2 Loop Corner and Crease A Jordan Decompositions

The Jordan decompositions of A for corner and crease patches are very similar. For

certain valences, the submatrix S0 is defective due to interactions of shared eigenvalues between its

submatrices T0 and T12.

7.6.3 Loop Corner and Crease S12

The submatrix S12, n, p is the same as the smooth case from Equation 7.16 for most

wedge valences n and subpatches p. However when p = 1 or p = n, the subpatch p of the wedge
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is adjacent to a crease edge and a boundary rule is introduced into S12, Figure 7.3(b). S12 can be

diagonalized into its eigen-decomposition. Due to the block lower triangular structure of A, the

columns of V12 when zero extended on the top become eigenvectors of A. The three special cases

near crease curves are as follows:

S12,n,1 =










v̄1 0 0 0

0 e 0 0

0 v v v

0 0 0 e










(7.53)

=










1 0 0 0

0 1 0 e− v

0 0 1 2v

0 −1 0 e− v



















v̄1 0 0 0

0 e 0 0

0 0 v 0

0 0 0 e



















1 0 0 0

0 1
2 0 − 1

2

0 − v
e−v

1 − v
e−v

0 1
2(e−v) 0 1

2(e−v)










(7.54)

S12,n,n =










e 0 0 0

v v v 0

0 0 e 0

0 0 0 v̄1










(7.55)

=










1 0 e− v 0

0 1 2v 0

−1 0 e− v 0

0 0 0 1



















e 0 0 0

0 v 0 0

0 0 e 0

0 0 0 v̄1



















1
2 0 − 1

2 0

− v
e−v

1 − v
e−v

0

1
2(e−v) 0 1

2(e−v) 0

0 0 0 1










(7.56)

S12,1,1 =







v̄1 0 0

0 e 0

0 0 v̄1







(7.57)

7.6.4 Loop Corner and Crease S0 Jordan decomposition

The S0 matrix for corner and crease vertices is only dependent on the valence n and not

on the subpatch p. S0 is a lower block triangular matrix. The subblock T differs for the corner and

crease cases because of the averaging rules for V0. T11 and T12 are the same for both cases.
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S0,n =




T 0

T11,n T12,n



 =


















T 0

3e 0 e

3e 0 0

3e 0 0
...

3e 0 0

3e e 0

3e e 0

e 3e e

0 e 3e

0

0

e

0

. . .

0
e

0

3e e

e 3e


















(7.58)

For certain valences, S0,n is defective due to a shared eigenvalue between the T and T12

subblocks, and a nontrivial Jordan form must be used. T12 is a tridiagonal Toeplitz matrix, so its

eigenvectors are based on the DCT. When the valence n is even, the eigenvectors are:

α (r, c) = cos r
cπ

n
(7.59)

β (r, c) = sin r
cπ

n
(7.60)

V12,n =














α
(
−n−2

2 , 1
)

β
(
−n−2

2 , 2
)
· · · α

(
−n−2

2 , n− 1
)

...
...

...

α (0, 1) β (0, 2) · · · α (0, n− 1)
...

...
...

α
(

n−2
2 , 1

)
β
(

n−2
2 , 2

)
· · · α

(
n−2

2 , n− 1
)














(7.61)

V −1
12,n =

2

n
V t

12,n (7.62)

When the valence n is odd, the eigenvectors are:

α (r, c) = cos r
cπ

n
(7.63)

β (r, c) = sin r
cπ

n
(7.64)

V12,n =
















α
(
−n−2

2 , 1
)

β
(
−n−2

2 , 2
)
· · · β

(
−n−2

2 , n− 1
)

...
...

...

α
(
− 1

2 , 1
)

β
(
− 1

2 , 2
)

· · · β
(
− 1

2 , n− 1
)

α
(

1
2 , 1
)

β
(

1
2 , 2
)

· · · β
(

1
2 , n− 1

)

...
...

...

α
(

n−2
2 , 1

)
β
(

n−2
2 , 2

)
· · · β

(
n−2

2 , n− 1
)
















(7.65)

V −1
12,n =

2

n
V t

12,n (7.66)
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The eigenvalues of T12,n are:







i ∈ [1, n− 1] :

λi = e
(
3 + 2 cos iπ

n

)






(7.67)

All of the eigenvalues of T12,n are unique.

7.6.5 Loop Corners

For the corner patch case, the submatrix T of S0,n (Equation 7.58) contains the averaging

rules for the vertices 0→ 2 from Figure 7.3. Note that in the case of a corner vertex with one sharp

edge, vertices 1 and 2 are two copies of the same point:

T =







1 0 0

1
2

1
2 0

1
2 0 1

2







(7.68)

T has the eigenvalues λ =
{
1, 1

2 , 1
2

}
. T12,n also has an eigenvalue of λ n

3
= 1

2 when the wedge

valence n is a multiple of 3, so the associated eigenvectors of S0,n fall into two cases.

Loop Corner with Mod (n, 3) 6= 0

When Mod (n, 3) 6= 0, S0,n is diagonalizable, so there is a full set of eigenvectors.

Λ =










1 0 0

0 1
2 0

0 0 1
2

. . .










(7.69)
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Equation 7.72 shows the first three eigenvectors {v1, v2, v3} for when n is odd.

α (r, c) = cos r
cπ

n
(7.70)

β (r, c) = sin r
cπ

n
(7.71)

























1

1

1

1
...

1

1
...

1

























,

























0

α
(

n
2 , n

3

)

α
(
−n

2 , n
3

)

α
(
−n−2

2 , n
3

)

...

α
(
− 1

2 , n
3

)

α
(

1
2 , n

3

)

...

α
(

n−2
2 , n

3

)

























,

























0

β
(

n
2 , n

3

)

β
(
−n

2 , n
3

)

β
(
−n−1

2 , n
3

)

...

β
(
− 1

2 , n
3

)

β
(

1
2 , n

3

)

...

β
(

n−3
2 , n

3

)

























(7.72)

Equation 7.75 shows the first three eigenvectors {v1, v2, v3} for when n is even.

α (r, c) = cos r
cπ

n
(7.73)

β (r, c) = sin r
cπ

n
(7.74)






















1

1

1

1
...

1
...

1






















,






















0

α
(

n
2 , n

3

)

α
(
−n

2 , n
3

)

α
(
−n−2

2 , n
3

)

...

α
(
0, n

3

)

...

α
(

n−2
2 , n

3

)






















,






















0

β
(

n
2 , n

3

)

β
(
−n

2 , n
3

)

β
(
−n−2

2 , n
3

)

...

β
(
0, n

3

)

...

β
(

n−2
2 , n

3

)






















(7.75)

Loop Corner with Mod (n, 3) = 0

When n is divisible by 3, S0,n is defective due to the eigenvalue λ = 1
2 which has algebraic

multiplicity three but only two linearly independent eigenvectors.

J =













1 0 0 0

0 1
2 0 0

0 0 1
2 0

0 0 1 1
2

. . .













(7.76)
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Equation 7.80 shows the first four generalized eigenvectors {v1, v2, v3, v4} when n is odd. Note that

the scale of all vectors in a Jordan block are dependent on each other, so v3 and v4 must be scaled

together.

α (r, c) = cos r
cπ

n
(7.77)

β (r, c) = sin r
cπ

n
(7.78)

γ (r) =
1

2e sin
(

π
3

)




r sin

(

r
π

3

)

+
2r∑

k=3b 2r
3 c

sin
(

(2k − 2r)
π

3

)




 (7.79)

























1

1

1

1
...

1

1
...

1

























,

























0

β
(

n
2 , n

3

)

β
(
−n

2 , n
3

)

β
(
−n−2

2 , n
3

)

...

β
(
− 1

2 , n
3

)

β
(

1
2 , n

3

)

...

β
(

n−2
2 , n

3

)

























,

























0

γ
(

n
2

)

γ
(
−n

2

)

γ
(
−n−2

2

)

...

γ
(
− 1

2

)

γ
(

1
2

)

...

γ
(

n−2
2

)

























,

























0

0

0

α
(
−n−2

2 , n
3

)

...

α
(
− 1

2 , n
3

)

α
(

1
2 , n

3

)

...

α
(

n−2
2 , n

3

)

























(7.80)

Equation 7.84 shows the first four generalized eigenvectors {v1, v2, v3, v4} when n is even. Note

that the scale of all vectors in a Jordan block are dependent on each other, so v3 and v4 must be
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scaled together.

α (r, c) = cos r
cπ

n
(7.81)

β (r, c) = sin r
cπ

n
(7.82)

γ (r) =
1

2e sin
(

π
3

)




− (r + 1) cos

(

r
π

3

)

+

r∑

k=3b r
3c

cos
(

(2k − r)
π

3

)




 (7.83)






















1

1

1

1
...

1
...

1






















,






















0

α
(

n
2 , n

3

)

α
(
−n

2 , n
3

)

α
(
−n−2

2 , n
3

)

...

α
(
0, n

3

)

...

α
(

n−2
2 , n

3

)






















,






















0

γ
(

n
2

)

γ
(
−n

2

)

γ
(
−n−2

2

)

...

γ (0)
...

γ
(

n−2
2

)






















,






















0

0

0

β
(
−n−2

2 , n
3

)

...

β
(
0, n

3

)

...

β
(

n−2
2 , n

3

)






















(7.84)

7.6.6 Loop Creases

For the crease patch case, the submatrix T of S0,n (Equation 7.58) contains the averaging

rules for the vertices 0→ 2 from Figure 7.3. Note that in the case of a crease vertex with one sharp

edge, vertices 1 and 2 are the same point:

T =







6
8

1
8

1
8

1
2

1
2 0

1
2 0 1

2







(7.85)

T has the eigenvalues λ =
{
1, 1

2 , 1
4

}
. T12,n also has an eigenvalue of 1

2 when the wedge valence n

is a multiple of 3, so the associated eigenvectors of S0,n fall into two cases.

Loop Crease with n Odd or Mod (n, 3) 6= 0

When n is odd or Mod (n, 3) 6= 0, S0,n is diagonalizable, so there is a full set of eigen-

vectors.

Λ =










1 0 0

0 1
2 0

0 0 1
4

. . .










(7.86)
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Equation 7.89 shows the first three eigenvectors {v1, v2, v3} for when n is odd.

α (r, c) = cos r
cπ

n
(7.87)

β (r, c) = sin r
cπ

n
(7.88)

























1

1

1

1
...

1

1
...

1

























,

























0

β
(

n
2 , n

3

)

β
(
−n

2 , n
3

)

β
(
−n−2

2 , n
3

)

...

β
(
− 1

2 , n
3

)

β
(

1
2 , n

3

)

...

β
(

n−2
2 , n

3

)

























,

























− cos
(

nπ
3

)

cos
(

nπ
3

)
+ α

(
n
2 , 2n

3

)

cos
(

nπ
3

)
+ α

(
−n

2 , 2n
3

)

cos
(

nπ
3

)
+ α

(
−n−2

2 , 2n
3

)

...

cos
(

nπ
3

)
+ α

(
− 1

2 , 2n
3

)

cos
(

nπ
3

)
+ α

(
1
2 , 2n

3

)

...

cos
(

nπ
3

)
+ α

(
n−2

2 , 2n
3

)

























(7.89)

Equation 7.92 shows the first three eigenvectors {v1, v2, v3} for when n is even.

α (r, c) = cos r
cπ

n
(7.90)

β (r, c) = sin r
cπ

n
(7.91)






















1

1

1

1
...

1
...

1






















,






















0

β
(

n
2 , n

3

)

β
(
−n

2 , n
3

)

β
(
−n−2

2 , n
3

)

...

β
(
0, n

3

)

...

β
(

n−2
2 , n

3

)






















,






















− cos
(

nπ
3

)

cos
(

nπ
3

)
+ α

(
n
2 , 2n

3

)

cos
(

nπ
3

)
+ α

(
−n

2 , 2n
3

)

cos
(

nπ
3

)
+ α

(
−n−2

2 , 2n
3

)

...

cos
(

nπ
3

)
+ α

(
0, 2n

3

)

...

cos
(

nπ
3

)
+ α

(
n−2

2 , 2n
3

)






















(7.92)

Loop Crease with n Even and Mod (n, 3) = 0

When n is even and divisible by 3, S0,n is defective due to the eigenvalue λ n
3

= 1
2 which

has algebraic multiplicity two but only one linearly independent eigenvector.

J =













1 0 0 0

0 1
4 0 0

0 0 1
2 0

0 0 1 1
2

. . .













(7.93)
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Equation 7.97 shows the first four generalized eigenvectors {v1, v2, v3, v4} when n is even. Note

that the scale of all vectors in a Jordan block are dependent on each other, so v3 and v4 must be

scaled together.

α (r, c) = cos r
cπ

n
(7.94)

β (r, c) = sin r
cπ

n
(7.95)

γ (r) =
1

2e sin
(

π
3

)




− (r + 1) cos

(

r
π

3

)

+

r∑

k=3b r
3c

cos
(

(2k − r)
π

3

)




 (7.96)






















1

1

1

1
...

1
...

1






















,






















− cos
(

nπ
3

)

cos
(

nπ
3

)
+ α

(
n
2 , 2n

3

)

cos
(

nπ
3

)
+ α

(
−n

2 , 2n
3

)

cos
(

nπ
3

)
+ α

(
−n−2

2 , 2n
3

)

...

cos
(

nπ
3

)
+ α

(
0, 2n

3

)

...

cos
(

nπ
3

)
+ α

(
n−2

2 , 2n
3

)






















,






















0

γ
(

n
2

)

γ
(
−n

2

)

γ
(
−n−2

2

)

...

γ (0)
...

γ
(

n−2
2

)






















,






















0

0

0

β
(
−n−2

2 , n
3

)

...

β
(
0, n

3

)

...

β
(

n−2
2 , n

3

)






















(7.97)

7.6.7 Loop Corner and Crease S11

The eigenvector components V11 corresponding to S11 can be expressed with respect to

the eigen-decompositions of S0 and S12. For the diagonalizable cases, the columns of V11 can be

computed using:

v11,c = −V12 (Λ12 − λcI)−1 V −1
12 S11v0,c (7.98)

For the defective cases, the single eigenvalue λ = 1
2 is also an eigenvalue of S12, so the pseudoin-

verse must be used instead.

v11,c = −V12 (Λ12 − λcI)−1 V
†
12S11v0,c (7.99)

7.6.8 Loop Corner and Crease Picking Matrices

The picking matrices Pk where k ∈ {U, V, UV } select out the 12 control points for the

corresponding regular box spline patch from the n + 11 control points generated by the Ā matrix,

see Figure 7.3. Pk is a 12×n+11 matrix where each row has a single 1 in the column corresponding

to control point listed in the sets below.
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The following are the picking matrices for subpatches 1 < p < n (note that if p = n− 1

then Vp+3 must be replaced by V1):

PU,n,p = {Vp, Vn+2, Vn+7, V0, Vp+1, Vn+3, Vn+8, Vp+2, Vn+4, Vn+9, Vn+5, Vn+10 } (7.100)

PV,n,p = {V0, Vp+1, Vn+3, Vp+3, Vp+2, Vn+4, Vn+9, Vn+6, Vn+5, Vn+10, Vn+12, Vn+11 } (7.101)

PUV,n,p = {Vn+10, Vn+5, Vn+6, Vn+9, Vn+4, Vp+2, Vp+3, Vn+3, Vp+1, V0, Vn+2, Vp } (7.102)

The following are the picking matrices for subpatch p = 1 (note that if p = n − 1 then

Vp+3 must be replaced with V1):

V̄a = V0 + Vp+1 − Vp+2 (7.103)

V̄b = Vp+1 + Vn+2 − Vn+3 (7.104)

V̄c = Vn+2 + Vn+6 − Vn+7 (7.105)

PU,n,1 = {V̄a, V̄b, V̄c, V0, Vp+1, Vn+2, Vn+6, Vp+2, Vn+3, Vn+7, Vn+4, Vn+9 } (7.106)

PV,n,1 = {V0, Vp+1, Vn+2, Vp+3, Vp+2, Vn+3, Vn+7, Vn+5, Vn+4, Vn+8, Vn+10, Vn+9 } (7.107)

PUV,n,1 = {Vn+8, Vn+4, Vn+5, Vn+7, Vn+3, Vp+2, Vp+3, Vn+2, Vp+1, V0, V̄b, V̄a } (7.108)

The following are the picking matrices for subpatch p = n:

V̄d = V0 + V1 − Vp+1 (7.109)

V̄e = V1 + Vn+5 − Vn+4 (7.110)

V̄f = Vn+5 + Vn+10 − Vn+9 (7.111)

PU,n,n = {Vp, Vn+2, Vn+6, V0, Vp+1, Vn+3, Vn+7, V1, Vn+4, Vn+8, Vn+5, Vn+9 } (7.112)

PV,n,n = {V0, Vp+1, Vn+3, V̄d, V1, Vn+4, Vn+8, V̄e, Vn+5, Vn+9, V̄f , Vn+10 } (7.113)

PUV,n,n = {Vn+9, Vn+5, V̄e, Vn+8, Vn+4, V1, V̄d, Vn+3, Vp+1, V0, Vn+2, Vp } (7.114)
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For a wedge with a single patch n = 1, the picking matrices are:

V̄a = V0 + V2 − V1 (7.115)

V̄b = V2 + Vn+2 − Vn+3 (7.116)

V̄c = Vn+2 + Vn+5 − Vn+6 (7.117)

V̄d = V0 + V1 − V2 (7.118)

V̄e = V1 + Vn+4 − Vn+3 (7.119)

V̄f = Vn+4 + Vn+8 − Vn+7 (7.120)

PU,1,1 = {V̄a, V̄b, V̄c, V0, V2, Vn+2, Vn+5, V1, Vn+3, Vn+6, Vn+4, Vn+7 } (7.121)

PV,1,1 = {V0, V2, Vn+2, V̄d, V1, Vn+3, Vn+6, V̄e, Vn+4, Vn+7, V̄f , Vn+8 } (7.122)

PUV,1,1 = {Vn+7, Vn+4, V̄e, Vn+6, Vn+3, V1, V̄d, Vn+2, V2, V0, V̄b, V̄a } (7.123)

7.7 Conclusion

We have implemented a new exact evaluation algorithm for piecewise smooth Loop sub-

division surfaces. We have developed new techniques for dart, crease, corner, and spike patches,

and we have provided the set of matrices necessary for each of these cases.
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Chapter 8

Catmull-Clark Evaluation

8.1 Introduction

Constant-time evaluation of Catmull-Clark surfaces [5] near smooth extraordinary ver-

tices [29] greatly increased the ease of use of this free-form surface primitive in graphics and

CAD. The per quadrilateral (u, v) parameterization has made subdivision surfaces compatible with

standard CAD primitives such as NURBS. Sharp and semi-sharp edge and vertex averaging rules

[10, 6, 4] make Catmull-Clark surfaces an even more powerful and descriptive modeling primitive

for CAD, allowing for intentional breaks in continuity to define sharp features. Current methods for

evaluating surfaces near these features rely on performing repeated subdivisions until the control

structure approximates the limit surface within some tolerance. It is then possible to push the con-

trol points to their limit positions and bilinearly interpolate values across an inexact surface patch.

In some applications, the exact solution near these sharp features is critical, e.g. mechanical mod-

eling where these features may correspond to areas of particularly tight tolerances. We present a

new approach for the sharp edge and vertex rules [6] supported in the RenderMan interface [21]

that enables the constant-time exact evaluation of patches adjacent to corner, crease, dart, and spike

vertices (Figure 8.1) by employing the Jordan decomposition [7] of the local subdivision operator.

8.2 Basic Approach

The smooth Catmull-Clark evaluation [29] has shown that Catmull-Clark subdivision

meets the two necessary properties to enable contant-time exact evaluation. First, the subdivision

operator at each iteration introduces new regions that can be described by known parameteric func-
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Figure 8.1: Examples of the five different extraordinary vertex types for piecewise smooth Catmull-
Clark surfaces. Black thick lines and squares denote sharp edges and vertices. Light thin lines and
circles represent smooth edges and vertices. The numbers indicate the quad patch number p within
each wedge; the maximum number is the valence n of the wedge.

tions of uniform B-splines, and in the limit, the union of these regions converge to cover the entire

surface area. Second, it is possible to perform an arbitrary number of applications of the subdivision

operator in a constant amount of time using its eigen-decomposition. We now show how to extend

this work to handle the remaining cases of patches near infinitely sharp features.

The averaging rules of the Catmull-Clark subdivision scheme generalize uniform bi-cubic

B-spline surfaces to meshes with vertices of arbitrary valence. In the regular regions of the mesh

where the vertices are all valence n = 4, the surface is a uniform bi-cubic B-spline. Smooth

extraordinary vertices have valence n 6= 4 (Figure 8.1(a)), and they are averaged by a valence-

specific smoothing rule. The subdivision operator near one of these vertices creates ever shrinking

rings of regular B-spline patches that converge to the limit position of that vertex [22]. The local

averaging rules can be expressed by the extended subdivision matrix Ā, and each application of it

generates the control points for three regular B-spline patches {U,UV, V } and a fourth patch Φ that

is a contracted topological copy of its parent and which then may get partitioned again in the same

manner (Figure 8.3(a)). Any parametric location (u, v) ∈ ([0, 1] , [0, 1]) within the patch, other
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Figure 8.2: Catmull-Clark parameterization

than the origin, can be evaluated by repeatedly subdividing a number of generations g such that the

parametric point is contained in one of the three regular B-spline subpatches (Figure 8.2).

gu = max (d− log2 ue , 1) (8.1)

gv = max (d− log2 ve , 1) (8.2)

g = min (gu, gv) (8.3)

Then the transformed parametric values (ū, v̄) can be substituted into the B-spline polynomial to

compute the result.

Ug : gu < gv :ū = 2gu− 1

v̄ = 2gv (8.4)

Vg : gu > gv :ū = 2gu

v̄ = 2gv − 1 (8.5)

UVg : gu = gv :ū = 2gu− 1

v̄ = 2gv − 1 (8.6)

For a stationary scheme such as this, performing g subdivisions is equivalent to raising the con-

stant 1-patch-ring subdivision matrix A to the power g, which can be achieved in constant-time by
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diagonalizing A into its eigen-decomposition.

For the smooth Catmull-Clark subdivision rules, the A matrix is stationary for the regular

neighborhood of a quad patch with a single extraordinary valence vertex and all the surrounding

facets also being quads. After at most two complete subdivisions of a closed, smooth Catmull-

Clark mesh, all of the quads have such a regular neighborhood, so this technique can be applied.

The same technique with the same A matrix can be used to perform exact evaluation of Catmull-

Clark surfaces with semi-sharp edge tags [6]. Semi-sharp edges make the subdivision scheme non-

stationary, but only for a finite number of generations, after which the entire mesh becomes a smooth

Catmull-Clark surface. Infinitely sharp edges and vertices are present throughout the subdivision

generations so a new method must be introduced.

8.2.1 Behavior Near Sharp Features

We extend the smooth method to the case of piecewise smooth Catmull-Clark subdivision.

Vertices along chains of sharp tagged edges are averaged by the uniform cubic B-spline curve rules

rather than the surface averaging rules. The averaging of these crease vertices is only dependent on

vertices along the curve, and this curve creates a sharp boundary across which no surface smoothing

information is passed. These modified averaging rules lead to four additional extraordinary vertex

cases, and we will address the evaluation of patches near vertices of these types.

A dart vertex (Figure 8.1(b)) has one sharp edge incident on it, but it is still averaged by

the smooth Catmull-Clark vertex rule, forming a transition from the feature curve to the smooth

surface. A crease vertex (Figure 8.1(c)) has two sharp edges incident on it, and it is smoothed by the

B-spline subdivision curve rule. A spike vertex (Figure 8.1(d)) is tagged not to move, while the rest

of the surface around it follows the standard Catmull-Clark rules, leading to geometry resembling

the tip of a cone. A corner vertex is defined to be a vertex with 3 or more sharp edges incident

on it (Figure 8.1(e)), or a vertex with 1 or more sharp edges where the vertex is also tagged to not

move (Figure 8.1(f)). Similar to the smooth extraordinary vertex case, the behavior of the surface

near these extraordinary vertices is a shrinking ribbon of B-spline patches (Figure 8.3), (details in

Section 8.4).

For any quad patch p next to an extraordinary vertex, the behavior of the ribbon of B-

spline patches as they converge to the extraordinary vertex is defined by the subdivision rules of

the local neighborhood, which can be written in a subdivision matrix A (Figure 8.3). For a patch

adjacent to a smooth or spike vertex, A is dependent on the valence n of the vertex, but it is the same
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Figure 8.3: Application of the Ā matrix to a quad patch next to an extraordinary vertex produces
a ribbon of three subpatches {U,UV, V } that are regular B-spline patches and a fourth patch Φ
which is analogous to its parent. Patches not adjacent to any sharp edges (a) generate B-spline
subpatches with a full set of 16 control points, while patches adjacent to sharp edges generate B-
spline subpatches, e.g. {U, V } in (b), that must calculate phantom vertices. Light vertices and
edges represent the current generation, while black ones represent its child mesh.

for any adjacent patch p, due to the structural symmetry around these types of vertices. Sharp edges

prevent smoothing across them, so the behavior of the surface adjacent to dart, crease, or corner

vertices is broken into isolated wedges. A wedge is a radially consecutive set of quads starting and

ending at a sharp edge. The number of quads in a wedge is its valence n, and each quad is identified

by a number p counting counterclockwise around the extraordinary vertex. The subdivision matrix

A is different for each patch p of a wedge and also depends on the valence n of the wedge. There is

mirror symmetry about the central quad or edge, so for example A for patch p = 1 is the mirror of

patch p = n (Figure 8.1(f)). This symmetry reduces the number of cases.

For some valences, A is defective and cannot be diagonalized, so it is not possible to use

the eigen-decomposition to apply Ag. In these cases, we utilize the Jordan decomposition of A

which always exists and is only slightly more expensive to raise to a power g.

We show that the subdivision rules near sharp features produce B-spline patches and can

be applied for an arbitrary number of generations by providing the Jordan decompositions of the

subdivsion matrices for the different extraordinary vertex types.
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8.3 Related Work

Our method is a generalization of the exact evaluation of smooth Catmull-Clark sur-

faces [29]. Infinitely sharp edge and vertex rules [10, 6] change the subdivision matrix A, and

for some cases these matrices cannot be diagonalized. Parameterized expanded tagging rules with

more control have also been defined [4], and follow up work [34] has shown how to evaluate Loop

subdivision surfaces with these extended rules. Some of these subdivision matrices are defective,

and the authors chose to use a novel matrix decomposition rather than the Jordan decompositions

which correspond to singularities and are hard to parameterize over a family of matrices. In addition

to the work on sharp Loop surfaces, the authors of [34] mention additional unpublished work about

piecewise smooth Catmull-Clark surfaces as well as unpublished results by J. Stam that have been

implemented in Alias|Wavefront’s Maya [2]. Though we only handle the subset these averaging

rules, we still do implement the full RendMan standard [21] which is a very useful set of rules. The

Jordan decomposition uses less matrix components because it has at most a single 2×2 block while

the other method has many 6× 6 blocks. Hence our method is faster at run-time.

8.4 Regular B-spline Cases

To show that Catmull-Clark surfaces with infinitely sharp edges and vertices can be ex-

actly evaluated in constant-time, we show that the subdivision operator produces uniform bi-cubic

B-spline patches.
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Figure 8.4: Catmull-Clark patches that are uniform bi-cubic B-spline patches. Black thick lines and
boxes are sharp edges and vertices. Light solid lines and circles are smooth edges and vertices.
Light dashed lines and hollow circles are phantom edges and vertices.
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Figure 8.5 shows that subdividing a patch near a smooth extraordinary vertex creates

shrinking rings of uniform bi-cubic B-spline patches {U, V, UV }, which are known polynomial

functions, enabling exact evaluation. For many patches near sharp features, the same kind of B-

spline patches are generated during the subdivision process (Figure 8.3(a)). For patches adjacent to

sharp edges, on the other hand, some of the subpatches will then be adjacent to sharp edges with an

incomplete neighborhood of control points to define a B-spline patch, e.g. subpatches U and V in

Figure 8.3(b).

Fortunately, these subpatches are also uniform bi-cubic B-spline patches, and a set of

phantom vertices can be easily constructed based on the existing control points to complete the con-

trol structure [33]. Further investigation has shown that there are three local cases of Catmull-Clark

patches that reduce to uniform B-splines if appropriate phantom vertices are introduced (Figure 8.4).

Figure 8.4(a) shows a uniform bi-cubic B-spline control structure.

The 16 uniform bi-cubic B-splines basis functions can be expressed as

B3 (u, v) = puv (u, v) Buv, where puv (u, v) is the bi-cubic power basis vector:

pu (u) =
[

1 u u2 u3
]

(8.7)

puv (u, v) =
[

pu (u) vpu (u) v2pu (u) v3pu (u)
]

(8.8)

Buv is the coefficient matrix on the power basis that constructs the uniform bi-cubic B-splines:

Bu =
1

6










1 4 1 0

−3 0 3 0

3 −6 3 0

−1 3 −3 1










(8.9)

Buv =
1

6










Bu 4Bu Bu 0

−3Bu 0 3Bu 0

3Bu −6Bu 3Bu 0

−Bu 3Bu −3Bu Bu










(8.10)

Figure 8.4(b) illustrates the case of a patch adjacent to a regular crease edge. The nec-

essary location for phantom vertices 0 → 3 are computed by mirroring their respective neighbor

vertex across the sharp crease edge. For the example of vertex V1, we must set:

V1 = 2V5 − V9 (8.11)

Equation 8.11 is derived by equating the v = 0 isoparameter curve of the phantom patch to the

sharp boundary B-spline curve of the patch.
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B (u, v) =

3∑

i=0

3∑

j=0

bi (u) bj (u)V4j+i (8.12)

B (u, 0) =
3∑

i=0

bi (u)
1

6
(Vi + 4V4+i + V8+i) (8.13)

C (u) =
3∑

i=0

bi (u)V4+i (8.14)

C (u) = B (u, 0) (8.15)

V4+i =
1

6
(Vi + 4V4+i + V8+i) (8.16)

Vi = 2V4+i − V8+i (8.17)

V1 = 2V5 − V9 (8.18)

Figure 8.4(c) shows a patch adjacent to a corner vertex and two regular crease edges.

Identical to the single crease case, locations for phantom vertices {1, 2, 3, 4, 8, 12} are computed by

mirroring their associated neighbor vertex across the sharp crease edges. The location for the corner

phantom vertex V0 is computed by:

V0 = 4V5 + V10 − 2 (V6 + V9) (8.19)

Equation 8.19 is derived by equating the u = 0 and v = 0 isoparameter curves of the phantom

patch to the sharp boundary curves of the patch. But first, sharp boundary curves must have a fourth

phantom curve control point calculated for them in the same way, see Equation 8.22.

B (u, v) =

3∑

i=0

3∑

j=0

bi (u) bj (u)V4j+i (8.20)

B (u, 0) =

3∑

i=0

bi (u)
1

6
(Vi + 4V4+i + V8+i) B (0, v) =

3∑

j=0

bj (v)
1

6
(V4j + 4V4j+1 + V4j+2)

(8.21)

C (u) = b0 (u) (2V5 − V6) +

3∑

i=1

bi (u) V4+i C (v) = b0 (v) (2V5 − V9) +

3∑

i=1

bi (u) V4j+1

(8.22)
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C (u) = B (u, 0) C (v) = B (0, v) (8.23)

2V5 − V6 = 1
6 (V0 + 4V4 + V8) 2V5 − V9 = 1

6 (V0 + 4V1 + V2) (8.24)

2V5 − V6 = 1
6 (V0 + 4 (2V5 − V6) + (2V9 − V10)) 2V5 − V9 = 1

6 (V0 + 4 (2V5 − V9) + (2V6 − V10))

(8.25)

V0 = 2 (2V5 − V6)− (2V9 − V10) V0 = 2 (2V5 − V9)− (2V6 − V10) (8.26)

V0 = 4V5 − 2 (V6 + V9) + V10 V0 = 4V5 − 2 (V6 + V9) + V10 (8.27)

V0 = 4V5 − 2 (V6 + V9) + V10 (8.28)

These are the basic elements that build all uniform B-spline patches, but combinations of

the regular crease and corner situations are also uniform B-spline patches. A quad with two parallel

regular crease edges and a quad with all four corner vertices are both uniform bi-cubic B-splines;

the latter actually reduces to a bilinear patch. We have found that treating the regular corner case

specially can greatly reduce the amount of subdivision that is necessary. For example, if a model is

generated that texture maps each quad with its own {[0, 1] , [0, 1]} texture space, then each texture

domain is a bilinear patch and no subdivision is necessary. In principle though, only the smooth and

regular crease cases are necessary to perform exact evaluation.

8.5 Catmull-Clark Smooth and Spike Vertices

The smooth and spike vertex patch cases can be treated with the same matrix analysis.

The only difference between the two cases is the averaging rule for the extraordinary vertex V0 of

Figure 8.5.

8.5.1 Catmull-Clark Smooth and Spike Ā

The extended 1-ring subdivision operator Ā generates all the necessary control vertices

in the next generation that define the three regular bi-cubic B-Spline patches, see Figure 8.5. We

choose to order the vertices in the 1-ring neighborhood as illustrated in Figure 8.5 to simplify our

analysis.
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...
. . .

...
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f0 0 0 0 f2 f1 f2 0 0 0 0 0 0 0 0
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(8.29)

When the valence n = 3, the shape of the S0, S11, and S21 matrices change slightly
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because V1 is being used twice.
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




















































v0 v1 v2 v1 v2 v1 v2 0 0 0 0 0 0 0

e0 e1 e2 e3 0 e3 e2 0 0 0 0 0 0 0

f0 f2 f1 f2 0 0 0 0 0 0 0 0 0 0

e0 e3 e2 e1 e2 e3 0 0 0 0 0 0 0 0

f0 0 0 f2 f1 f2 0 0 0 0 0 0 0 0

e0 e3 0 e3 e2 e1 e2 0 0 0 0 0 0 0

f0 f2 0 0 0 f2 f1 0 0 0 0 0 0 0

e e 6e 6e 0 0 0 e e 0 0 0 0 0

6v v 6v 36v 6v v 0 v 6v v 0 0 0 0

e 0 0 6e 6e e 0 0 e e 0 0 0 0

v 0 0 6v 36v 6v 0 0 v 6v v 6v v 0

e 0 0 e 6e 6e 0 0 0 0 0 e e 0

6v v 0 v 6v 36v 6v 0 0 0 0 v 6v v

e e 0 0 0 6e 6e 0 0 0 0 0 e e

0 0 f f 0 0 0 f f 0 0 0 0 0

0 0 e 6e e 0 0 e 6e e 0 0 0 0

0 0 0 f f 0 0 0 f f 0 0 0 0

0 0 0 e 6e 0 0 0 e 6e e e 0 0

0 0 0 0 f 0 0 0 0 f f f 0 0

0 0 0 0 6e e 0 0 0 e e 6e e 0

0 0 0 0 f f 0 0 0 0 0 f f 0

0 0 0 0 e 6e e 0 0 0 0 e 6e e

0 0 0 0 0 f f 0 0 0 0 0 f f

































































(8.30)

8.5.2 Catmull-Clark Smooth and Spike A Eigen-decomposition

The subdivision operator A is the top square portion of Ā.
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Figure 8.5: Application of the Ā matrix to a quad patch next to an extraordinary smooth or spike
vertex produces a ribbon of three subpatches {U,UV, V } that are regular bi-cubic B-Spline patches
and a fourth patch Φ which is analogous to its parent. Light vertices and edges represent the current
generation, while black ones represent its child mesh.

A =




S0 0

S11 S12



 (8.31)

For all valences, the subdivision operator A is not defective and can be diagonalized into

its eigen-decomposition.

8.5.3 Catmull-Clark Smooth and Spike S12

The submatrix S12 is the same for all valences.

S12 =



















e e 0 0 0 0 0

v 6v v 0 0 0 0

0 e e 0 0 0 0

0 v 6v v 6v v 0

0 0 0 0 e e 0

0 0 0 0 v 6v v

0 0 0 0 0 e e



















(8.32)
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We substitute e = 4v to simplify the expressions in the eigen-decomposition.

S12 =



















4v 4v 0 0 0 0 0

v 6v v 0 0 0 0

0 4v 4v 0 0 0 0

0 v 6v v 6v v 0

0 0 0 0 4v 4v 0

0 0 0 0 v 6v v

0 0 0 0 0 4v 4v



















(8.33)

S12 can be diagonalized into its eigen-decomposition. Due to the block lower triangular

structure of A, the columns of V12 when zero extended on the top become eigenvectors of A.

S12 =V12Λ12V
−1
12

=



















1 −1 2 0 0 0 0

1 0 −1 0 0 0 0

1 1 2 0 0 0 0

1 2 11 1 11 2 1

0 0 0 0 2 1 1

0 0 0 0 −1 0 1

0 0 0 0 2 −1 1





































8v 0 0 0 0 0 0

0 4v 0 0 0 0 0

0 0 2v 0 0 0 0

0 0 0 v 0 0 0

0 0 0 0 2v 0 0

0 0 0 0 0 4v 0

0 0 0 0 0 0 8v



















·

1

6



















1 4 1 0 0 0 0

−3 0 3 0 0 0 0

1 −2 1 0 0 0 0

−6 18 −18 6 −18 18 −6

0 0 0 0 1 −2 1

0 0 0 0 3 0 −3

0 0 0 0 1 4 1



















(8.34)

8.5.4 Catmull-Clark Smooth and Spike S0 Eigen-decomposition

For the most general set of 1-ring averaging rules, the S0 matrix has an interlaced circulant

submatrix plus an additional row and column associated with the central control vertex V0.
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S0 =

























v0 v1 v2 v1 v2 v1 · · · v1 v2

e0 e1 e2 e3 e4 e5 e3 e2

f0 f2 f1 f2 f3 f4 f4 f3

e0 e3 e2 e1 e2 e3 e5 e4

f0 f4 f3 f2 f1 f2 f6 f5

...
...

. . .
...

f0 f4 f5 f6 f7 f8 f2 f3

e0 e3 e4 e5 e6 e7 e1 e2

f0 f2 f3 f4 f5 f6 f2 f1

























(8.35)

For a convergent subdivision scheme, the subdivision rules for the face, edge, and vertex

rules must each sum to one.

v0 = 1− n (v1 + v2) (8.36)

e0 = 1−
(

e1 + 2

n∑

k=2

ek + en+1

)

(8.37)

f0 = 1−
(

f1 + 2

n∑

k=2

fk + fn+1

)

(8.38)

The S0 matrix can be transformed into a block diagonal matrix Ŝ0 using a modified DFT.
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Ŝ0 = FS0F
−1 (8.39)

F =
1

n





















n 0 0 0 0 0 0

0 1 0 1 0 1 0

0 0 1 0 1 · · · 0 1

0 1 0 ω1 0 ωn−1 0

0 0 1 0 ω1 0 ωn−1

...
. . .

...

0 1 0 ωn−1 0 · · · ω(n−1)(n−1) 0

0 0 1 0 ωn−1 0 ω(n−1)(n−1)





















(8.40)

F−1 =





















1 0 0 0 0 0 0

0 1 0 1 0 1 0

0 0 1 0 1 · · · 0 1

0 1 0 ω−1 0 ω−(n−1) 0

0 0 1 0 ω−1 0 ω−(n−1)

...
. . .

...

0 1 0 ω−(n−1) 0 · · · ω−(n−1)(n−1) 0

0 0 1 0 ω−(n−1) 0 ω−(n−1)(n−1)





















(8.41)

Ŝ0 has n blocks where B0 is 3× 3 while each Bi for i ∈ {1, n− 1} is 2× 2.

Ŝ0 =











B0

B1

. . .

Bn−1











(8.42)

When the valence n is even, the blocks have the following form:

B0 =








v0 nv1 nv2

e0 e1 + 2
∑n−2

2

k=1 e1+2k + en+1 2
∑n

2

k=1 e2k

f0 2
∑n

2

k=1 f2k f1 + 2
∑n−2

2

k=1 f1+2k + fn+1








(8.43)

Bi =




e1 + 2

∑n−2
2

k=1 cos
(

2πik
n

)
e1+2k + cos (iπ) en+1

∑n

2

k=1 e2k

(
ω−i(k−1) + ωik

)

∑n

2

k=1 f2k

(
ωi(k−1) + ω−ik

)
f1 + 2

∑n−2
2

k=1 cos
(

2πik
n

)
f1+2k + cos (iπ) fn+1





(8.44)



168

When the valence n is odd, the blocks have the following form:

B0 =








v0 nv1 nv2

e0 e1 + 2
∑n−1

2

k=1 e1+2k 2
∑n−1

2

k=1 e2k + en+1

f0 2
∑n−1

2

k=1 f2k + fn+1 f1 + 2
∑n−1

2

k=1 f1+2k








(8.45)

Bi =




e1 + 2

∑n−1

2

k=1 cos
(

2πik
n

)
e1+2k

∑n−1

2

k=1 e2k

(
ω−i(k−1) + ωik

)
+ en+1ω

−i n−1

2

∑n−1

2

k=1 f2k

(
ωi(k−1) + ω−ik

)
+ fn+1ω

i n−1

2 f1 + 2
∑n−1

2

k=1 cos
(

2πik
n

)
f1+2k





(8.46)

All of the values in the B0 block are real, but the off diagonal elements of the Bi blocks are imagi-

nary. The product of these two elements appears in the eigenvalue formula, and if we set en+1 = 0

and fn+1 = 0 in the n odd case then this product will be real.

en+1 = 0, fn+1 = 0

Bi =




a b

c d



 , λ±i =
a + d±

√

(a− d)2 + 4bc

2
(8.47)

bc = 2

bn−1

2 c∑

j=1

bn−1

2 c∑

k=1

f1+2je1+2k

(

cos
(

2πi(j−k)
n

)

+ cos
(

2πi(j+k−1)
n

) )

(8.48)

For the original Catmull-Clark scheme, the S0 matrix has many of the general face and

edge averaging weights set to zero, so the matrix has the form:

S0 =

























v0 v1 v2 v1 v2 v1 · · · v1 v2

e0 e1 e2 e3 0 0 e3 e2

f0 f2 f1 f2 0 0 · · · 0 0

e0 e3 e2 e1 e2 e3 0 0

f0 0 0 f2 f1 f2 0 0
...

...
. . .

...

f0 0 0 0 f2 f1 f2 0

e0 e3 0 0 · · · e3 e2 e1 e2

f0 f2 0 0 0 0 f2 f1

























(8.49)

For a convergent subdivision scheme, the subdivision rules for the face, edge, and vertex rules must
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each sum to one.

v0 = 1− n (v1 + v2) (8.50)

e0 = 1− (e1 + 2e2 + 2e3) (8.51)

f0 = 1− (f1 + 2f2) (8.52)

The values of the averaging rule weights adjacent to the extraordinary vertex can be modified to try

to improve the surface behavior there, and it is convenient for us to leave these as variables so that

we can combine the analysis for smooth and spike vertices. The standard face rules are:

f0 = f, f1 = f, f2 = f (8.53)

The standard edge rules are:

e0 = 6e, e1 = 6e, e2 = e, e3 = e (8.54)

The standard smooth vertex rules are:

v0 = 1− 7n

4n2
, v1 =

6

4n2
, v2 =

1

4n2
(8.55)

The spike vertex rules are:

v0 = 1, v1 = 0, v2 = 0 (8.56)

The S0 matrix can be transformed into a block diagonal matrix Ŝ0 using a modified DFT,

and the blocks Bi for i ∈ {1, n− 1} have the following form:

B0 =







v0 nv1 nv2

e0 e1 + 2e3 2e2

f0 2f2 f1







(8.57)

Bi =




e1 + 2 cos

(
2πi
n

)
e3 e2

(
1 + ωi

)

f2

(
1 + ω−i

)
f1



 (8.58)

In the smooth case, the eigenvalues of B0 are:

λ0 = 1 (8.59)

λ±0 =
1

2








e1 + 2e3 + f1 − nv1 − nv2±
√
√
√
√

(e1 + 2e3 + f1 − nv1 − nv2)
2 +

4 (nv1f1 + (nv2 − f1) (e1 + 2e3) + 4e2f2 − 2nv1e2 − 2nv2f2)








(8.60)

=
−7 + 3n±

√
49− 30n + 5n2

8n
(8.61)
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In the spike case, the eigenvalues of B0 have the simpler form:

λ±0 =
e1 + 2e3 + f1 ±

√

(e1 + 2e3 + f1)
2 + 4 (4e2f2 − f1 (e1 + 2e3))

2
(8.62)

=
3±
√

5

8
(8.63)

The eigenvectors V̂0 of B0 can be expressed with respect to the eigenvalues of B0, so the same

expressions can be used for both the smooth and spike cases.

V̂0 =
[

v̂0 v̂+0 v̂−0

]

(8.64)

v̂0 =







1

1

1







, v̂±0 =







λ2
±0 − (e1 + 2e3 + f1) λ±0 + ((e1 + 2e3) f1 − 4e2f2)

e0λ±0 + (2e2 − f2 + (e1 + 2e3) f1 − 4e2f2)

f0λ±0 + (− (e1 + 2e3) + (e1 + 2e3) f1 + 2f2 − 4e2f2)







(8.65)

The inverse DFT can be applied to Ŝ0 to restore it to S0. Substituting the eigendecompositions of

both of these matrices into Equation 8.66 shows that the eigenvectors V of S0 can be derived by

applying the inverse DFT to the eigenvectors V̂ of S0.

S0 = F−1Ŝ0F (8.66)

= F−1V̂ ΛV̂ −1F (8.67)

= V ΛV −1 (8.68)

V = F−1V̂ (8.69)

V −1 = V̂ −1F (8.70)

The three eigenvectors associated with the eigenvalues of block B0 are:

v0 =
















1

1

1
...

1

1
















, v±0 =
















λ2
±0 − (e1 + 2e3 + f1) λ±0 + ((e1 + 2e3) f1 − 4e2f2)

e0λ±0 + (2e2 − f2 + (e1 + 2e3) f1 − 4e2f2)

f0λ±0 + (− (e1 + 2e3) + (e1 + 2e3) f1 + 2f2 − 4e2f2)
...

e0λ±0 + (2e2 − f2 + (e1 + 2e3) f1 − 4e2f2)

f0λ±0 + (− (e1 + 2e3) + (e1 + 2e3) f1 + 2f2 − 4e2f2)
















(8.71)
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The 2× 2 blocks Bi for i ∈ {1, n− 1} each have the two eigenvalues λ±i.

λ±i =
e1 + 2 cos

(
2πi
n

)
e3 + f1 ±

√
(
e1 + 2 cos

(
2πi
n

)
e3 − f1

)2
+ 8

(
1 + cos

(
2πi
n

) )
e2f2

2
(8.72)

=
5 + cos

(
2πi
n

) ± cos
(

πi
n

)
√

2
(
9 + cos

(
2πi
n

) )

16
(8.73)

Note that λ+i = λ+(n−i) and λ−i = λ−(n−i) because the indices i and n− i correspond to opposite

multiples of the angle 2π
n

and the eigenvalues only depend on the cosine of these angles which are

then the same value. Also, if n is even, then λ+n
2

= λ−n
2

because the discriminant is zero. So all

eigenvalues from the 2×2 blocks occur in pairs. An eigenvector vi is associated with the eigenvalue

λi where i can be +i or −i. The eigenvectors v̂i and v̂n−i are complex congugates of each other.

V̂i =
[

v̂+i v̂−i

]

=





λ+i−f1

f2

λ
−i−f1

f2

1 + ωi 1 + ωi



 (8.74)

V̂ −1
i =




v̂−1
+i

v̂−1
−i



 =





f2

λ+i−λ
−i

− λ
−i−f1

(λ+i−λ
−i)(1+ωi)

− f2

λ+i−λ
−i

λ+i−f1

(λ+i−λ
−i)(1+ωi)



 (8.75)

=






f2

λ+i−λ
−i

− (λ
−i−f1)(1+ω−i)

2(1+cos( 2πi
n ))(λ+i−λ

−i)

− f2

λ+i−λ
−i

(λ+i−f1)(1+ω−i)
2(1+cos( 2πi

n ))(λ+i−λ
−i)




 (8.76)

The pairs of eigenvectors v+i and v−i are treated analogously, so we will drop the ± distinction.

The inverse DFT transformed eigenvectors vi for i ∈ ±{1, n− 1} are of the form:

vi = F−1v̂i =

























0

λi−f1

f2
ω−i0

ω−i0 + ω−i(0−1)

...
λi−f1

f2
ω−ik

ω−ik + ω−i(k−1)

...
λi−f1

f2
ω−i(n−1)

ω−i(n−1) + ω−i((n−1)−1)

























(8.77)

These eigenvectors have imaginary entries which is undesirable. Fortunately, the complex congu-

gate eigenvectors vi and vn−i associated with the paired eigenvalue λi = λn−i can be combined to
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form two real eigenvectors ui and un−i.

α (r) = cos
(

2πr
n

)

β (r) = sin
(

2πr
n

)

ui =
1

2
(vi + vn−i) =

























0
λi−f1

f2
(α(i0) )

α(i0) + α(i (0 + 1))

...
λi−f1

f2
(α(ik) )

α(ik) + α(i (k + 1))

...
λi−f1

f2
(α(i (n− 1)) )

α(i (n− 1)) + α(i ((n− 1) + 1))

























(8.78)

un−i =
i

2
(vi − vn−i) =

























0

λi−f1

f2
(β(i0) )

β(i0) + β(i (0 + 1))

...
λi−f1

f2
(β(ik) )

β(ik) + β(i (k + 1))

...
λi−f1

f2
(β(i (n− 1)) )

β(i (n− 1)) + β(i ((n− 1) + 1))

























(8.79)

The corresponding row vectors from the inverse eigenvector matrix are then:

u−1
i =

(
v−1
i + v−1

n−i

)
, u−1

n−i = −i
(
v−1
i − v−1

n−i

)
(8.80)

If the valence n is even, then block B n
2

of Ŝ0 has two identical eigenvalues λ n
2

. The

expression for the eigenvectors V̂n
2

in Equation 8.74 produce degenerate eigenvectors because ω
n
2 =

ω−n
2 = cos (π) = −1 and λ+n

2
= λ−n

2
= 1

4 . In this case, the eigenvectors V̂n
2

of the 2 × 2 block

are simply the identity matrix, which has a trivial inverse.

V̂n
2

=




1 0

0 1



 (8.81)
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The corresponding eigenvectors of S0 are derived by applying the inverse DFT:

v±n
2

=

























0

ω−0 n
2

0
...

ω−k n
2

0
...

ω−(n−1) n
2

0

























,

























0

0

ω−0 n
2

...

0

ω−k n
2

...

0

ω−(n−1) n
2

























=

























0

cos (0π)

0
...

cos (kπ)

0
...

cos ((n− 1) π)

0

























,

























0

0

cos (0π)
...

0

cos (kπ)
...

0

cos ((n− 1) π)

























(8.82)

8.5.5 Catmull-Clark Smooth and Spike S11

The eigenvector components V11 corresponding to S11 can be expressed with respect to

the eigen-decompositions of S0 and S12. The columns of V11 can be computed using:

v11,c = −V12 (Λ12 − λcI)−1 V −1
12 S11v0,c (8.83)

8.5.6 Catmull-Clark Smooth and Spike Picking Matrices

The picking matrices Pk where k ∈ {U, V, UV } select out the 16 control points for the

corresponding uniform bi-cubic B-Spline patch from the 2n + 16 control points generated by the Ā

matrix, see Figure 8.5. Pk is a 16 × 2n + 16 matrix where each row has a single 1 in the column

corresponding to control point listed in the sets below. Note that if the valence n = 3 then V7 must

be replaced by V1.

PU,n ={V1, V2, V2n+1, V2n+8, V0, V3, V2n+2, V2n+9,

V5, V4, V2n+3, V2n+10, V2n+6, V2n+5, V2n+4, V2n+11} (8.84)

PV,n ={V7, V0, V3, V2n+2, V6, V5, V4, V2n+3,

V2n+7, V2n+6, V2n+5, V2n+4, V2n+16, V2n+15, V2n+14, V2n+13} (8.85)

PUV,n ={V0, V3, V2n+2, V2n+9, V5, V4, V2n+3, V2n+10,

V2n+6, V2n+5, V2n+4, V2n+11, V2n+15, V2n+14, V2n+13, V2n+12} (8.86)
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8.6 Catmull-Clark Corner and Crease Vertices

The corner and crease vertex patch cases can be treated with the same matrix analysis.

The only difference between the two cases is the averaging rule for the extraordinary vertex V0 of

Figure 8.3.

8.6.1 Catmull-Clark Corner and Crease Ā

The extended 1-ring subdivision operator Ā generates all the necessary control vertices

in the next generation that define the three bi-cubic B-Spline patches, see Figure 8.3. We choose

to order the vertices in the 1-ring neighborhood as illustrated in Figure 8.3 to simplify our analysis.

The first nonzero column of S11 and S21 is the one associated with vertex V2p−1.
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v̄0 =
6

8
, v̄1 =

1

8
, ē0 = ē1 =

1

2

Ān,p =








S0 0

S11 S12

S21 S22








(8.87)

=










































































v̄0 v̄1 v̄1 0 0 0 0 0 0 0 0 0 0 0 0 0

ē ē 0 0 0 0 0 · · · 0 0 0 0 0 0 0 0 0

ē 0 ē 0 0 0 0 0 0 0 0 0 0 0 0 0

f0 0 f2 f1 f2 0 0 · · · 0 0 0 0 0 0 0 0 0

e0 0 e3 e2 e1 e2 e3 0 0 0 0 0 0 0 0 0

f0 0 0 0 f2 f1 f2 0 0 0 0 0 0 0 0 0
...

...
. . .

...
...

f0 0 0 0 0 f2 f1 f2 0 0 0 0 0 0 0 0

e0 e3 0 0 0 · · · e3 e2 e1 e2 0 0 0 0 0 0 0

f0 f2 0 0 0 0 0 f2 f1 0 0 0 0 0 0 0

e e 6e 6e 0 0 0 0 e e 0 0 0 0 0

6v v 6v 36v 6v v 0 0 v 6v v 0 0 0 0

e 0 0 6e 6e e 0 0 0 e e 0 0 0 0

v · · · 0 0 6v 36v 6v 0 0 · · · 0 v 6v v 6v v 0

e 0 0 e 6e 6e 0 0 0 0 0 0 e e 0

6v 0 0 v 6v 36v 6v v 0 0 0 0 v 6v v

e 0 0 0 0 6e 6e e 0 0 0 0 0 e e

0 0 f f 0 0 0 0 f f 0 0 0 0 0

0 0 e 6e e 0 0 0 e 6e e 0 0 0 0

0 0 0 f f 0 0 0 0 f f 0 0 0 0

0 0 0 e 6e 0 0 0 0 e 6e e e 0 0

0 · · · 0 0 0 f 0 0 0 · · · 0 0 f f f 0 0

0 0 0 0 6e e 0 0 0 0 e e 6e e 0

0 0 0 0 f f 0 0 0 0 0 0 f f 0

0 0 0 0 e 6e e 0 0 0 0 0 e 6e e

0 0 0 0 0 f f 0 0 0 0 0 0 f f










































































(8.88)
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When p = 1 or p = n, one side of the patch is adjacent to a crease edge, so the S22

submatrix is modified. Similar alterations are made to the S21, S11, and S12 submatrices. The

eigen-decomposition of S12 will be discussed in greater detail in Section 8.6.3.

S22,n,1 =





















ē 0 0 0 0 0

f f 0 0 0 0

e 6e e e 0 0

0 f f f 0 0

0 e e 6e e 0

0 0 0 f f 0

0 0 0 e 6e e

0 0 0 0 f f





















, S22,n,n =





















f f 0 0 0 0

e 6e e 0 0 0

0 f f 0 0 0

0 e 6e e e 0

0 0 f f f 0

0 0 e e 6e e

0 0 0 0 f f

0 0 0 0 0 ē





















(8.89)

When the wedge valence n = 1 as in Figure 8.3(b), the shape of the S0, S11, and S21

matrices change slightly because the crease edge rules are present on both ends of the wedge in the

second and third vertex rings.

Ā1,1 =








S0 0

S11 S12

S21 S22








=













































v̄0 v̄1 v̄1 0 0 0 0 0 0

ē ē 0 0 0 0 0 0 0

ē 0 ē 0 0 0 0 0 0

f0 f2 f2 f1 0 0 0 0 0

v̄1 0 v̄0 0 v̄1 0 0 0 0

e e 6e 6e e e 0 0 0

v 6v 6v 36v v 6v v 6v v

e 6e e 6e 0 0 0 e e

v̄1 v̄0 0 0 0 0 0 0 v̄1

0 0 ē 0 ē 0 0 0 0

0 0 f f f f 0 0 0

0 0 e 6e e 6e e e 0

0 0 0 f 0 f f f 0

0 e 0 6e 0 e e 6e e

0 f 0 f 0 0 0 f f

0 ē 0 0 0 0 0 0 ē













































(8.90)
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8.6.2 Catmull-Clark Corner and Crease A Jordan Decompositions

The Jordan decompositions of A for corner and crease patches are very similar. For

certain valences, the submatrix S0 is defective due to interactions of shared eigenvalues between its

submatrices T0 and T12.

8.6.3 Catmull-Clark Corner and Crease S12

The submatrix S12, n, p is the same as the smooth case from Equation 8.33 for most

wedge valences n and subpatches p. However when p = 1 or p = n, the subpatch p of the wedge

is adjacent to a crease edge and a boundary rule is introduced into S12, Figure 8.3(b). S12 can be

diagonalized into its eigen-decomposition. Due to the block lower triangular structure of A, the

columns of V12 when zero extended on the top become eigenvectors of A. The three special cases

near crease curves are as follows:

S12,n,1 =
















v̄1 0 0 0 0 0

e e 0 0 0 0

v 6v v 6v v 0

0 0 0 e e 0

0 0 0 v 6v v

0 0 0 0 e e
















=
















8v 0 0 0 0 0

4v 4v 0 0 0 0

v 6v v 6v v 0

0 0 0 4v 4v 0

0 0 0 v 6v v

0 0 0 0 4v 4v
















=
















1 0 0 0 0 0

1 1 0 0 0 0

1 2 1 11 2 1

0 0 0 2 1 1

0 0 0 −1 0 1

0 0 0 2 −1 1































8v 0 0 0 0 0

0 4v 0 0 0 0

0 0 v 0 0 0

0 0 0 2v 0 0

0 0 0 0 4v 0

0 0 0 0 0 8v
















·

1

6
















6 0 0 0 0 0

−6 6 0 0 0 0

6 −12 6 −18 18 −6

0 0 0 1 −2 1

0 0 0 3 0 −3

0 0 0 1 4 1
















(8.91)
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S12,n,n =
















e e 0 0 0 0
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0 e e 0 0 0
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














=












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
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0 v 6v v 6v v
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














=















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









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













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
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0 0 0 0 0 8v
















·

1
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



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




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1 −2 1 0 0 0
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0 0 0 0 0 6
















(8.92)

S12,1,1 =


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
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


=
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
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

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


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
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

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
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
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




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



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











(8.93)
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8.6.4 Catmull-Clark Corner and Crease S0 Jordan decomposition

The S0 matrix for corner and crease vertices is only dependent on the valence n and not

on the subpatch p. S0 is a lower block triangular matrix. The subblock T differs for the corner and

crease cases because of the averaging rules for the control vertex V0. T11 and T12 are the same for

both cases.

f =
1

4
, e =

1

16

S0,n =




T 0

T11,n T12,n



 =
























T 0

f 0 f

6e 0 e

f 0 0

6e 0 0

f 0 0
...

6e e 0
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

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(8.94)

For certain valences, S0,n is defective due to a shared eigenvalue between the T and T12

subblocks, and a nontrivial Jordan form must be used. It is intuitive to think of the eigenvectors

of T12 as solutions to a difference equation as we showed in Chapter 4. The elements of these

eigenvectors will be associated with edge and face averaging rule rows. There are two families of

solution functions: even symmetry α’s and odd symmetry β’s. The functions for these elements are

parameterized by the row r and column c of the eigenvector matrix.

c ∈ [1, n− 1] λc = e

(

5 + cos
(cπ

n

)

± cos
( cπ

2n

)
√

2
(

9 + cos
(cπ

n

)))

αe (r, c) =
λc − 4e

4e
cos

(
r cπ

n

)
, αf (r, c) = cos

((
r − 1

2

)
cπ
n

)
+ cos

((
r + 1

2

)
cπ
n

)
(8.95)

βe (r, c) =
λc − 4e

4e
sin
(
r cπ

n

)
, βf (r, c) = sin

((
r − 1

2

)
cπ
n

)
+ sin

((
r + 1

2

)
cπ
n

)
(8.96)

When the wedge valence n is even, the eigenvectors of V12,n have an edge rule as their

center row. The first column is the eigenvector associated with the eigenvalue λn = 1
4 . The other

columns, which consist of α’s and β’s, each represent two eigenvectors corresponding to the two

eigenvalues λ−
c and λ+

c . The positive or negative sign on the eigenvalue specifies whether the
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discriminant is added or subtracted in the eigenvalue formula.

V12,n =


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
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
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

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
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




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)

αf
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(
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(
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(
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(
n−1
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
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
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(8.97)

When the wedge valence n is odd, the eigenvectors of V12,n have a face rule as their center

row. The first column is the eigenvector associated with the eigenvalue λn = 1
4 . The other columns,

which consist of α’s and β’s, each represent two eigenvectors corresponding to the two eigenvalues

λ−
c and λ+

c . The positive or negative sign on the eigenvalue specifies the discriminant is added or

subtracted.
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
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)
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(
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(
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(
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


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(8.98)

8.6.5 Catmull-Clark Corners

For the corner patch case, the submatrix T of S0,n (Equation 8.94) contains the averaging

rules for the vertices 0→ 2 from Figure 8.3. Note that in the case of a corner vertex with one sharp

edge, vertices 1 and 2 are the same point:

T =







1 0 0

1
2

1
2 0

1
2 0 1

2







(8.99)
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T alone has an eigen-decomposition of the form:

TV =V Λ (8.100)





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1
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1
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1
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










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2
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2
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





=
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


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2
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2
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2













1 0 0

0 1
2 0

0 0 1
2







(8.101)

T12,n also has an eigenvalue of 1
2 when the wedge valence n is even, so the associated eigenvectors

of S0,n fall into odd and even valence cases.

Corner with Odd n

When n is odd, S0,n is diagonalizable, so there is a full set of eigenvectors.

Λ =










1 0 0

0 1
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0 0 1
2

. . .




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




(8.102)

Equation 8.103 shows the first three eigenvectors {v1, v2, v3}.
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Corner with Even n

When n is even, S0,n is defective due to the eigenvalue λ = 1
2 which has algebraic

multiplicity three but only two linearly independent eigenvectors.

J =


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

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





(8.104)

When n is divisible by 4, the sine based eigenvector is missing. Equation 8.105 shows the first four

generalized eigenvectors {v1, v2, v3, v4}.
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When n is only divisible by 2 and not 4, the cosine based eigenvector is missing. Equation 8.106

shows the first four generalized eigenvectors {v1, v2, v3, v4}.
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(8.106)

8.6.6 Catmull-Clark Creases

For the crease patch case, the submatrix T of S0,n (Equation 8.94) contains the averaging

rules for the vertices 0→ 2 from Figure 8.3:
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T alone has an eigen-decomposition of the form:

TV =V Λ (8.108)
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(8.109)

T12,n always has an eigenvalue of 1
4 and it has an eigenvalue of 1

2 when the wedge valence n is even.

The associated eigenvectors of S0,n fall into odd, divisible by four, and even valence cases.
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Catmull-Clark Crease with Mod (n, 4) = 2

When Mod (n, 4) = 2, n is even but not divisible by 4, and S0,n is diagonalizable.

Λ =


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(8.110)

Equation 8.111 shows the first three eigenvectors {v1, v2, v3}. Note that if Mod (n, 4) = 2 then n
2

is odd, so cos
(

n
2 π
)

= −1. Also note that cos (tπ) = − cos ((t + 1) π).
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Crease with n Divisible by Four

When n is divisible by four, S0,n is defective due to the eigenvalue λ = 1
2 which has

algebraic multiplicity two but only one linearly independent eigenvector.

J =
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(8.112)
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Equation 8.113 shows the first four generalized eigenvectors {v1, v2, v3, v4} where i ∈
[
1, n

2 − 1
]
.
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Catmull-Clark Crease with Odd n

When n is odd the eigenvalue λ = 1
4 is defective having algebraic multiplicity two but

only one linearly independent eigenvector.

J =
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Equation 8.115 shows the first four generalized eigenvectors {v1, v2, v3, v4}.
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8.6.7 Catmull-Clark Corner and Crease Picking Matrices

The picking matrices Pk where k ∈ {U, V, UV } select out the 16 control points for the

corresponding uniform bi-cubic B-spline patch from the 2n + 17 control points generated by the Ā

matrix, see Figure 8.3. Pk is a 16 × 2n + 17 matrix where each row has a single 1 in the column

corresponding to control point listed in the sets below.

The following are the picking matrices for subpatches 1 < p < n (note that if p = n− 1

then V2p+4 must be replaced by V1):

PU,n,p ={V2p−2, V2p−1, V2n+2, V2n+9, V0, V2p, V2n+3, V2n+10,

V2p+2, V2p+1, V2n+4, V2n+11, V2n+7, V2n+6, V2n+5, V2n+12} (8.116)

PV,n,p ={V2p+4, V0, V2p, V2n+3, V2p+3, V2p+2, V2p+1, V2n+4,

V2n+8, V2n+7, V2n+6, V2n+5, V2n+17, V2n+16, V2n+15, V2n+14} (8.117)

PUV,n,p ={V0, V2p, V2n+3, V2n+10, V2p+2, V2p+1, V2n+4, V2n+11,

V2n+7, V2n+6, V2n+5, V2n+12, V2n+16, V2n+15, V2n+14, V2n+13} (8.118)

The following are the picking matrices for subpatch p = 1 (note that if p = n − 1 then
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V2p+4 must be replaced with V1):

V̄a =2V0 − V2p+2 (8.119)

V̄b =2V2p − V2p+1 (8.120)

V̄c =2V2n+2 − V2n+3 (8.121)

V̄d =2V2n+8 − V2n+9 (8.122)

PU,n,1 ={V̄a, V̄b, V̄c, V̄d, V0, V2p, V2n+2, V2n+8,

V2p+2, V2p+1, V2n+3, V2n+9, V2n+6, V2n+5, V2n+4, V2n+10} (8.123)

PV,n,1 ={V2p+4, V0, V2p, V2n+2, V2p+3, V2p+2, V2p+1, V2n+3,

V2n+7, V2n+6, V2n+5, V2n+4, V2n+15, V2n+14, V2n+13, V2n+12} (8.124)

PUV,n,1 ={V0, V2p, V2n+2, V2n+8, V2p+2, V2p+1, V2n+3, V2n+9,

V2n+6, V2n+5, V2n+4, V2n+10, V2n+14, V2n+13, V2n+12, V2n+11} (8.125)

The following are the picking matrices for subpatch p = n:

V̄e =2V0 − V2p (8.126)

V̄f =2V1 − V2p+1 (8.127)

V̄g =2V2n+7 − V2n+6 (8.128)

V̄h =2V2n+15 − V2n+14 (8.129)

PU,n,n ={V2p−2, V2p−1, V2n+2, V2n+8, V0, V2p, V2n+3, V2n+9,

V1, V2p+1, V2n+4, V2n+10, V2n+7, V2n+6, V2n+5, V2n+11} (8.130)

PV,n,n ={V̄e, V0, V2p, V2n+3, V̄f , V1, V2p+1, V2n+4,

V̄g, V2n+7, V2n+6, V2n+5, V̄h, V2n+15, V2n+14, V2n+13} (8.131)

PUV,n,n ={V0, V2p, V2n+3, V2n+9, V1, V2p+1, V2n+4, V2n+10,

V2n+7, V2n+6, V2n+5, V2n+11, V2n+15, V2n+14, V2n+13, V2n+12} (8.132)
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For a wedge with a single patch n = 1, the picking matrices are:

V̄a =2V0 − V1 (8.133)

V̄b =2V2p − V2p+1 (8.134)

V̄c =2V2n+2 − V2n+3 (8.135)

V̄d =2V2n+7 − V2n+8 (8.136)

V̄e =2V0 − V2p (8.137)

V̄f =2V1 − V2p+1 (8.138)

V̄g =2V2n+6 − V2n+5 (8.139)

V̄h =2V2n+13 − V2n+12 (8.140)

PU,1,1 ={V̄a, V̄b, V̄c, V̄d, V0, V2p, V2n+2, V2n+7,

V1, V2p+1, V2n+3, V2n+8, V2n+6, V2n+5, V2n+4, V2n+9} (8.141)

PV,1,1 ={V̄e, V0, V2p, V2n+2, V̄f , V1, V2p+1, V2n+3,

V̄g, V2n+6, V2n+5, V2n+4, V̄h, V2n+13, V2n+12, V2n+11} (8.142)

PUV,1,1 ={V0, V2p, V2n+2, V2n+7, V1, V2p+1, V2n+3, V2n+8,

V2n+6, V2n+5, V2n+4, V2n+9, V2n+13, V2n+12, V2n+11, V2n+10} (8.143)

8.7 Conclusion

We have implemented a new exact evaluation algorithm for piecewise smooth Catmull-

Clark subdivision surfaces. We have developed new techniques for dart, crease, corner, and spike

patches. Figure 8.6 shows examples of the 1-ring neighborhoods around vertices of these four types.

The right hand image of each of these pairs shows the absolute magnitude Gaussian curvature map

which was calculated by using our algorithm to evaluate the derivatives of the surface.
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(a) Dart (b) Spike

(c) Crease (d) Corner

Figure 8.6: 1-ring vertex wedge for each of the four different sharp extraordinary vertex types for
piecewise smooth Catmull-Clark surfaces. The left image of each pair is a shaded rendering of the
surface with a color coding for patch type. The right image is a map of absolute Gaussian curvature.
The surface position and derivatives were evaluated using our technique. Sharp edges and vertices
are drawn in red.
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Chapter 9

Subdivision Implementation

9.1 Introduction

The data structure necessary for implementing a subdivision surface algorithm is a 2-

manifold mesh structure. To perform the averaging rules, it is necessary to quickly access all vertices

in the 1-ring neighborhood of vertices, edges, and faces. This chapter describes the full connected

mesh structure used in our implementation and a number of operators on the mesh to perform

uniform subdivision, adaptive subdivision, and exact evaluation of the limit surface.

9.2 Half-Edge Data Structure

Our implementation uses a 2-manifold half-edge data structure which was inspired by the

quad-edge data structure [9]. There are three data types that make up a half-edge mesh: half-edge,

vertex, and facet (Figure 9.1). Each of these types is of a fixed sized despite the fact that there

can be a variable number of edges around each vertex or facet. In our half-edge structure, every

edge is represented by a pair of half-edges which each point in opposite directions along the edge.

Each half-edge has a data pointer to a facet and another to its vertex of origin in a counterclockwise

ordering around the facet. Each vertex and facet points to any one half-edge in the counterclockwise

ring around them. Each half-edge has a pointer to its partner half-edge, a next pointer around its

facet, and a next pointer around its vertex. Half-edges are always allocated in pairs, and their

topological half-edge pointers are initialized as shown in Figure 9.1(a). These topological pointers

make it possible to start at any half-edge and traverse to any other entity in the mesh. It is also

possible to start from a vertex or facet, but there is an ambiguity as to which half-edge is the first
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in its ring that must be tested for first. The similarity of representation for vertices and facets in the

half-edge structure emphasizes the duality between these two entities in a 2-manifold.

(a) Single pair of half-edges (b) Square facet

Figure 9.1: The left figure shows the representation of a single edge. The elbow shapes are the half-
edges. The dark circles are vertices. The empty circles are facets. A half-edge has a data pointer
to a facet and another to its vertex of origin in a counterclockwise ordering around the facet. Each
vertex and facet points to a single half-edge in the ring around it. Each half-edge has a pointer to its
partner half-edge, a solid next pointer around its facet, and a dashed next pointer around its vertex.
The right figure shows the representation of a square.

9.2.1 Splice Operator

The fundamental topological editing operation on a half-edge mesh is the splice operation,

which is identical to the splice operation introduced with the quad-edge mesh. The splice operation

is the 2-manifold analog of both inserting into and removing from a doubly linked list (Figure 9.2).

The operands to splice are two half-edges A and B. Splice swaps four next pointers, the two vertex

next pointers of A and B, and the two facet next pointers of the half-edges pointed to by the vertex

next pointers of A and B. The symmetry of the swaps shows that the ordering of the operands A

and B is unimportant. The effect of these swaps is different based on whether A and B start off

in the same vertex ring or not. If they are not in the same vertex ring, then splice has the effect

of merging the two rings into a single ring, i.e. going from Figure 9.2(a) to 9.2(b). The vertex
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ring with A is split between A and the next half-edge around the vertex, and the same is true of

the vertex ring with B. If A and B are in the same ring, then splice has the exact opposite effect of

splitting the ring just after A and B into two separate rings. Splice is the only operation necessary

for modifying the edge connectivity of a mesh, but it is necessary to be careful about updating all

pointers to and from vertices and facets to match any changes. A single pair of half-edges on their

own are always configured to have independent vertex rings of size one at each end. Hence adding

or removing a single half-edge from a vertex ring reduces to performing a splice on that half-edge

with the half-edge previous to it in the vertex ring.

B

A

(a) Two separate vertex rings

B

A

(b) Spliced into one vertex ring

Figure 9.2: The splice operator when called on half-edges A and B, in either order, updates the four
middle half-edge pointers to connect the two vertex rings, and when called again on the same A and
B it will undo the operation to split the vertex ring into two.

9.2.2 Boundary Edges

Most boundary representation file formats give the topology of the mesh as a list of facets

which in turn each have a counterclockwise ordered list of vertices. The half-edge mesh is then

built by adding a facet at a time and splicing its edges together with the current mesh. This is

accomplished by comparing the edges of the new facet to see if they match up with any edges in

the current mesh. Because the mesh can only represent 2-manifolds, each edge is used by at most

two facets, so the internal edges need not be considered when searching to attach a new facet. A

boundary edge has one half-edge pointing to a facet and the other half-edge pointing to the null

facet. These boundary edges are the only ones that need to be considered while adding a new facet,

so we store a hash table of boundary edges indexed by the ordered pair of end points for fast access.
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As soon as a facet is created that matches one of the boundary edges, the facet is correctly connected

there to the rest of the mesh, and the edge is removed from the hash table. The boundary edge hash

table is also helpful for merging two meshes together that share a seam of edges. In this case, the

matching process can be accelerated after an initial edge pair has been matched using the half-edge

mesh structure to walk along the seam in both meshes.

9.2.3 Vertex Data

The data associated per vertex may be different for different applications. For most appli-

cations, a position vector is stored. For subdivision surfaces, a limit position vector is also stored for

rendering purposes. In general, the vertex position and limit position need not just be a 3D vector.

The number of elements in the vector to be averaged by the subdivision rules can be specified at

run-time. Examples of this type of vertex data are the vertex positions, color values, or possibly

normals. The user can also specify a sharpness value which ranges from 0 for smooth to ∞ for

infinitely sharp or any value in between for semi-sharp. A derived enumerated vertex type which

is a function of the vertex sharpness and the number of sharp edges incident to the vertex helps

to simplify the implementation of the subdivision algorithms. The vertex types are: smooth, dart,

crease, corner, spike, semi-dart, semi-crease, semi-corner, semi-spike, or smooth boundary. Smooth

and dart vertices follow the same averaging rules. Corner and spike vertices both remain stationary.

All the semi-sharp vertex types have the possibility of being a blend between the smooth and sharp

averaging rules if the sharpness value is between 0 and 1. A smooth boundary vertex does not have

a full 1-ring neighborhood, so it cannot be subdivided. The final data field is the derived valence of

the vertex which is only useful in the smooth and spike cases. In the vertex structure, as well as the

other entity structures, bit fields are used to pack enumerated type variables and counters, like the

valence, into a single integer variable to save memory.

9.2.4 Facet Data

For most applications, the valence, the centroid position, and the best fit normal are stored

per facet. The centroid and normal are used for rendering. The valence is the number of edges

or vertices. For subdivision surfaces, it is also useful to store a derived enumerated patch type.

The different patch types are: regular B-spline, smooth extraordinary, dart, crease, corner, spike,

incomplete, or non-patch. A regular B-spline patch can be directly evaluated with the uniform

bi-cubic B-spline polynomials. The smooth extraordinary, dart, crease, corner, and spike cases
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all have the proper 1-ring neighborhoods to be evaluated using our Jordan decomposition method.

An incomplete patch does not have the proper 1-ring neighborhood to do evaluation on, so some

adaptive subdivision must be performed before it can be evaluated. A non-patch is similar to a

smooth boundary vertex. It is either a facet that was tagged by the user as a hole, or a facet next to

a smooth boundary edge. In either case, the facet will not produce a limit surface patch, so further

subdivision is not require by this facet. A non-patch facet may have more subdivision performed

on it to support a neighboring incomplete patch. The final piece of data associated with a facet is

a possible patch evaluator object. If a patch has a suitable 1-ring neighborhood, a patch evaluator

is allocated and pointed to. A patch evaluator copies and eigen-projects all of the data necessary to

evaluate the type of patch, so that evaluation queries to the patch at run-time are streamlined.

9.2.5 Edge Data

Some data is associated once per edge instead of per half-edge, so each pair of half-edges

points to an edge and the edge points back to one of the half-edges. For subdivision surfaces, the

only data that is assigned at the edge is the sharpness value which is identical to the one described

in Section 9.2.3 for vertices.

9.2.6 Half-Edge Data

A half-edge is the relationship between a facet and one of its vertices, so it is the perfect

place to assign per facet per vertex data. One example of this type of data is the vertex normal.

Spike, crease, and corner vertices do not have a unique normal. For many of these types, there is one

normal per wedge of facets around the vertex, but for the sake of simplicity, we redundantly store

one normal per half-edge for rendering. The other type of data that is stored per half-edge is grouped

into the category of parameter data. Examples of parameter data are texture map coordinates or

bump map coordinates. For the discussion of the subdivision process, we will first address vertex

data alone, and then in Section 9.7 we will describe how to generalize the subdivision algorithms to

include the parameter data as well.

9.2.7 Parent and Child Pointers

A uniform subdivision step takes a parent mesh and performs a topological split to all

of its facets generating a child mesh, which in the case of Loop and Catmull-Clark subdivision is

four times larger. One possible approach would be to modify the parent mesh by splitting all edges
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and adding new vertices and facets, but there are a number of reasons that this is not the ideal way

to implement subdivision. The first reason corresponds to the averaging phase of a subdivision

step. The vertex positions in the child generation are derived from the parent vertex positions.

The difficulty with computing these in place are that conceptually all of the vertex positions must

be calculated in parallel from the parent positions, but we are implementing our algorithm on a

sequential machine. One solution would be to keep copies of the parent positions, but this would

double the data size of our representation.

A solution to this problem is to keep around the parent mesh which is a factor of four

smaller than the child mesh. After the subdivision averaging is finished, the parent mesh could

be deleted, but it is not very costly to keep all generations of subdivision mesh around. Each

subdivision step splits each facet into four, so the history of subdivisions is effectively a tree structure

where each node (facet) has four children. The sum of all nodes in such a tree is less than double

the number of leaf nodes, i.e. the newest generation.

There are a number of advantages to retaining all of the generations of subdivision. We

have already described how it aids in calculating the averaging rules. It also helps with the topolog-

ical split operation. A naive approach would be to split each facet into four and use our boundary

edge hash table to merge the facets together in the child generation. This approach is extremely

inefficient because the parent mesh contains all of the connectivity information that is necessary.

The parent mesh can be thought of as a sparse scaffold that the child mesh is hung off during the

topological construction. Parent and child pointers are added to the data structures for half edges,

vertices, and facets. When an edge is split at its midpoint, the child pointers of the parent half-edges

are assigned to corresponding half-edges in the child mesh, and those child half-edges have their

parent half-edges set to point back into the parent mesh. Edges internal to parent facets have their

parent pointers set to null. Vertices point to corresponding child vertices in the child mesh and vice

versa, while edge midpoint and facet centroid vertices have their parent pointers set to null. All

facets in the child mesh have their parent pointers set to the facet of which they are a subpatch.

Facet child pointers are different for Loop vs. Catmull-Clark subdivision because of the different

topological split patterns of their facets. In Loop subdivision, the facet child pointer is assigned to

the central triangle of the four. In the Catmull-Clark case, the facet child pointer is assigned to the

child vertex corresponding to the facet centroid. With these parent and child pointers assigned as

the child mesh is being constructed, the parent mesh can be used very efficiently in lieu of the hash

table of boundary edges to find preexisting edges in the child mesh to link to.

The tree of generations created by the parent and child pointers is also useful for adaptive
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subdivision, patch evaluation, and editing of control vertex positions. For adaptive subdivision, the

coarse control mesh can be augmented with finer scale facets in local areas by locally subdividing

there and hanging the partial child meshes off of their parent meshes. This adaptive subdivision

tree can be used to build a minimal set of patch evaluators. As early in terms of generations as a

facet has the correct 1-ring neighborhood, it can be converted to a patch evaluator. This might occur

in different generations for different patches based on the spacing of extraordinary vertices and the

existence of semi-sharp edge and vertex tags. Once the adaptive tree of patch evaluators is built,

the (u, v) parameters given to the facet at the control mesh level direct the traversal of nodes, i.e.

facets, of the tree to arrive at the corresponding patch evaluator. During the traversal, the parameters

are rotated and scaled to align with local (ū, v̄) parameters of the leaf patch evaluator. The final

operation that benefits from this tree structure is editing of the control mesh vertex positions. The

naive approach would make it necessary to repeat all of the subdivision work whenever a value was

changed, but with the child pointers, none of the topology needs to be changed and only the pyramid

of child vertices whose positions are derived from that control vertex need to be updated.

9.2.8 Indexed Arrays vs. Pointers

In our discussion of the topological structure of the half-edge mesh, we have described

references to half-edges, vertices, and facets as pointers, but there are actually many reasons to

use array indices instead of C pointers. The half-edge mesh contains sets of arrays proportional in

length to the number of vertices, facets, and half edges. A vertex, for instance, is assigned to an

array index, and data for the vertex may be spread over multiple arrays but always at the same index

location. This provides a simple structure for subclassing different types of mesh structures in a

C++ class hierarchy. The base mesh type only contains topological information, and a subdivision

mesh subclass extends the vertex, facet, and half edge definitions to have subdivision data.

Edges and half-edges can be implemented efficiently using the indexing scheme as well.

Every edge is associated with a pair of half-edges. When an edge is allocated, we allocate two

consecutive half-edges. This eliminates the need for the partner half-edge pointers, because the

partner half-edge index can be calculated from the other index by performing a bitwise exclusive-or

with 1. The half-edge to edge pointers can also be eliminated. The number of edge entities is exactly

half the number of half-edges, so we allocate edges and half edges such that shifting the half-edge

index to the right by one generates the edge index. Conversely, the even half-edge index can be

calculated by shifting the edge index to the left by one. The sizes of the edge and half-edge arrays
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are interdependent and controlled by the same variable.

Array based allocation has the problem of choosing the correct size, which may not be

known at the mesh creation time. When more vertices are added to the mesh, eventually the array

size will be met and the array will have to be reallocated. Fortunately, the relative nature of array

indexing makes resizing very easy and efficient. An array of twice the size is allocated, and the

previous array is block-copied into the new array. All of the references to vertices are still valid,

they are just relative to a new array base pointer. This is not the case if C pointers are used, where

a deep copy that forwards all references would have to be used. This same property makes it very

easy and fast to make a copy of a the mesh. Another mesh of the same size is allocated and all of

the arrays of data are block copied into the new mesh.

Subdivision algorithms tend to only grow the size of the mesh without ever deleting ver-

tices, facets or edges, but in general it is useful to be able to delete entities from a mesh. We allow

for the deletion of an entity at any index in the array. One approach would be to shift the other

entities in the array to keep all of the allocated entities contiguous, but this is very costly and diffi-

cult because all index references would have to be updated for every deletion. Instead, we simply

maintain a free-list of entities in the vertex, facet, and edge arrays. These free-lists are implemented

by adding a next pointer within the data structure for each vertex, facet, and edge. Note that the next

pointer is only added per edge and not per half-edge to save memory. The indices of half-edges and

edges are correlated, so managing a list for edges effectively does the same for half-edges. These

free-lists are implemented in a very clean way using the concept of a sentinel node. The 0 index

of all arrays is a reserved sentinel node. This has a number of nice properties. First, the concept

of a null pointer is then represented by the 0 index. Some extra liberties can be taken with these

null indices that cannot with the C null pointer. These null indices can be safely written to because

there is memory allocated to them, but the program should never rely on reading from them. One

example of this is reflexively assigning the half-edge pointer of a vertex or facet when a half-edge

sets its vertex or facet pointer, in order to maintain the property that a vertex or facet points to a

half-edge in its ring. The sentinel node makes it safe to do this assignment without having to check

if the vertex or facet index is null.

With these sentinel nodes and free-list next pointers in place, the free-list is managed by

a simple singly linked list. Operations on the free-list are fast because we only need to access the

head element of the list. A new array is initialized by setting all next pointers to the subsequent

array index, with the 0 index sentinel node as the head of the list. An entity allocation pops the

first entity pointed to by the sentinel out of the free-list. When an entity is deallocated, it is pushed
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onto the front of the free-list, so that if another entity is allocated it will reuse that array index. This

heuristic is used to try to prevent fragmentation of the array.

Other routines can be written to coalesce the arrays when a mesh is copied, but we have

not needed this functionality with our subdivision routines. The only major differnce from this array

index based interface to using C pointers is that the mesh pointer must be passed with each entity

index access. This emphasizes the fact that vertices, facets, and edges belong to a given mesh and

are not self sufficient objects. For child and parent pointers, the mesh must contain child and parent

mesh pointers, and all of the child and parent entity indices are relative to these two meshes.

9.3 Subdivide-Vertex Operator

Once the basic half-edge mesh is in place, we can begin to build operators for these

meshes. The main goal is to implement a subdivision algorithm for this mesh type. There are

two ways to think about the topological split of a subdivision step, a facet-centered way and a

vertex-centered way. The easier method to describe conceptually is the facet centered way. In

the case of Loop subdivision, each triangle is divided into four subtriangles by constructing edges

between the three pairings of edge midpoints. For Catmull-Clark subdivision, each facet is divided

into quadrilaterals by connecting an edge from the facet centroid to each of the edge midpoints.

The limitation of this topological operator is that the application of it to a single triangle, in the

Loop case, does not create any regions in the partial child mesh that can be further subdivided. To

calculate the position of a vertex in the following generation, the complete 1-ring neighborhood of

the vertex must be present in the same generation. All of the vertices created by splitting a single

triangle lie on the triangle border, and thus do not have the proper 1-ring neighborhood.

The alternate approach is a vertex-centered topological operator. We will describe how

variants of this operator can be implemented for the Loop and Catmull-Clark subdivision schemes

(Figure 9.3). The operation of locally subdividing around a vertex generates the vertices, facets,

and edges which make up the 1-ring neighborhood of the image vertex in the child mesh. It is

then possible to apply the same subdivide-vertex operator on the child vertex without any other

subdivision to the parent mesh. This makes the subdivide-vertex operator the ideal atomic operation

for building an adaptive subdivision scheme. It should not be surprising that generating the 1-ring

neighborhood of the child vertex allows for further subdivision. This notion is the key principle

in the matrix analysis of stationary subdivision schemes. When neighboring vertices in the parent

mesh are operated on, they must check which neighbor vertices have been previously subdivided, so
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Figure 9.3: The subdivide-vertex operator is dependent on the 1-ring neighborhood of a vertex and
generates the complete 1-ring neighborhood for the child vertex in the next generation.

that they properly share edge midpoints and connecting edges in the child mesh. Once these issues

are accounted for, the vertices of a mesh can be operated on in any random order and will always

produce the proper child generation subdivision mesh. This operator also works in the presence of

sharp tagging.

For Loop subdivision, the 1-ring neighborhood of a vertex is a fan of triangles (Fig-

ure 9.3(a)). The child vertex is generated. For each half-edge radiating out of the vertex, a vertex

for the edge midpoint, an edge to connect the child vertex to the midpoint, another edge to cut off

the triangular corner, and a facet to represent that triangle are allocated. The child pointer of the

half-edge is assigned to the corresponding half-edge in the child mesh. Before the midpoint vertex

is allocated, the partner half-edge’s child pointer is checked. If that neighboring vertex has already

been processed, then the edge midpoint already exists in the child mesh, so the new edges are spliced

into midpoint vertex’s ring. If this is the final vertex of the parent triangle to be subdivided, then a

facet for the central triangle is allocated and all of the child edges are assigned to it.

For Catmull-Clark subdivision, the 1-ring neighborhood of a vertex is a fan of quadrilat-

erals (Figure 9.3(b)). The child vertex is generated. For each half-edge radiating out of the vertex, a

T-shaped arrangement of three edges and two vertices is generated. A vertex for the edge midpoint

is generated, and an edge from the child vertex to that midpoint. A half-edge of this edge is pointed



200

to by the child pointer of the parent half-edge. To the right of the edge, a perpendicular edge is

constructed which will link up to the facet centroid. To the left, a similar edge, a vertex for the facet

centroid, and a facet for the corner quadrilateral are constructed. If the neighbor vertex has already

been subdivided, then the T-bar is already present so only the edge that connects the child vertex to

the edge midpoint is constructed. When generating or connecting the facet centroid, it is necessary

to search around the parent facet to check if any of its other vertices have been subdivided.

This subdivide-vertex operator is also responsible for updating the sharp and semi-sharp

edge and vertex tags. This includes updating the enumerated types for vertex and patch types. Most

of these flags can be trivially copied from the parent mesh, but in areas near semi-sharp tags these

flags will change at some point in the subdivision hierarchy.

9.4 Uniform Subdivision

Once the subdivide-vertex operator has been implemented, performing a full uniform

subdivision is quite simple. A child mesh is allocated. Then the subdivide-vertex operator is applied

to each of the parent vertices in any order. The result is a child mesh that is the next generation of

subdivision.

9.5 Adaptive Subdivision

We have seen that the subdivide-vertex operator is the means of performing adaptive sub-

division, but it still remains to decide which portions of the mesh to adaptively subdivide. The two

applications that we have implemented are adaptive tessellation for reducing discretization error

when outputting a triangle model for layered manufacturing and adaptive subdivision to create a

minimal set of patches that can be evaluated using the Jordan decomposition method.

9.5.1 Reduction of Discretization Error

Adaptive tessellation applies more subdivision in areas of greater interest, producing

smaller triangles that reduce the discretization error there. In the case of layered manufacturing,

the measure of importance is the estimate of curvature at a control vertex. Our estimate is the max-

imum absolute distance of the limit positions of the vertices in the 1-ring neighborhood from the

limit tangent plane of the central vertex. All of the vertices are inserted into a priority queue based

on this error metric. The vertex with the maximum error from the priority queue is considered first.
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If it has a complete 1-ring subdivision neighborhood, it is removed from the priority queue and

subdivided. The newly generated vertices are added to the priority queue, and the error estimate for

all neighboring vertices is updated as well as their positions in the priority queue. If the candidate

vertex does not have the proper 1-ring neighborhood, then a neighboring vertex in a previous gen-

eration that it is dependent on is subdivided to help fill out the proper neighborhood. Two adjacent

vertices in this adaptive mesh never differ by more that one generation. The priority is again updated

with new error metric values. This process continues until the maximum error value falls below a

user-defined threshold, or until a user specified maximum number of vertices have been generated.

The final subdivision mesh structure is a series of multiple generations of partial meshes.

Each control mesh level facet is tessellated separately. When tessellating a control mesh level facet,

it is necessary to follow the child pointers down to the finest generation. Complete facets at this

finest level are output. Facets that span between two levels of subdivision can always be converted

into a fan of triangles while preserving the boundary edges, so that they will be compatible with

neighboring patches.

9.5.2 Exact Evaluation

The subdivide-vertex operator is also used to minimize the number of patch evaluators

that are constructed. Each patch evaluator stores the eigen-projected control points of its 1-ring

neighborhood which is a sizeable amount of data. We apply an adaptive subdivision hierarchy

that only subdivides near a patch until the neighborhood is regular enough to apply our evaluation

technique. We will describe the situation for Catmull-Clark subdivision; Loop subdivision is very

similar.

For Catmull-Clark subdivision, a quad patch p adjacent to an extraordinary vertex can be

evaluated if its opposite corner vertex is a regular smooth vertex (n = 4), and its other two vertices

are either regular smooth vertices or crease vertices with regular wedges. A regular crease wedge

has two quads in between the infinitely sharp tagged edges. In addition, the 1-ring of patches must

be all quads. If a patch does not meet this criteria, then the patch will be marked as incomplete.

We perform a vertex subdivision to each of the vertices of all incomplete patches throughout the

generations until all patches have the correct 1-ring neighborhood. A patch evaluator is constructed

for all leaf patches throughout the generations. The hanging layers of partial subdivision meshes

form a quadtree of patches over the generations.

A patch evaluator stores the eigen-projected control points for the 1-ring neighborhood of
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the patch. Then, based on the patch type and valence of the vertex or wedge, the evaluator raises

the subdivision matrix to the necessary power using the Jordan decomposition and multiplies by

the evaluated spline basis functions. The current implementation stores the tables of eigenvalues

and eigenvectors statically for a set number of valences for each patch type. With our new analytic

eigenvector functions based on sines and cosines, it is possible to allocate and generate these tables

on demand. This will greatly reduce the compiled size of the executable. It is still advisable to place

a limit on the maximum valence supported, or else the tables will grow very large and cause the

program to run out of memory.

The adaptive subdivision must locally subdivide near semi-sharp features until they revert

to the smooth rules, and it must subdivide near infinitely sharp extraordinary features until they are

sufficiently separated, which takes at most two subdivisions. To simplify our parameter mappings

per patch, we uniformly subdivide the top-level mesh if it has any non-quadrilateral patches.

We thus define that the top-level mesh be all quads. Our parameterization of the entire

subdivision is such that each top-level quad has its own continuous {[0, 1] , [0, 1]} parameter space.

We do not attempt to align these parameter orientations globally across the 2-manifold because

extraordinary vertices will cause singularities that cannot be avoided. Evaluating a (u, v) parameter

value of a top-level patch may involve descending the adaptive quadtree hierarchy until a leaf facet

with a patch evaluator is encountered. While descending the quadtree, the parameters are scaled

and rotated to generate the transformed local parameter coordinates (ū, v̄) for the patch evaluator.

Derivatives must be scaled proportional to the depth of traversal of the quadtree to account for the

scaling by a power of two in the change of variables.

Figures 9.6(a), 9.6(b), and 9.6(c) illustrate our adaptive hierarchy. The size of each quad

shows at which generation of subdivision it was able to be evaluated. The color of the patches

correspond to the type of extraordinary vertex to which they are adjacent. The red edges and vertices

correspond to infinitely sharp features, while the yellow edges and vertices correspond to semi-sharp

features.

9.6 Editing of Control Vertices

In our current subdivision libraray, the position data of the control vertices can be modified

by a user interactively. Modifying vertex data does not affect the topology of the adaptive evaluation

mesh structure. Edits to the sharp and semi-sharp tags can cause large scale topological changes,

so we currently limit the interface to only allow the user to edit this positional vertex data. When
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the position of a single control vertex is edited, it affects the positions of the descendant vertices in

a pyramid region. The edit algorithm proceeds by first updating the positions of the vertices in the

current generation, and then records a set of vertices in the next generation that are dependent on the

altered vertices in the current generation. This set of vertices is passed down to the next generation,

and the process is repeated until the leaves of the mesh hierarchy are reached. At the leaf level, a

facet has a patch evaluator associated with it. The evaluator must be reinitialized with the modified

set of control positions, and the new set of eigen-project control points must be calculated. The

set-based interface of edited vertices in the algorithm allows the user to edit a set of vertices at the

same time instead of just a single vertex. In the future, this facility could be augmented to make

local topology changes as well, but currently all child meshes are deleted and the adaptive hierarchy

must be rebuilt.

9.7 Parameter Space Subdivision

Our implementation allows for two different schemes of averaging the parameter data

stored in the half-edges, i.e. texture coordinates. The simpler scheme is bi-linear interpolation

over the quadrilateral patches. The only differences to the algorithms described above are that

the parameter data for newly created half-edges must be set according to the bi-linear averaging

rules. The neighborhood of support is limited to a single facet, so the topological operators for

the vertex data are overly conservative for this parameter data. In other words, the parameter data

does not place any more constraints on the adaptive subdivision algorithms. The problem with bi-

linear interpolation of texture coordinates is that discontinuities in the texture coordinate domain can

lead to noticeable artifacts in the final texture mapping of otherwise smooth subdivision surfaces.

One solution to this problem is to apply a relaxation algorithm to the 2D parameter space mesh,

or specially construct the texture map to hide these discontinuities. Another scheme to deal with

this problem is to apply the same set of averaging rules used on the vertex data to the parameter

data [6], which is part of the RenderMan interface [21]. Figure 9.4 compares bilinear interpolation to

Catmull-Clark smoothing of texture coordinates. Both schemes start with the texture coordinates of

the smooth as possible parameter mapping from Figure 9.5(b) with the cube rotated 90◦ downward.

One of the diagonal parameter space edges is visible as a vertical discontinuity in the bilinear cube,

but it is smoothed out in the Catmull-Clark case. The horizontal discontinuity at the top of both

cubes is due to the outer boundary edges of the parameter space mesh. Parameter space boundary

edge discontinuities are unavoidable for 3D meshes that are not topologically equivalent to a mesh
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in the 2D plane.

(a) Bilinear parameter smoothing (b) Catmull-Clark parameter smoothing

Figure 9.4: A cube with smooth as possible texture coordinates rendered using bilinear parameter
smoothing on the left and Catmull-Clark parameter smoothing on the right. Each shows the 3D
texture mapped result as well as the 2D parameter space mesh subdivided four times.

Applying subdivision to the parameter data stored in the half-edges is equivalent to spec-

ifying a set of parameter data sharp tags to the subdivision mesh in addition to the vertex data sharp

tags. With the two sets of sharp tags, one subdivision mesh actually describes two separate topolo-

gies. The parameter space sharp tags are not assigned directly by the user, but instead are derived

from the specified parameter data at the half-edges. Parameter space edge tags are either smooth

or infinitely sharp. Every half-edge is potentially an edge in the parameter space topology. For

instance, if each quadrilateral patch is assigned its own separate disjoint square of parameter space,

then the result is that all of the half-edges are marked as sharp parameter edges, so it is equivalent to

bi-linear averaging. Smooth subdivision averaging of parameter space data can only be performed

across an edge if the two pairs of half-edge corner information at the vertices of both end points

agree, respectively. A vertex can only be smoothly averaged if all of its incident edges are smooth

parameter edges. Otherwise, the vertex is either a parameter space crease or corner vertex. A pa-

rameter space dart vertex can never occur because if a single edge is a parameter space sharp edge,

then both its incoming and outgoing half-edges are parameter space sharp edges. Hence it is a

parameter space crease vertex. Also by definition, any crease wedge with a single patch is tagged

to be a parameter space corner vertex. An intuitive way of thinking about the topology described

by the parameter space sharp tags is to think about trying to flatten the mesh of facets into the 2D

parameter plane. For example, a cube must be cut along some subset of its edges, so that it can be

flattened. These cuts correspond to sharp parameter edges and discontinuities in the texture map-

ping coordinates. Figure 9.5 shows two possible parameter space mappings of a completely smooth
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cube control mesh. In both cases, the topology of the parameter space mesh is different from the

vertex data mesh. Demands of the parameter space tagging can sometimes cause more adaptive

subdivision for evaluation purposes than is obvious from the vertex data sharp tagging.
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(a) T-bar shaped parameter mapping
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(b) Smooth as possible parameter mapping

Figure 9.5: Two parameter space mappings of a cube. The left mapping has no smooth vertices,
only corners and creases. In the right mapping, the four vertices of the front face are smooth, while
the rest are corners or creases.

9.8 Conclusion

We have completely implemented the algorithms described above for Catmull-Clark sub-

division. We have also implemented Loop and many other subdivision algorithms to certain degrees.

In the near future, we plan to implement the Loop patch evaluation. We also plan to investigate im-

plementing evaluation for the new C2 hybrid scheme of triangles and quadrilaterals [14, 20]. Our

implementation has been used to design objects which are then adaptively tessellated and sent on to

the layered manufacturing process planning stage. Chapter 10 will discuss some of the geometric

processing that is done on the output watertight triangle mesh.
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(a) 2D adaptive subdivision hierarchy

(b) Alien head (c) Mechanical part

Figure 9.6: Adaptive subdivision hierarchies. The size of the quads indicates the subdivision gen-
eration. The color specifies the patch type: blue is a regular B-spline, medium blue is a regular
B-spline crease patch, dark blue is a regular B-spline corner patch, purple is a smooth extraordi-
nary vertex, cyan is a spike, green is a dart, yellow is a crease, and orange is a corner. Sharp edges
and vertices are drawn in red, while semi-sharp ones are drawn in yellow. The yellow semi-sharp
edge has sharpnes 3, while the semi-sharp vertex has sharpness 2.



207

Chapter 10

Robust Voronoi Diagrams of Sets of

Polygonal Contours

10.1 Introduction

An algorithm for robustly constructing the Voronoi diagram (VD) of a set of 2D oriented

polygonal contours is useful in many domains including geometric modeling, manufacturing analy-

sis, and obstacle avoidance in path planning. The work presented in this chapter is motivated by the

application of geometric processing for layered manufacturing. The goal is to speed up the build

time of fused deposition modeling (FDM) parts by reducing the amount of material used in their

production [18]. This goal is achieved by building a semi-hollow thin-walled version of the part.

The thin-walled geometry is generated by making a conservative 2 1
2D approximation to the true 3D

offset surface. An important step in this process is the construction of 2D contour offsets from a set

of oriented piecewise linear input contours. The Voronoi diagram of the input contours is used to

make the offsetting process fast and robust.

The input contours are created by slicing a closed 3D polyhedral boundary representation

(B-Rep) with a build layer plane. Given that the B-Rep’s are closed 2-manifold polyhedrons, the set

of slice contours on a single layer will be piecewise linear, closed, oriented, non-intersecting, and

possibly nested. While walking around an oriented contour, the inside of the part is on the left hand

side and the outside is on the right hand side (Figure 10.10(a)). Counterclockwise (CCW) contours

specify the boundary of positive regions while nested clockwise (CW) contours specify negative

holes. The nesting of contours can be arbitrarily deep with the restrictions that the orientations
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alternate between CCW and CW, and that the top level contours are CCW.

The Voronoi diagram plays an important role in the creation of the 2D offset contours

[17]. We represent the VD as a Voronoi mesh using our half-edge variant of the quad-edge data

structure [9]. Once created, the Voronoi mesh is a compact representation of the signed distance

field defined by the input set of contours. We define the inside of the contours to have positive

distances and the outside to have negative distances. The Voronoi mesh can be viewed in 3D as a

height field by raising all of the points of the plane by their signed distance from the input contours

(Figure 10.11(a)). Offset contours can be quickly and robustly generated by running an algorithm

that effectively slices this Voronoi height field mesh with a plane z = d where d is the offset dis-

tance; more details are in a previous publication [19]. Other offsetting algorithms offset individual

contour elements separately and then run a clean up pass which tries to eliminate erroneous loops

created by self interestions [17]. These algorithms tend to be slow because global interactions arise

between contour elements that are spatially close but topologically distant (Figure 10.11(b)). These

algorithms are also less robust because they generate intermediate geometric entities, and then per-

form numeric intersection tests using them. It is always possible to construct a set of input to this

kind of algorithm that will either crash the program or generate invalid Voronoi meshes where some

faces overlap each other. Our approach addresses these robustness issues during the construction of

the Voronoi diagram.

In this chapter, we describe a divide-and-conquer algorithm that builds the Voronoi di-

agram of a set of 2D oriented, non-intersecting polygonal contours in a numerically stable way.

Numerical robustness issues are addressed by using geometric predicates that depend only on the

original contour elements and not on any generated geometric entities. As a result, we avoid the is-

sue of floating point round-off error in irrational values that cannot be represented in a finite amount

of space on a computer. Our geometric predicates are in a class that can benefit from adaptive exact

arithmetic techniques [26].

10.1.1 Background

The algorithm presented in this paper is designed to work for input sets of closed piece-

wise linear contours, but a more general treatment of Voronoi diagrams is useful for discussing the

properties of this mathematical entity. The treatment in this section is fairly abstract. For a concrete

example, consider the Voronoi diagram of a set of 2D points where the sites are the input vertices

(Figure 10.1(a)).
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The definition of a Voronoi diagram (VD) of a set of n general input sites S0, S1, ...Sn−1

in <2 is a partitioning of the plane into n respective Voronoi faces VF0, VF1, ...VFn−1 such that

every point that lies in the interior of VFi is closer to Si than to any other input site. The area of a

VF may be infinite. Consider the simple example of a single input site S0. Its associated Voronoi

face, VF0, which is the only one, covers the entire plane extending out to infinity in all directions.

With n>1, two adjacent Voronoi faces VFi and VFj meet along a boundary curve called a Voronoi

edge VEi,j . All of the points that lie on the interior of VEi,j are equidistant from the two sites Si

and Sj that are associated with VFi and VFj respectively and are closer to those two sites than to

any other input sites. Hence the Voronoi edge VEi,j is the bisector curve between the two input sites

Si and Sj . Like VF ’s, VE’s can extend to infinity in one or both directions. When two VE’s meet,

they form an endpoint called a Voronoi vertex (VV ).

For a given Voronoi face VFi, two consecutive boundary edges VEi,j and VEi,j+1 around

the face will meet at VVi,j,j+1. VFi, VFj , and VFj+1 will be three distinct Voronoi faces that

correspond to the three distinct input sites Si, Sj , and Sj+1 respectively. Since VVi,j,j+1 lies on both

the bisector edges VEi,j and VEi,j+1, VVi,j,j+1 is a point that is equidistant from the three input

sites Si, Sj , and Sj+1, and no other site is closer to VVi,j,j+1. Let r be the distance from VVi,j,j+1 to

any of these three sites. Let C be a circle centered at VVi,j,j+1 with a radius of r. The input sites Si,

Sj , and Sj+1 lie on the boundary of C , and since no input site passes closer to the center VVi,j,j+1,

the interior of C must be free of any of the input sites. A general position assumption that disallows

more than three co-circular input sites is often used to simplify the analysis of the complexity or

performance of geometrical algorithms. No such assumption will be used here, so the input may

have three or more co-circular sites that touch the circle C . As a final mental exercise of this general

treatment of Voronoi diagrams, imagine sliding C’s center point off of VVi,j,j+1 along one of the

incident bisector edges, for example VEi,j , and constraining the radius r to take on the value equal

to the common distance from the new center position to the two closest input sites, Si and Sj . At

all times, the boundary of the circle will touch at least two input sites, and the interior of the circle

will remain empty. The property of the empty inscribed circles is important to understanding the

divide-and-conquer algorithm.

10.2 Related Work

Many algorithms to construct Voronoi diagrams have been described. We will limit our

discussion to the divide-and-conquer algorithms that form the foundation for the algorithm pre-
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sented. Divide-and-conquer Voronoi algorithms recursively split the set of n input sites in half,

forming a top-down binary tree, until a base case set of size 1, 2, or 3 is reached at the leaves.

The Voronoi diagram of these simple sets can be trivially constructed. Then the splitting process is

reversed by a bottom-up merge process. At each node of the tree, the Voronoi diagram of the left

child (VDL) and the right child (VDR) are merged together to form the combined Voronoi diagram

of all of the children sites. The VD of the entire input set of sites is constructed when the final

merge operations is completed at the root of the tree. There are O(log(n)) levels in the tree. For all

of the algorithms discussed in this paper, the merge step over all nodes per level will total O(n), so

the running times will be O(n log(n)).

10.2.1 Voronoi Algorithm for a 2D Point Set
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(b) Final merge of Voronoi diagram of a point set.
SVl0 = L3 and SVr0 = R9.

Figure 10.1: Voronoi algorithm for a set of 2D points

The first description of a divide-and-conquer Voronoi algorithm took a set of n 2D vertex

sites SV0, SV1, ...SVn−1 as input. This algorithm was first described by Shamos and Hoey [25] and

later refined by Lee and Drysdale [13]. The techniques developed in this algorithm are the basis for

our algorithm for contours. The bisector between two input vertices SVi and SVj is the straight line

perpendicular bisector to the line segment defined by SVi and SVj . These bisector lines intersect to

form the VV ’s. The VE curves are straight line segments and rays. The VF ’s are convex polygons.

If a Voronoi face VFi is associated with the input vertex SVi that lies on the convex hull of the input
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vertices, then VFi extends to the point at infinity.

The most important contribution of this algorithm is the description of the merge process

(Figure 10.1(b)). The vertex set is split into a left half set (L) and right half set (R), and VDL and

VDR are constructed independently. When taken together, VDL and VDR will overlap each other.

The task of the merge is to construct the bisector polyline BL,R between L and R and to trim off the

extra portions of VDL and VDR that are no longer valid. An individual segment of BL,R will be a

bisector Voronoi edge Bl,r between a site SVl from L and a site SVr from R. The key insight is that

all portions of VDL that lie to the right of the not yet created BL,R are closer to some site in R than

any of the sites in L, so they are not part of the composite VD of L and R. Similarly, all portions of

VDR that lie to the left of BL,R are closer to some site in R than any of the sites in L, so they are

not part of the composite VD of L and R.

Each step in the merge process searches for the terminating endpoint of a bisector ray B l,r

between SVl and SVr that has been started from the below. To start, SVl0 and SVr0
are the bottom

two vertices that define a convex hull edge that connects L and R. Their bisector starts at infinity

in the −y-direction. A merge step walks around the VE’s of VFl and VFr , associated with SVl and

SVr respectively, looking for the intersection points with Bl,r. Every edge VEl,i of VFl that is on the

right side of Bl,r is closer to SVr than to SVl; hence VEl,i will not be in the final Voronoi diagram.

To prevent back tracking in the merge step, the edges of VFl are traversed in CCW order starting

from the starting point of Bl,r; every edge VEl,i up until the edge that intersects Bl,r lies to the

right of Bl,r and can be collapsed never to be considered again. The same argument holds for a CW

traversal of the edges of VFr where the edges VEr,j on the left side of Bl,r are collapsed. Bl,r is

terminated at the closer of the two intersections points. If VEl,i from VFl is closer, then VFi will be

broken open at the intersection point VVi,l,r, and the scan process will be repeated for a new bisector

segment Bi,r between SVi and SVr. The opposite is true if the intersection point VVl,r,j is closer.

The merge process continues until no more intersections exist, at which point BL,R is completed and

VDL and VDR are merged. There is no back tracking in the scan of a VF , so an edge is traversed at

most once. Since the number of edges in L and R combined is linearly proportional to the number

of input sites in L and R by the Euler relation, the running time of a single merge process is O(n).

10.2.2 Rising Bubble Method for 2D Point Sets

The calculations to find the intersection point of Bl,r and VEl,i work on derived geometric

objects, so they are prone to numeric round-off error. The search for an intersection point can be
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made more numerically stable by reinterpreting it as the search for the center of an empty circle

inscribe by three ordered sites. This formulation of the merge process was first described by Guibas

and Stolfi [9] in their work on Delaunay triangulations. Relating this work to the previous algorithm,

BL,R is the path of the center of a rising empty circular bubble. The radius of the circle shrinks and

grows to stay in contact with two or three vertex sites while it moves along the VE’s that comprise

BL,R.

In this new phrasing of the intersection test, the CCW merge scan around VFl will advance

from VEl,i to VEl,i+1 if a CCW oriented circle C passes through SVi+1, SVl, and SVr in CCW order,

and C is empty of SVi. This test is equivalent to treating VEl,i and VEl,i+1 as infinite lines and

picking the one that the ray Bl,r intersects first. The counterclockwise test of the circle (V CCW )

ensures that VEl,i+1 intersects with the forward direction of the ray Bl,r.

V CCW (V0, V1, V2) is equivalent to testing whether V2 lies on the left hand side of the

oriented edge from V0 to V1. V InCircle (V0, V1, V2, V3) tests to see if V3 is inside the oriented

circle inscribed by V0, V1, and V2. Equations 10.1 and 10.2 show that the V CCW and V InCircle

tests depend directly on the input coordinate values [9].

V CCW (V0, V1, V2) =
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∣
∣
∣
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V InCircle (V0, V1, V2, V3) =
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The redesigned algorithm uses only these predicates when making numeric decisions in

the merge process. Hence any algorithmic problems due to round-off error are limited to the calcu-

lation of these predicates. No numeric decisions are made using constructed geometric objects.

10.2.3 Adaptive Exact Arithmatic

The work of Shewchuck [26] demonstrates that the V CCW and V InCircle predicates

can be made free of round-off error using adaptive exact arithmetic. With an adaptive technique the

accumulated error in the calculation is dynamically tested against error bounds to decide whether
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to increase the resolution of the calculation. The approach checks against error bounds at a discrete

number of resolutions and defaults to a more costly exact evaluation if necessary. In order to take

advantage of the speed of the adaptive arithmetic, the equations for the predicates are restructured

so that the values are more likely to be in a range were floating point round-off error will have less

of an effect. The technique is to use relative position vectors from a local origin rather than absolute

world coordinates. Assuming exact arithmetic, the relative positions of the input vertices decide

the predicate tests regardless of the coordinate system. Without exact arithmetic, these important

difference values can be lost to truncation and rounding in floating point operations if multiplications

of large absolute positions are performed before the subtractions. In Equations 10.3 and 10.4, the

V CCW and V InCircle tests have been modified so that V0 is the local origin.

V CCW (V0, V1, V2) =
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V InCircle (V0, V1, V2, V3) =
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With exact arithmetic versions of addition, subtraction, and multiplication, it is possible to

determine the result of these two predicates precisely. Because the predicates compare an expression

with zero, division can be avoided by cross multiplying. Some square roots can be avoided by

comparing the squared distance instead of the Euclidean distance, as in the V InCircle predicate of

Equation 10.4. For the expanded generalized set of predicates that are necessary with line segment

input sites, it is sometimes necessary to compute square roots. We use a fast interval arithmetic

floating point filter for all of our new predicates. If the ambiguity of the resulting computation

contains zero, we depend on a slow exact arithmetic version using the MPFUN numeric library [3].

The techniques of using relative positions, avoiding divisions, and avoiding square roots

are useful in avoiding floating point round-off error in geometric constructors as well. Geometric

constructors, such as generating intersection points or circle centers, cannot be stored exactly be-

cause the answers might involve irrational numbers that cannot be represented in a computer in a

finite amount of space. Examples of relatively accurate constructors are the equations for the center

and radius of the circle inscribed by three vertices [26], as shown in Figure A.2 and Equation A.3.
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10.2.4 Voronoi Diagram of Polygonal Contours

So far, the discussion of Voronoi diagrams has been limited to input sets of 2D vertex sites

only. Our algorithm constructs the Voronoi diagram of piecewise linear contours, so the definition

of the Voronoi diagram must be generalized to handle vertex sites (SV ) and oriented edge sites

(SE). Lee and Drysdale [13] presented an algorithm for computing the VD of general arrangements

of finite line segments and their endpoints. Then based on that work, Held [17] developed an

algorithm for the VD of the inside of a contour made up of straight line segments and circular arcs.

Our algorithm is a modification of Held’s algorithm where the issue of robustness is the key concern.

In Held’s algorithm, the interactions between the vertex sites, edge sites, and circular arc sites are

abstracted by dealing with a general form for the bisector curves. The intersections of these bisector

curves guide the decision making in the merge process. Like the first description of the point set

algorithm, these intersection tests are prone to round-off errors. Our work modifies this Voronoi

algorithm so that it is more robust against these round-off errors. To keep this effort manageable,

we disallow circle arcs in the input contours to limit the number of cases in the implementation.

The number of cases is proportional to the number of combinations of input site types. In the

future, we plan to extend our robust algorithm to support circular segments; in the mean time we

can approximate circular arcs with a suitable number of line segments. Reducing the set of input

site types to vertices and line segments still serves many real applications including the offsetting

of polyhedral slice contours described in the introduction [19].

Figure 10.2: Vertex zone, oriented edge zone, opposite oriented edge zone

We use a definition of the Voronoi diagram based on the zones of influence of the input

sites [17], but modify it to work for the inside and the outside of the contour. The zones of influence

address the fact that the vertices and edges are connected to neighboring sites around the contour

(Figure 10.2). The zone of influence of an oriented edge site lies to the left of the oriented edge

in between two lines perpendicular to the edge at its two endpoints. By definition, any point to the
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right side of the oriented edge is closer to the opposite oriented edge site, and any point beyond one

of the oriented edge’s endpoints is closer to the corresponding vertex site. Vertex sites have a zone

of influence in the angle between the two normals to its two incident edges at that point. This region

only exists on the side of the contour where the angle between the edges is greater than 180◦. On

the side of the contour where the zone exists, the vertex is called a reflex vertex. On the other side

of the contour, the same vertex is called non-reflex. By definition, the common vertex between two

consecutive collinear edge segments of the contour will have no zone of influence, because the two

edge zones will meet along the perpendicular at the vertex causing the vertex zone to vanish.

The VF ’s are associated with a vertex site or an oriented edge site. In the plane, the

bisector curves between two SE’s or two SV ’s are straight lines. The bisector curve between an SE

and a SV is a parabola. In the 3D height function (Figure 10.11(a)), the VF of a SE is a portion of

a 45◦ angled plane, and the VF of a SV is a portion of a cone with 45◦ angled sides. Also note that

the distance function along the bisector of two SV ’s is a hyperbola.

Our representation of the Voronoi mesh is built on our half-edge data structure with added

pointers from a VF to the site it is associated with. The representatoin of the VE’s is purely topo-

logical. The type of bisector curve is implicity specified by the types of the two sites associated with

the two adjacent VF ’s.

10.3 Overview

The input to our Voronoi algorithm is a set of 2D oriented, nonintersecting polygonal

contours (Figure 10.10). The output is the Voronoi mesh of those contours where the sites are the

vertices and the oriented line segment edges of the contours. The approach of the algorithm is to

construct the VD’s of the contours independently and merge each one into a composite VD. Once

all of the contours have been processed, the composite VD will be the VD of the set of contours.

The Voronoi vertices are assigned a z-coordinate equal to the signed distance to the input contours

where points on the inside are positive and points on the outside are negative. Finally, a clean

up routine is run over the Voronoi mesh to make it better suited to down stream applications like

offsetting.



216

10.4 Single Contour Voronoi Diagram

The first step in creating the VD of a set of contours is constructing the VD of a single

contour using a divide-and-conquer approach. The input to this routine is a CCW oriented, simple

polygonal contour (Figure 10.4(a)). The result is the Voronoi mesh where the VV are assign a z-

coordinate equal to their signed distance to the contour. The contour separates the plane into two

areas, inside and outside. If a VV lies inside the contour, it is given a positive distance, and if it

lies outside the contour, it is given a negative distance. The VD’s of the inside and outside are

independent of each other and meet along the contour. Taking advantage of this, the VD’s of the

inside and outside are constructed separately and then trivially merged at the contour (Figure 10.4).

The processes for creating the inside and outside VD are very similar. On the outside the edges are

traversed in the opposite direction, so in both cases the VD will be constructed on the left hand side

walking around the contour.

The divide-and-conquer method recursively breaks the contour in half in a tree fashion

until the pseudo-Voronoi diagram of the partial contour path at each leaf can be easily constructed.

These pseudo-Voronoi diagrams are correct in a region local to the path, but in areas further away

from the path, the VF ’s can overlap each other. Then reversing the recursion, the two pseudo-

Voronoi diagrams of the children subpaths of each node of the tree are merged together starting at a

common endpoint to form a larger pseudo-Voronoi diagram. The final merge at the root of the tree

will create the true Voronoi diagram of the inside or outside of the contour. These two VD’s are

trivially glued together along the contour and the VD of the contour is formed.

10.4.1 Maximal Reflex Paths

The algorithm for a single side of the oriented contour begins by breaking the contour up

into a set of maximal reflex paths (MRP ) [17]. An MRP is a consecutive set of edges connected by

reflex vertices where the oriented path turns to the right or continues straight ahead (Figure 10.3).

An MRP begins at a non-reflex vertex and ends at another non-reflex vertex, so it is maximally

reflex. It is apparent that the set of MRP ’s for the inside and outside invocations of the algorithm

will be different (Figure 10.10).

The algorithm walks around the oriented contour searching for a non-reflex vertex Vi, i.e.

such that V CCW (Vi−1, Vi, Vi+1) is true. On the inside of the contour, a non-reflex vertex will

always exist, but on the outside of the contour, a non-reflex vertex may not exist. If the input contour

is convex then all of the outside vertices are reflex. This simple example illustrates the efficiency
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benefit of dividing the contour into MRP ’s. The outside VD of a convex contour is trivial to

construct. It simply is the contour plus rays perpendicular to the edges at the end points. These rays

separate the reflex vertex zones from the edge zones. If two consecutive edges are collinear, then

the VF for the common endpoint does not exist and only a single perpendicular ray is constructed to

separate the two edge zones. If one or more non-reflex vertices exists, the MRP ’s for a contour are

traced out by starting at the first non-reflex vertex and walking around the oriented contour marking

the end of each MRP at each following non-reflex vertex until the first convex vertex is visited

again. The pseudo-Voronoi diagram of each MRP is trivially constructed in the same way that the

VD of the outside of a convex contour is constructed. The only difference is that the endpoints of

the MRP are not treated as sites because they are non-reflex and will not have associated VF ’s on

this side of the contour. Note that the simplest MRP is a single edge without either of its endpoints,

so its pseudo-Voronoi diagram will not have any VE’s.

Figure 10.3: Maximal reflex path with its pseudo-Voronoi diagram

10.4.2 Divide and Conquer

Once the contour is split up into MRP ’s, the binary divide-and-conquer algorithm can

be applied with the MRP ’s as the leaves of the tree. Then the pseudo-Voronoi diagrams of two

consecutive subpaths are merged together starting at their common non-reflex endpoint. The merge

constructs the bisector path BL,R and deletes away the erroneous portions of VDL and VDR. The

merge continues until it can no longer generate a VV , i.e. no more intersections between BL,R and

one of the VE’s of VDL or VDR exist. The merge algorithm can end before a globally valid VD is

created because the endpoints of the subpaths are not included in these pseudo-Voronoi diagrams.

Nevertheless the resulting pseudo-Voronoi diagram will have enough local information to guide the

later merges.
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Figure 10.4: Voronoi algorithm for an individual contour

10.4.3 Merge

The construction of the merge bisector is similar to the contrustion of the one for the VD

of a point set. The bisector path BL,R is created by connecting the centers of the empty inscribed

circles that mark the intersection points of BL,R with VDL and VDR. All portions of VDL that lie

to the right of BL,R will not be in the final VD, and all portions of VDR that lie to the left of BL,R
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will not be in the final VD. The procedure starts by fusing the rightmost edge site Sl of MRPL

with leftmost edge site Sr of MRPR at their shared non-reflex endpoint. The first bisector curve

segment Bl,r of BL,R is attached to the common endpoint as the angle bisector. The Voronoi face

VFl associated with Sl is broken open at infinity, and a CCW scan of its VE’s is started from there

at VEl,i. Similarly, the Voronoi face VFr associated with Sr is broken open at infinity, and a CW

scan of its VE’s is started from there at VEr,j . VEl,i+1 is the next VE after VEl,i in CCW order

around VFl, and VEr,j+1 is the next VE after VEr,j in CW order around VFr.

The scan of the two VF ’s VFl and VFr is done in two phases. The first phase attempts to

reject VV ’s created by three sites from the same subpath that were created in isolation ignoring the

sites from the other subpath. At this point in the merge, Sl and Sr are known to have neighboring

VF ’s separated by Bl,r, and the merge is looking to find an empty inscribed circle touching Sl and

Sr and a third site. VV ’s of VFl that are closer to Sr than to Sl will contain some part of Sr inside

their associated inscribed circle, and vice versa. This check is accomplished using a generalized

version of the in-circle-test called SInCircle (Section 10.7). SInCircle takes any combination

of four ordered vertex and edge sites. For the left side, the test is SInCircle (Sl, Si, Si+1, Sr).

The first three parameters are the sites that inscribe a circle C , and the fourth parameter is tested

against C . If the test is true, then VEl,i is collapsed and the pointer is advanced to VEl,i+1. This

process is continued until an inscribed circle is found that does not contain Sr or until a boundary

condition is reached. The boundary conditions prevent certain VE’s from ever being collapsed and

prevents BL,R from reversing direction midway through the merge. These protected VE’s are the

ones that make up the contour and the ones that are incident to the contour because some portion

of these edges will be in the final VD. This condition prevents the scan of the edges of a VF from

iterating past its associated edge or vertex site, which keeps the generation of the bisector headed

in the correct direction. Similarly for the right hand side, the test SInCircle (Sr, Sj+1, Sj, Sl) is

used and VEr,j is collapsed and the pointer is advanced to VEr,j+1, where j + 1 is the next edge in

CW order.

The second phase of the merge scan of a VF searches for new empty circles inscribed by

the three sites Si, Sl, and Sr on the left or Sl, Sr, and Sj on the right. To prevent the bisector from

reversing directions, a check is made to see if a properly oriented circle can be inscribed within the

three ordered sites. The test is more complicated than V CCW (Equation 10.3) from the 2D point

set algorithm because the sites can be vertices or oriented line segments. The test is broken into

two steps. The first step, a generalized version of V CCW called SCCW (Section 10.5) is used to

trivially reject some cases of input geometry. SCCW treats all edge sites as infinite oriented lines
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and checks to see if a CCW oriented circle can be inscribed within the arrangement of vertices and

oriented lines. SCCW (Si, Sl, Sr) is called on the left hand side. The boundary conditions are

also enforced here. The SCCW filtering step simplifies the complexity of the equations used in

the second step. If necessary, the second step attempts to compute the center of the inscribed circle

within the three ordered sites, SCenter (Si, Sl, Sr) (Section 10.6). Like SCCW , the equations

used in SCenter model finite edge sites as infinite oriented lines. SCenter computes possible

solutions for the center point and checks to see if they lie within all the three input sites’ Voronoi

zones (Figure 10.2) to determine if a solution exists. There is at most one valid solution. SCenter

also computes an approximate floating point value of the radius of the circle which it assigns to

the z-coordinate of the solution. Similarly on the right hand side, the merge process tests for the

existence of an inscribed circle center by calling SCCW (Sl, Sr, Sj) and SCenter (Sl, Sr, Sj).

The scan continues to search for the optimal circle center. The optimal circle center is the

VV at the nearest intersection of Bl,r with VDL and VDR. On the left, if SCenter (Si+1, Sl, Sr)

exists, then SInCircle (Si+1, Sl, Sr, Si) is called to test if its associated circle is empty. If so

VEl,i is collapsed. In parallel on the right, if SCenter (Sl, Sr, Sj+1) exists, then

SInCircle (Sl, Sr, Sj+1, Sj) is called to test if its associated circle is empty. If so VEr,j is col-

lapsed. This process continues until no more progress is made on the left or the right. Then if there

are two possible answers, a final SInCircle (Si, Sl, Sr, Sj) test is performed to determine which

center is the next VV . If the empty circle is on the left hand side, then VFi is broken open and Bl,r

is attached to VEl,i at VVi,l,r. The left hand edge pointer is advanced to the next VE to VEl,i around

VFi in CCW order. Similarly, if the empty circle is on the right hand side, then VFj is broken open

and Bl,r is attached to VEr,j at VVl,r,j . The left hand edge pointer is advanced to the next VE to

VEr,j around VFj in CW order.

The merge scan of the VF ’s is repeated until no further empty circles can be formed. At

this point, BL,R has been constructed and VDL and VDR have been merged.

10.4.4 The Final Merge

Merges between adjacent pseudo-Voronoi diagrams continue until the final merge at the

root of the recursion tree. On the final merge step, two non-reflex vertices, the starting vertex and

the one on the other opposite side of the oriented contour, must be fused by the merge process to

form the VD of the one side of the contour. When merging the inside of the contour, the merge

will complete at the non-reflex junction of the first and last edges of the contour. In this case, the
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terminating end of BL,R can be easily attached to the contour (Figure 10.4(b)). When merging the

outside of the contour, there are two different cases. The first case is where BL,R spans across a

concavity enclosed on the outside of the contour and meets up with the second junction vertex. This

case is exactly the same as the inside case. The second case is where BL,R extends out to infinity

(Figure 10.4(c)). In this case, one additional merge scan is run starting from the final unjoined

non-reflex vertex. It is also possible that the outside orientation of the contour will have exactly one

non-reflex vertex. In this case, the single merge process will extend out to infinity.

The VD’s of the inside and outside orientations of the contour have been created by sep-

arate divide-and-conquer merges. The VV ’s of the inside VD are assigned positive distances, and

The VV ’s of the outside VD are assigned negative distances. Then the two meshes are trivially

stitched together along the contour itself, thus constructing the signed Voronoi mesh of the input

CCW contour.

10.4.5 Clockwise Oriented Contours

The CW oriented contours from the input set are handled by the same algorithm. A con-

tour can be classified as CCW or CW using a predicate that checks its signed area. CW oriented

contours are reversed and treated like CCW contours. Since the VD’s of individual contours are

combined later in the process, it is important that the sign of the distance function in the merge area

matches. This is achieved by negating the distance values in the VV ’s of the CW oriented contours.

10.5 Generalized Counterclockwise Test

Our generalized counterclockwise test SCCW is a trivial rejection test that filters out bad

input to the SCenter inscribed circle center constructor. The SCCW predicate takes any ordered

triple of vertex or oriented edge sites and decides if a CCW oriented circle can be inscribed within

the vertex sites and the left hand side of the oriented infinite lines defined by the edge sites. This

test is used within the merge process to prevent the bisector BL,R from reversing its direction.

There are four different combinations of input site triples: three vertices (V V V ), two ver-

tices and one edge (V V E), one vertex and two edges (V EE), or three edges (EEE). Figure 10.6

shows the four combinations. The V V V case is trivial because SCCW is the same as V CCW .

We use Shewchuk’s adaptive exact arithmetic vertex counterclockwise test V CCW (Equation 10.3)

here, and we also use it as the basic computation in the other cases as well. The remaining combi-
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nations of input sites all involve at least one edge and will be treated together. Si,0 is the starting

endpoint, and Si,1 is the terminating endpoint. If Si is a vertex site, then the starting and terminating

endpoints are simply the vertex, i.e. Si,0 = Si,1 = Si. We define a point Si,j to be on an edge E if

it is collinear with the edge, i.e. V CCW (E0, E1, Si,j) = 0. And we define Si,j to be to the left

of the edge E if it is to the left of the oriented infinite line, i.e. V CCW (E0, E1, Si,j) > 0.

prevS nextScurrE

Figure 10.5: Generalized counterclockwise rejection test

Each edge site Ecurr is tested against the other two sites Sprev and Snext (Figure 10.5).

There are four topological cases of how the endpoints of Ecurr can be shared with the surrounding

sites.

Case 1 Ecurr shares its endpoints with both the previous and next sites. The test is successful if

one of the following conditions is satisfied.

• Sprev,0 is on or to the left of Ecurr and Snext,1 is to the left of Ecurr

• Sprev,0 is to the left of Ecurr and Snext,1 is on or to the left of Ecurr

Case 2 Ecurr shares Ecurr,0 with the previous site. This test is successful if Sprev,0 is on or to the

left of Ecurr and Snext,0 or Snext,1 is to the left of Ecurr.

Case 3 Ecurr shares Ecurr,1 with the next site. This test is successful if Snext,1 is on or to the left

of Ecurr and Sprev,0 or Sprev,1 is to the left of Ecurr.

Case 4 Ecurr does not share either of its endpoints. This test is successful if Sprev,0 or Sprev,1 is to

the left of Ecurr and Snext,0 or Snext,1 is to the left of Ecurr.

If a test fails for any edge, then it is not possible to inscribe a circle within the three sites.
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10.6 Generalized Inscribed Circle Center

The SCCW predicate is not a sufficient test of whether an inscribed circle exists. The

inscribed circle center constructor routine (SCenter) doubles as a predicate for the existence of

such a circle. SCenter takes an ordered triple of input sites (S0, S1, S2) and attempts to compute

the center and radius of the circle inscribed within them. The equations used by SCenter treat the

finite edge segments as infinite oriented lines. The SCCW trivial rejection test guarantees that the

circle will always lie to the left hand side of the oriented lines. This reduces the solution space to

at most two possible answers. Without the SCCW filter, there could be as many as four possible

solutions.
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Figure 10.6: VVV, VVE, VEE, and EEE

As with SCCW , there are four major categories of combinations of input sites (Fig-

ure 10.6). These four categories are expanded into twelve cases to deal with degeneracies, see

Appendix A for details. The equations for the V V E and V EE categories can have two possible

answers. Some topological situations make it is possible to limit the solution space to a single an-

swer. These situations arise when two edges share a common endpoint or when a vertex site is the

endpoint of one of the edge sites. Recognizing these cases does not involve any numeric predicates.

Other degeneracies arise due to geometric events like two edges being parallel to each other. These

cases can be diagnosed using the V CCW test. These degeneracies must be handled by special case

equations because they cause the denominators of the more general equations to vanish.

The equations have been formed so that they depend on the original input values. This

formulation is necessary so that exact algebra can be applied to predicates that depend on them.

The equations have also been translated so that they have a local origin O. Using relative position

vectors makes the computations less susceptible to floating point round-off error which allows the

cheaper computions of the adaptive scheme to succeed more frequently.

There can be at most one valid center. The valid circle center, if it exists, lies in the
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intersection of the Voronoi zones of the three input sites (Figure 10.2). There is no closer site to the

center of a valid circle center than the three sites that inscribe it. If a candidate center lies outside

of the Voronoi zones of the input sites, then it is closer to some other input site. To avoid round-off

error when making this determination, the generating equation for the candidate center is substituted

into a Voronoi zone test to form a predicate for each of sites. At most one center will be valid. If no

answer is valid, then no circle can be inscribed within the three input sites.

10.7 Generalized In-Circle Test

The equations from SCenter are also used in our generalized in-circle-test, SInCircle.

SInCircle takes three ordered sites S0, S1, and S2 that define an inscribed circle and tests to see

if that circle is penetrated by a fourth site S3. SInCircle compares the radius of the circle to the

distance between the center of the circle and the fourth site. The distance values are never negative,

so an equivalent test is to compare the squared distances. This technique will in some cases eliminate

square roots from the equations. In order to use exact algebra, the equations for the local origin O,

the center position C , and the radius r from Appendix A for the case specified by S0, S1, and S2

are substituted into the equations below. The test can be split into two cases: when the fourth site is

a vertex or when it is an edge.

10.7.1 Vertex Site

3

S 2

S 1

S 0
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d
3

v
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rc

Figure 10.7: The test that checks if the vertex V3 lies inside the circle defined by S0, S1, and S2.

In this case, the vertex site V3 is tested to see if it is inside the circle (Figure 10.7). The

calculations are made local by subtracting the origin O of the SCenter calculation from all the

vertices.
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c =C −O (10.5)

v3 =V3 −O (10.6)

V3 is in the circle if d2, the squared distance from V3 to C , is less than r2, the radius

squared.

‖v3‖2 − 2 (c · v3) + ‖c‖2 − r2 < 0 (10.7)

In all SCenter cases except the EEE case (see appendix), the origin O is on the circle,

so the magnitude of the position vector of the center ‖c‖ is equal to the radius r. In these cases, the

expression can be simplified by cancelling the last two terms.

‖v3‖2 − 2 (c · v3) < 0 (10.8)

10.7.2 Edge Site
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Figure 10.8: The test that checks if the infinite line containing the edge with endpoints E30
and E31

penetrates the inside of the circle defined by S0, S1, and S2.

In this case, the edge site E3 is tested to see if any point on it is inside the circle (Fig-

ure 10.8). The calculations are made local by subtracting the origin O of the SCenter calculation

from all the vertices.

c =C −O

e3,0 =E3,0 −O

e3,1 =E3,1 −O (10.9)
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The distance function of a finite edge can be broken up into 3 regions depending on

whether the center of the circle is closest to the starting endpoint, the middle of the edge, or the

terminating endpoint (Figure 10.9).

e3,1

3,1

II

E 3,0Ee3

e3,0

C

O c

IIII

Figure 10.9: The Voronoi zones of an edge and its two endpoints E3,0 and E3,1.

Case I The center point C projects onto the infinite line defined by the edge before the starting

vertex of the edge. The distance from the edge to C is equal to the distance from E3,0 to C .

The test for this case is as follows:

−e3 · (c− e3,0) ≥ 0 (10.10)

If this equation holds then the vertex site in-circle-test (Equation 10.7) is performed with

V3 = E3,0.

Case II The center point C projects onto the infinite line defined by the edge after the terminating

vertex of the edge. The distance from the edge to C is equal to the distance from E3,1 to C .

The test for this case is as follows:

e3 · (c− e3,1) ≥ 0 (10.11)

If this equation holds then the vertex site in-circle-test (Equation 10.7) is performed with

V3 = E3,1.

Case III The center point C projects onto the middle of the edge. The distance to the edge is equal

to the distance to the infinite line defined by the edge. The edge passes inside the circle if d2,

the squared distance from C to the line, is less than r2, the radius squared. We take advantage

of the comparison against zero and multiply the equation by ‖e3‖2 to remove any divisions.
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(
−e3ycx + e3xcy + ‖e3,0 × e3,1‖

)2 − ‖e3‖2r2 < 0 (10.12)

10.8 Voronoi Diagram of a Contour Set

The VD of a set of contours can be constructed by merging the individual contour VD’s

(Figure 10.10). Contours must be processed in order so that the sign of the overlapping distance

functions match up. The ordering criterion is that a contour Ci’s immediate enclosing contour must

be merged into the composite VD before Ci is processed. Given that input contours are properly

nested and do not intersect, contours are processed in order by their minimum y-coordinate, with

the x-coordinate used to break ties, using a priority queue. The first contour taken from the priority

queue will be a CCW contour and its VD will become the initial composite VD. Each of the rest of

the contours will be removed from the head of the queue in turn and have their VD constructed and

merged into the composite VD.

Most of the machinery needed to perform the merge of the VD of a single contour with

the composite VD of a set of contours is the same as the merge algorithm used to construct the VD

of a single contour. The only difference is that it is more difficult to find a common point within the

two VD’s to begin the merge. In the divide-and-conquer algorithm, the merge is between two paths

that join at a shared non-reflex vertex. The joining vertex is a natural and easy place to begin that

merge process. There are no shared vertices between the new contour and any of the contours in the

composite VD, because by definition they do not intersect. The starting point is found by finding

two adjacent VF ’s, one from the composite VD and one from the new VD. We can limit the set

of VF ’s that are considered from the new VD to the ones that extend to infinity and are associated

with a vertex site. We find the VF from the composite VD that contains the corresponding vertex

site, i.e. the closest site in the composite VD. The candidate VF ’s of the new VD are searched until

one is found that contains a point from the closest site in the composite VD.

Once two such sites are found, their VF ’s are scanned until a VE from each of them is

intersected. At this point the mesh is in a state where the earlier merge can be applied. When all of

the contours have been processed, the signed Voronoi mesh is constructed (Figure 10.10(e)).
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(a) Input: Set of slice contours,
the inside region is grey

(b) Individual contour VD’s (c) Contour VD merge I

(d) Contour VD merge II (e) VD of a set of slice con-
tours, positive distance zones
in grey

(f) Minimum points added to
make VE’s monotone in their
distance function for offsetting
algorithm

Figure 10.10: Voronoi algorithm for a set of contours

10.9 Voronoi Diagram Clean Up

The Voronoi mesh that results from the prescribed algorithm may need to be cleaned up

before they are used in downstream applications. The clean up procedure removes zero length edges

that are caused by four or more co-circular vertices. It also splits any VE’s that are not monotone

in their z-coordinate at their minimum distance point (Figure 10.10(f)). A VE between two input

edges is a portion of a straight line, so it will never need to be split. A VE between an input vertex

and edge will be a parabola in 2D and in 3D. A VE edge between two input vertices looks like a

straight line in 2D, but the 3D curve is actually a hyperbola. Both parabolic and hyperbolic VE’s

may need to be split. The minimum point is the midpoint of the line segment connecting the two

vertex sites or the midpoint of the line projecting the vertex on the infinite line along the edge site. If

this minimum point lies within the Voronoi region of both of the generating sites then the VE is split.

In this case, a new vertex is created at the minimum point with an appropriate signed z-coordinate,

and the VE is split into two z-monotone edges.
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10.10 Results

We have implemented the divide-and-conquer Voronoi diagram using our half-edge data

structure. We have tested our implementation on contours created by slicing 3D polyhedrons and

on a number of fractal contours (Figure 10.11). The fractal contours, including the third generation

Koch island with about 2900 vertices depicted in Figure 10.11(b), exercised our implementation in

a number of different ways. The recursive structure of the fractals make it possible to generate large

input data sets. The regular, repetitive pattern of a fractal might suggest that after a few generations

all situtations will have been exhausted making them poor test data for uncovering unexpected

corner cases. On the contrary, we found that the global interactions between contour elements were

extremely efficient in exposing unhandled cases. In addition, the symmetries of the fractals created

many topological coincidences such as parallel edges and four or more co-circular sites which may

not arise with more random input. These are the sort of coincidences that cause algorithms that

assume general position to fail.

We have used the distance information in the Voronoi mesh to generate offset contours.

The offsetting algorithm uses the z-monotone mesh to create offset contours by performing a graph

traversal around peaks of the height field [19]. The Voronoi height field is a mesh made up of

45◦ angled plane and cone pieces. Figure 10.11(a) shows a 3D rendering of the Voronoi distance

mesh. The VV ’s have been lifted along the z-axis by their signed distances from the input contours.

A series of offset contours at ten incremental offset distances show the level sets of the distance

function. Figure 10.11(b) shows the the Koch island with the set of offset contours at a specified

distance. For this example, the construction of the VD takes a couple of seconds. Once the VD

has been constructed, the user can interactively adjust the offset distance and see the offset contours

generated in real time (less than 1
30 of a second). Figure 10.11(c) shows the application of our

offsetting algorithm to creating thin-walled FDM models. The thin-walled build used only 27% as

much material as a solid build, and it took 61% of the time. The speed up was not as dramatic as

the reduction in material usage because 42% of the build time was devoted to creating the support

structure which is not optimized by our algorithm.

The Voronoi mesh is very useful in tool-path planning applications such as milling. After

the cost of constructing the Voronoi mesh has been incurred once, many offset contours can be

generated at interactive speeds. This is useful when looking for an optimal combination of cutting

tools of different diameters that will mill out a pocket in a minimal time.
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10.11 Conclusion

We have described a robust divide-and-conquer algorithm for constructing the Voronoi

diagram of a set of oriented polygonal contours. We have used the resulting Voronoi mesh to

create offset contours. The 2D offsetting routine can be used in applications to speed up layered

manufacturing [19], generate contour parallel tool paths, and to minimize machining time in pocket

milling.
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(a) Voronoi mesh height field of nested
contours, offset contours act as topo-
graphical contours
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(b) Voronoi diagram of the third order Koch island
fractal contour and the offset contours with d = 0.05

(c) Thin-walled cow model being built on an FDM machine

Figure 10.11: Results from the Voronoi algorithm
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Chapter 11

Conclusion

In this thesis, we have shown that new advances in subdivision surfaces are making them

an ideal surface representation for CAD and manufacturing. Subdivision surfaces of arbitrary mesh

topology and genus can be defined by watertight 2-manifold meshes, and sharp tagging schemes

allow the designer to intentionally break the continuity and introduce crease features. This gives

designers the freedom to define interesting geometries that fully enclose physical volumes. The

control meshes stay watertight throughout the subdivision process, and can also be adaptively tes-

sellated in a watertight manner. New exact evaluation methods provide a global per face (u, v)

parameterization, that makes the interface to subdivision surfaces analogous to patch based repre-

sentations such as NURBS. We have shown a new algorithm to perform this exact evaluation near

sharp features of piecewise smooth Loop and Catmull-Clark surfaces, that allows the surface to be

queried for position, tangents and normal, and principle curvature directions and values at arbitrary

parameter values. The differential geometry of the surface can be used by manufacturing process

planning algorithms to generate and optimize tool paths for automatically building physical repre-

sentations of computer models. These automated process planning algorithms must be numerically

robust. We have described our robust implementation of the generalized Voronoi diagram of sets

of polygonal contours, which has been used to generate thin-walled representations of objects for

layered manufacturing [19]. The Voronoi diagram is used to generate 2D offset contours that are

combined between layers to make a conservative approximation to the 3D offset surface. Creating

robust geometric algorithms and CAD software is a difficult and interesting field of study which

still requires much future investigation.
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Appendix A

Generalized Voronoi Predicates

A.1 Introduction

This appendix provides formulas to calculate the center C and radius r of the inscribed cir-

cle to three ordered input sites for the twelve cases need for generalized Voronoi diagram of polyg-

onal contours. These expressions are then plugged into the predicates described in Section 10.7 for

testing whether a fourth site penetrates this inscribed circle. One of the input vertices is selected as

a local origin O in order to make the calculations less prone to floating point round-off error.

A.2 Edge-Edge Intersection

C

O =

1,1e

0,1E

0,0E

e1

e0

1,0E 1,1E

e1,0

Figure A.1: Edge-Edge intersection

The following computes the intersection point of two edges, if it exists. This could be

used to build a more general Voronoi algorithm that allows for intersecting line segments. The

solution to the arrangement of intersecting line segments in the plane is a numerically challenging

problem on its own. We have avoided addressing this problem by assuming that the input contours
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do not intersect.

O =E0,0

Cx =Ox +
‖e1,0 × e1,1‖e0x

‖e0 × e1‖

Cy =Oy +
‖e1,0 × e1,1‖e0y

‖e0 × e1‖
(A.1)

The existence of the intersection of two line segments reduces to four applications of the V CCW

test (Equation 10.3). This test determines which side of a line segment a third vertex is on. Two

line segments intersect only if for each line segment the two end points of the other segment lie on

different sides of it.

A.3 Site Closest to a Vertex

This predicate tests which of two other sites is closest to a vertex V0. V0 is chosen as

the local origin O to improve the floating point accuracy. This predicate is used to perform point

location in a Voronoi mesh which is necessary when searching for a seed point to begin the merge

between two disconnected contour VD’s.

O =V0

0 ≤ (e1 · e1,0)⇒ v1 ← e1,0

0 ≥ (e1 · e1,1)⇒ v1 ← e1,1

V V : 0 >‖v1‖2 − ‖v2‖2

V E : 0 >
‖v1‖2‖e2‖2 − ‖e2,0 × e2,1‖2

‖e2‖2

EE : 0 >
‖e2‖2‖e1,0 × e1,1‖2 − ‖e1‖2‖e2,0 × e2,1‖2

‖e1‖2‖e2‖2
(A.2)

A.4 VVV

In the V V V case, all three sites are vertices (Figure A.2). The equations for this case are

taken from Shewchuk [26]. We chose the origin to be V0. The following are the formulas for the
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Figure A.2: VVV

circle center C and its radius r.

O =V0

Cx =Ox −
‖v2‖2v1y − ‖v1‖2v2y

2‖v1 × v2‖

Cy =Oy +
‖v2‖2v1x − ‖v1‖2v2x

2‖v1 × v2‖

r =
‖v1‖‖v2‖‖v2 − v1‖

2‖v1 × v2‖
(A.3)

The following first two predicates check if the circle center is closer to one of the two end points of

a fourth edge segment E3 rather than the body of the segment. The third predicate checks if a vertex

V3 lies inside the circle. Note that V3 can be set to be one of the end points of an edge segment. The

final predicate tests whether the body of an edge E3, represented as an infinite line, penetrates the

circle.

0 ≤2‖v1 × v2‖ (e3 · e3,0)−
(
‖v1‖2‖e3 × v2‖ − ‖v2‖2‖e3 × v1‖

)

2‖v1 × v2‖

0 ≥2‖v1 × v2‖ (e3 · e3,1)−
(
‖v1‖2‖e3 × v2‖ − ‖v2‖2‖e3 × v1‖

)

2‖v1 × v2‖

0 <
‖v1‖2‖v2 × v3‖+ ‖v2‖2‖v3 × v1‖+ ‖v3‖2‖v1 × v2‖

‖v1 × v2‖

0 <










(

‖v1‖4 (e3 · v2)
2 + ‖v2‖4 (e3 · v1)

2
)

−
(
‖v1‖2‖v2‖2

(
‖v2 − v1‖2‖e3‖2 + 2 (e3 · v1) (e3 · v2)

))

+
(
4‖v1 × v2‖2‖e3,0 × e3,1‖2

)

+
(
4‖v1 × v2‖‖e3,0 × e3,1‖

(
‖v2‖2 (e3 · v1)− ‖v1‖2 (e3 · v2)

))










4‖e3‖2‖v1 × v2‖2
(A.4)
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Figure A.3: VVE

A.5 VVE

In the V V E case, there are two vertex sites and one edge site (Figure A.3). This is the

general form, and it can have two candidate solutions. This can be reduced to one candidate equation

because the center must lie to the left of the line connecting V0 to V1 for the circle to touch the sites

in the correct order. We chose the origin to be V0. The following are the formulas for the candidate

circle center C and its radius r.

O =V0

disc =‖v1‖2‖e2‖2‖e2,0 × e2,1‖ (‖e2,0 × e2,1‖+ ‖e2 × v1‖)

den =2‖e2 × v1‖2

Cx =Ox −
(
‖v1‖2‖e2 × v1‖e2y + 2‖e2,0 × e2,1‖ (e2 · v1) v1y

)
− 2v1y

√
disc

den

Cy =Oy +

(
‖v1‖2‖e2 × v1‖e2x + 2‖e2,0 × e2,1‖ (e2 · v1) v1x

)
+ 2v1x

√
disc

den

discr =‖v1‖2‖e2,0 × e2,1‖ (‖e2,0 × e2,1‖+ ‖e2 × v1‖)

r =
‖v1‖2‖e2‖ (2‖e2,0 × e2,1‖+ ‖e2 × v1‖) + 2 (e2 · v1)

√
discr

den
(A.5)

The candidate center must satisfy the following two predicates for it to project into the body of the

edge segment.

0 ≥

(

‖e2 × v1‖ (e2 · e2,0) + ‖e2,0 × e2,1‖ (e2 · v1) +
√

disc
)

‖e2 × v1‖
(A.6)

0 ≤

(

‖e2 × v1‖ (e2 · e2,1) + ‖e2,0 × e2,1‖ (e2 · v1) +
√

disc
)

‖e2 × v1‖
(A.7)

The following first two predicates check if the circle center is closer to one of the two end points of

a fourth edge segment E3 rather than the body of the segment. The third predicate checks if a vertex
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V3 lies inside the circle. Note that V3 can be set to be one of the end points of an edge segment. The

final predicate tests whether the body of an edge E3, represented as an infinite line, penetrates the

circle.

0 ≤




2‖e2 × v1‖2 (e3 · e3,0)− ‖e2 × v1‖‖e2 × e3‖‖v1‖2

+2‖e3 × v1‖‖e2,0 × e2,1‖ (e2 · v1) + 2‖e3 × v1‖
√

disc





2‖e2 × v1‖2

0 ≥




2‖e2 × v1‖2 (e3 · e3,1)− ‖e2 × v1‖‖e2 × e3‖‖v1‖2

+2‖e3 × v1‖‖e2,0 × e2,1‖ (e2 · v1) + 2‖e3 × v1‖
√

disc





2‖e2 × v1‖2

0 <




‖e2 × v1‖

(
‖v3‖2‖e2 × v1‖ − ‖v1‖2‖e2 × v3‖

)

−2‖v1 × v3‖
(

‖e2,0 × e2,1‖ (e2 · v1) +
√

disc
)





‖e2 × v1‖2

a =‖v1‖2‖e2 × v1‖ (e2 · e3) + 2 (v1 · e3)
(

‖e2,0 × e2,1‖ (v1 · e2) +
√

disc
)

b =‖v1‖2‖e2‖ (2‖e2,0 × e2,1‖+ ‖e2 × v1‖) + 2 (v1 · e2)
√

discr

0 <
a2 + 4‖e3,0 × e3,1‖‖e2 × v1‖2a + 4‖e3,0 × e3,1‖2‖e2 × v1‖4 − ‖e3‖2b2

4‖e2 × v1‖4‖e3‖2
(A.8)

A.5.1 VVE Antiparallel

e2,0

e2,1

V0

v1

V1

e

O

22,1E E2,0

C

r

=

Figure A.4: VVE Antiparallel

The V V E antiparallel case arises when the two vertex sites lie on a line parallel to the

edge site (Figure A.4). This case is diagnosed using a numerical test. There is exactly one candidate

circle center in this case. We chose the origin to be V0. The following are the formulas for the
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candidate circle center C and its radius r.

O =V0

Cx =Ox +
v1x

2
−

(

4‖e2,0 × e2,1‖2 − (e2 · v1)
2
)

v1y

−8‖e2,0 × e2,1‖ (e2 · v1)

Cy =Oy +
v1y

2
+

(

4‖e2,0 × e2,1‖2 − (e2 · v1)
2
)

v1x

−8‖e2,0 × e2,1‖ (e2 · v1)

r =
4‖e2,0 × e2,1‖2 + ‖e2‖2‖v1‖2

8‖e2,0 × e2,1‖‖e2‖
(A.9)

The candidate center must satisfy the following two predicates for it to project into the body of the

edge segment.

0 ≥2 (e2 · e2,0)− (e2 · v1) (A.10)

0 ≤2 (e2 · e2,1)− (e2 · v1) (A.11)

The following first two predicates check if the circle center is closer to one of the two end points of

a fourth edge segment E3 rather than the body of the segment. The third predicate checks if a vertex

V3 lies inside the circle. Note that V3 can be set to be one of the end points of an edge segment. The

final predicate tests whether the body of an edge E3, represented as an infinite line, penetrates the

circle.

0 ≤
−4‖e2,0 × e2,1‖ (e2 · v1) (2 (e3 · e3,0)− (e3 · v1)) +

(

4‖e2,0 × e2,1‖2 − (e2 · v1)
2
)

‖e3 × v1‖
−8‖e2,0 × e2,1‖ (e2 · v1)

0 ≥
−4‖e2,0 × e2,1‖ (e2 · v1) (2 (e3 · e3,1)− (e3 · v1)) +

(

4‖e2,0 × e2,1‖2 − (e2 · v1)
2
)

‖e3 × v1‖
−8‖e2,0 × e2,1‖ (e2 · v1)

0 <
−4‖e2,0 × e2,1‖ (e2 · v1)

(
‖v3‖2 − (v1 · v3)

)
−
(

4‖e2,0 × e2,1‖2 − (e2 · v1)
2
)

‖v1 × v3‖
−4‖e2,0 × e2,1‖ (e2 · v1)

0 <














64‖e2,0 × e2,1‖2 (e2 · v1)
2 ‖e3,0 × e3,1‖ (‖e3,0 × e3,1‖+ ‖e3 × v1‖)

−16‖e2,0 × e2,1‖2 (e2 · v1)
2 (e3 · v1)

2

−16‖e2,0 × e2,1‖ (e2 · v1) (e3 · v1)
(

4‖e2,0 × e2,1‖2 − (e2 · v1)
2
)

‖e3,0 × e3,1‖
−8‖e2,0 × e2,1‖ (e2 · v1) (e3 · v1)

(

4‖e2,0 × e2,1‖2 − (e2 · v1)
2
)

‖e3 × v1‖

−‖e3 × v1‖2
(

4‖e2,0 × e2,1‖2 − (e2 · v1)
2
)2














64‖e3‖2‖e2,0 × e2,1‖2 (e2 · v1)
2

(A.12)
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Figure A.5: VvE

A.5.2 VvE

The V vE case arises when a vertex site is the starting endpoint of the edge site (Fig-

ure A.5). This case is diagnosed using a topological test. There is only one candidate solution, and

it is always in the zone of influence of the edge site. We chose the origin to be E2,0 which is the

shared end point of the edge site. The following are the formulas for the candidate circle center C

and its radius r.

O =E2,0

Cx =Ox −
‖v0‖2e2y

2‖e2 × v0‖

Cy =Oy +
‖v0‖2e2x

2‖e2 × v0‖

r =
‖v0‖2‖e2‖
2‖e2 × v0‖

(A.13)

The following first two predicates check if the circle center is closer to one of the two end points of

a fourth edge segment E3 rather than the body of the segment. The third predicate checks if a vertex

V3 lies inside the circle. Note that V3 can be set to be one of the end points of an edge segment. The

final predicate tests whether the body of an edge E3, represented as an infinite line, penetrates the

circle.

0 ≤2‖e2 × v0‖ (e3 · e3,0)− ‖v0‖2‖e2 × e3‖
2‖e2 × v0‖

0 ≥2‖e2 × v0‖ (e3 · e3,1)− ‖v0‖2‖e2 × e3‖
2‖e2 × v0‖

0 <
‖v3‖2‖e2 × v0‖ − ‖v0‖2‖e2 × v3‖

‖e2 × v0‖

0 <
4‖e2 × v0‖2‖e3,0 × e3,1‖2 + 4‖e2 × v0‖‖e3,0 × e3,1‖‖v0‖2 (e2 · e3)− ‖v0‖4‖e2 × e3‖2

4‖e3‖2‖e2 × v0‖2
(A.14)
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A.5.3 EvV
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Figure A.6: EvV

The EvV case arises when a vertex site is the terminating endpoint of the edge site (Fig-

ure A.6). The equations are closely related to the V vE case. This case is diagnosed using a topolog-

ical test. There is only one candidate solution, and it is always in the zone of influence of the edge

site. We chose the origin to be E2,0 which is the shared end point of the edge site. The following

are the formulas for the candidate circle center C and its radius r.

O =E0,1

Cx =Ox −
‖v2‖2e0y

2‖e0 × v2‖

Cy =Oy +
‖v2‖2e0x

2‖e0 × v2‖

r =
‖v2‖2‖e0‖
2‖e0 × v2‖

(A.15)

The following first two predicates check if the circle center is closer to one of the two end points of

a fourth edge segment E3 rather than the body of the segment. The third predicate checks if a vertex

V3 lies inside the circle. Note that V3 can be set to be one of the end points of an edge segment. The

final predicate tests whether the body of an edge E3, represented as an infinite line, penetrates the

circle.

0 ≤2‖e0 × v2‖ (e3 · e3,0)− ‖v2‖2‖e0 × e3‖
2‖e0 × v2‖

0 ≥2‖e0 × v2‖ (e3 · e3,1)− ‖v2‖2‖e0 × e3‖
2‖e0 × v2‖

0 <
‖v3‖2‖e0 × v2‖ − ‖v2‖2‖e0 × v3‖

‖e0 × v2‖

0 <
4‖e0 × v2‖2‖e3,0 × e3,1‖2 + 4‖e0 × v2‖‖e3,0 × e3,1‖‖v2‖2 (e0 · e3)− ‖v2‖4‖e0 × e3‖2

4‖e3‖2‖e0 × v2‖2
(A.16)
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A.6 VEE
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Figure A.7: VEE

There is one vertex site and two edge sites (Figure A.7). This the general form, and it can

have two candidate solutions. We chose the origin to be V0. The following are the formulas for the

candidate circle center C and its radius r.

O =V0

disc =2‖e1,0 × e1,1‖‖e2,0 × e2,1‖ (‖e1‖‖e2‖+ (e1 · e2))

den =‖e1 × e2‖ (‖e1‖‖e2‖ − (e1 · e2))

s =







1 if ‖e1 × e2‖ < 0

−1 if ‖e1 × e2‖ > 0







Cx =Ox +







(
‖e1‖2e2x − (e1 · e2) e1x

)
‖e2,0 × e2,1‖

+
(
(e1 · e2) e2x − ‖e2‖2e1x

)
‖e1,0 × e1,1‖

+s (‖e1‖e2x − ‖e2‖e1x)
√

disc







den

Cy =Oy +







(
‖e1‖2e2y − (e1 · e2) e1y

)
‖e2,0 × e2,1‖

+
(
(e1 · e2) e2y − ‖e2‖2e1y

)
‖e1,0 × e1,1‖

+s
(
‖e1‖e2y − ‖e2‖e1y

)√
disc







den
(A.17)

r =
‖e1‖‖e2,0 × e2,1‖+ ‖e2‖‖e1,0 × e1,1‖+ s

√
disc

‖e1‖‖e2‖ − (e1 · e2)
(A.18)

The candidate center must satisfy the following four predicates for it to project into the body of both
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of the edge segments.

0 ≥‖e1 × e2‖ (e1 · e1,0) + ‖e1,0 × e1,1‖ (‖e1‖‖e2‖+ (e1 · e2)) + s‖e1‖
√

disc

‖e1 × e2‖
(A.19)

0 ≤‖e1 × e2‖ (e1 · e1,1) + ‖e1,0 × e1,1‖ (‖e1‖‖e2‖+ (e1 · e2)) + s‖e1‖
√

disc

‖e1 × e2‖
(A.20)

0 ≥‖e1 × e2‖ (e2 · e2,0)− ‖e2,0 × e2,1‖ (‖e1‖‖e2‖+ (e1 · e2))− s‖e2‖
√

disc

‖e1 × e2‖
(A.21)

0 ≤‖e1 × e2‖ (e2 · e2,1)− ‖e2,0 × e2,1‖ (‖e1‖‖e2‖+ (e1 · e2))− s‖e2‖
√

disc

‖e1 × e2‖
(A.22)

The following first two predicates check if the circle center is closer to one of the two end points of

a fourth edge segment E3 rather than the body of the segment. The third predicate checks if a vertex

V3 lies inside the circle. Note that V3 can be set to be one of the end points of an edge segment. The

final predicate tests whether the body of an edge E3, represented as an infinite line, penetrates the
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circle.

0 ≤










‖e1 × e2‖ (‖e1‖‖e2‖ − (e1 · e2)) (e3 · e3,0)

+
(
‖e2‖2 (e1 · e3)− (e1 · e2) (e2 · e3)

)
‖e1,0 × e1,1‖

−
(
‖e1‖2 (e2 · e3)− (e1 · e2) (e1 · e3)

)
‖e2,0 × e2,1‖

+s (‖e2‖ (e1 · e3)− ‖e1‖ (e2 · e3))
√

disc










‖e1 × e2‖ (‖e1‖‖e2‖ − (e1 · e2))

0 ≥










‖e1 × e2‖ (‖e1‖‖e2‖ − (e1 · e2)) (e3 · e3,1)

+
(
‖e2‖2 (e1 · e3)− (e1 · e2) (e2 · e3)

)
‖e1,0 × e1,1‖

−
(
‖e1‖2 (e2 · e3)− (e1 · e2) (e1 · e3)

)
‖e2,0 × e2,1‖

+s (‖e2‖ (e1 · e3)− ‖e1‖ (e2 · e3))
√

disc










‖e1 × e2‖ (‖e1‖‖e2‖ − (e1 · e2))

0 <










‖e1 × e2‖ (‖e1‖‖e2‖ − (e1 · e2)) ‖v3‖2

+2
(
‖e2‖2 (e1 · v3)− (e1 · e2) (e2 · v3)

)
‖e1,0 × e1,1‖

−2
(
‖e1‖2 (e2 · v3)− (e1 · e2) (e1 · v3)

)
‖e2,0 × e2,1‖

+s2 (‖e2‖ (e1 · v3)− ‖e1‖ (e2 · v3))
√

disc










‖e1 × e2‖ (‖e1‖‖e2‖ − (e1 · e2))

a =







(
(e1 · e2) ‖e1 × e3‖ − ‖e1‖2‖e2 × e3‖

)
‖e2,0 × e2,1‖

+
((
‖e2‖2‖e1 × e3‖ − e1 · e2

)
‖e2 × e3‖

)
‖e1,0 × e1,1‖

+s (‖e2‖‖e1 × e3‖ − ‖e1‖‖e2 × e3‖)
√

disc







b =‖e1‖‖e2,0 × e2,1‖+ ‖e2‖‖e1,0 × e1,1‖+ s
√

disc

0 <










a2

+2‖e3,0 × e3,1‖‖e1 × e2‖ (‖e1‖‖e2‖ − (e1 · e2)) a

+‖e3,0 × e3,1‖2‖e1 × e2‖2 (‖e1‖‖e2‖ − (e1 · e2))
2

−‖e3‖2‖e1 × e2‖2b










‖e3‖2‖e1 × e2‖2 (‖e1‖‖e2‖ − (e1 · e2))
2 (A.23)

A.6.1 VEE Antiparallel

The V EE antiparallel case arises when the edge sites are antiparallel to each other (Fig-

ure A.8). This case is diagnosed using a numerical test. We chose the origin to be V0. The following
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Figure A.8: VEE Antiparallel

are the formulas for the candidate circle center C and its radius r.

O =V0

disc =‖e1 × e2,0‖‖e1,0 × e1,1‖

Cx =Ox +
− (‖e1 × e2,0‖ − ‖e1,0 × e1,1‖) e1y + 2e1x

√
disc

2‖e1‖2

Cy =Oy +
(‖e1 × e2,0‖ − ‖e1,0 × e1,1‖) e1x + 2e1y

√
disc

2‖e1‖2

r =
‖e1 × e2,0‖+ ‖e1,0 × e1,1‖

2‖e1‖
(A.24)

The candidate center must satisfy the following two predicates for it to project into the body of both

of the edge segments.

0 ≥ (e1 · e1,0)−
√

‖e1 × e2,0‖‖e1,0 × e1,1‖ (A.25)

0 ≤ (e1 · e1,1)−
√

‖e1 × e2,0‖‖e1,0 × e1,1‖ (A.26)

0 ≥ (e2 · e2,0) +
√

‖e2 × e1,0‖‖e2,0 × e2,1‖ (A.27)

0 ≤ (e2 · e2,1) +
√

‖e2 × e1,0‖‖e2,0 × e2,1‖ (A.28)

The following first two predicates check if the circle center is closer to one of the two end points of

a fourth edge segment E3 rather than the body of the segment. The third predicate checks if a vertex

V3 lies inside the circle. Note that V3 can be set to be one of the end points of an edge segment. The

final predicate tests whether the body of an edge E3, represented as an infinite line, penetrates the
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circle.

0 ≤2‖e1‖2 (e3 · e3,0)− (‖e1 × e2,0‖ − ‖e1,0 × e1,1‖) ‖e1 × e3‖ − 2 (e1 · e3)
√

disc

2‖e1‖2

0 ≥2‖e1‖2 (e3 · e3,1)− (‖e1 × e2,0‖ − ‖e1,0 × e1,1‖) ‖e1 × e3‖ − 2 (e1 · e3)
√

disc

2‖e1‖2

0 <
‖e1‖2‖v3‖2 − (‖e1 × e2,0‖ − ‖e1,0 × e1,1‖) ‖e1 × v3‖ − 2 (e1 · v3)

√
disc

‖e1‖2

0 <










4‖e1‖2‖e3,0 × e3,1‖
(
‖e1‖2‖e3,0 × e3,1‖+ (e1 · e3) (‖e1 × e2,0‖ − ‖e1,0 × e1,1‖)

)

−4 (e1 · e3)
2 ‖e1 × e2,0‖‖e1,0 × e1,1‖

−‖e1 × e3‖2 (‖e1 × e2,0‖ − ‖e1,0 × e1,1‖)2

+4‖e1 × e3‖
√

disc
(
2‖e1‖2‖e3,0 × e3,1‖+ (e1 · e3) (‖e1 × e2,0‖ − ‖e1,0 × e1,1‖)

)










4‖e1‖4 (‖e1‖‖e2‖ − (e1 · e2))
2

(A.29)

A.6.2 VEvE Parallel

E

V0

v0

1,1E E2,0 eO 2

2,1E1,0

r

C

==

Figure A.9: VEvE Parallel

The V EvE parallel case arises when the two edge sites share a common vertex and are

collinear (Figure A.9). This case is diagnosed using topological and numerical tests. It is equivalent

to V vE with V1 = E1,1.

A.6.3 vEE

The vEE case arises when the vertex site is the starting endpoint of the subsequent edge

site (Figure A.10). This case is diagnosed using a topological test. We chose the origin to be the

shared vertex E1,0. The following are the formulas for the candidate circle center C and its radius
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Figure A.10: vEE

r.

O =E1,0

Cx =Ox −
‖e2,0 × e2,1‖e1y

‖e1‖‖e2‖ − (e1 · e2)

Cy =Oy +
‖e2,0 × e2,1‖e1x

‖e1‖‖e2‖ − (e1 · e2)

r =
‖e1‖‖e2,0 × e2,1‖
‖e1‖‖e2‖ − (e1 · e2)

(A.30)

The candidate center must satisfy the following two predicates for it to project into the body of the

edge segment E2.

0 ≥(‖e1‖‖e2‖ − (e1 · e2)) (e2 · e2,0)− ‖e2,0 × e2,1‖‖e1 × e2‖
‖e1‖‖e2‖ − (e1 · e2)

(A.31)

0 ≤(‖e1‖‖e2‖ − (e1 · e2)) (e2 · e2,1)− ‖e2,0 × e2,1‖‖e1 × e2‖
‖e1‖‖e2‖ − (e1 · e2)

(A.32)

The following first two predicates check if the circle center is closer to one of the two end points of

a fourth edge segment E3 rather than the body of the segment. The third predicate checks if a vertex

V3 lies inside the circle. Note that V3 can be set to be one of the end points of an edge segment. The

final predicate tests whether the body of an edge E3, represented as an infinite line, penetrates the
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circle.

0 ≤(‖e1‖‖e2‖ − (e1 · e2)) (e3 · e3,0)− ‖e2,0 × e2,1‖‖e1 × e3‖
‖e1‖‖e2‖ − (e1 · e2)

0 ≥(‖e1‖‖e2‖ − (e1 · e2)) (e3 · e3,1)− ‖e2,0 × e2,1‖‖e1 × e3‖
‖e1‖‖e2‖ − (e1 · e2)

0 <
(‖e1‖‖e2‖ − (e1 · e2)) ‖v3‖2 − 2‖e2,0 × e2,1‖‖e1 × v3‖

‖e1‖‖e2‖ − (e1 · e2)

0 <







(‖e1‖‖e2‖ − (e1 · e2))
2 ‖e3,0 × e3,1‖2

+2 (‖e1‖‖e2‖ − (e1 · e2)) ‖e3,0 × e3,1‖‖e2,0 × e2,1‖ (e1 · e3)

−‖e2,0 × e2,1‖2‖e1 × e3‖2







‖e3‖2 (‖e1‖‖e2‖ − (e1 · e2))
2 (A.33)

A.6.4 EEv

0,1

e0,0

E0,0
e0

V21,1E

E
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0,1E

e r
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= =

Figure A.11: EEv

The EEv case arises when the vertex site is the terminating endpoint of the previous edge

site (Figure A.11). The equations are closely related to the vEE case. This case is diagnosed using

a topological test. We chose the origin to be the shared vertex E1,1. The following are the formulas

for the candidate circle center C and its radius r.

O =E1,1

Cx =Ox −
‖e0,0 × e0,1‖e1y

‖e0‖‖e1‖ − (e0 · e1)

Cy =Oy +
‖e0,0 × e0,1‖e1x

‖e0‖‖e1‖ − (e0 · e1)

r =
‖e1‖‖e0,0 × e0,1‖
‖e0‖‖e1‖ − (e0 · e1)

(A.34)

The candidate center must satisfy the following two predicates for it to project into the body of the
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edge segment E0.

0 ≥(‖e0‖‖e1‖ − (e0 · e1)) (e0 · e0,0) + ‖e0,0 × e0,1‖‖e0 × e1‖
‖e0‖‖e1‖ − (e0 · e1)

(A.35)

0 ≤(‖e0‖‖e1‖ − (e0 · e1)) (e0 · e0,1) + ‖e0,0 × e0,1‖‖e0 × e1‖
‖e0‖‖e1‖ − (e0 · e1)

(A.36)

The following first two predicates check if the circle center is closer to one of the two end points of

a fourth edge segment E3 rather than the body of the segment. The third predicate checks if a vertex

V3 lies inside the circle. Note that V3 can be set to be one of the end points of an edge segment. The

final predicate tests whether the body of an edge E3, represented as an infinite line, penetrates the

circle.

0 ≤(‖e0‖‖e1‖ − (e0 · e1)) (e3 · e3,0)− ‖e0,0 × e0,1‖‖e1 × e3‖
‖e0‖‖e1‖ − (e0 · e1)

0 ≥(‖e0‖‖e1‖ − (e0 · e1)) (e3 · e3,1)− ‖e0,0 × e0,1‖‖e1 × e3‖
‖e0‖‖e1‖ − (e0 · e1)

0 <
(‖e0‖‖e1‖ − (e0 · e1)) ‖v3‖2 − 2‖e0,0 × e0,1‖‖e1 × v3‖

‖e0‖‖e1‖ − (e0 · e1)

0 <







(‖e0‖‖e1‖ − (e0 · e1))
2 ‖e3,0 × e3,1‖2

+2 (‖e0‖‖e1‖ − (e0 · e1)) ‖e3,0 × e3,1‖‖e0,0 × e0,1‖ (e1 · e3)

−‖e0,0 × e0,1‖2‖e1 × e3‖2







‖e3‖2 (‖e0‖‖e1‖ − (e0 · e1))
2 (A.37)

A.7 EEE
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Figure A.12: EEE

In the EEE case, there are three edge sites (Figure A.12). This the general form.
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O =E1,0

den =‖e1 × e2‖‖e0‖+ ‖e2 × e0‖‖e1‖+ ‖e0 × e1‖‖e2‖

Cx =Ox +
(‖e1‖e2x − ‖e2‖e1x) ‖e0,0 × e0,1‖+ (‖e0‖e1x − ‖e1‖e0x) ‖e2,0 × e2,1‖

den

Cy =Oy +

(
‖e1‖e2y − ‖e2‖e1y

)
‖e0,0 × e0,1‖+

(
‖e0‖e1y − ‖e1‖e0y

)
‖e2,0 × e2,1‖

den

r =
‖e0 × e1‖‖e2,0 × e2,1‖+ ‖e1 × e2‖‖e0,0 × e0,1‖

den
(A.38)

The candidate center must satisfy the following six predicates for it to project into the body of the

three edge segments.

0 ≥




den (e0 · e0,0)− (‖e1‖ (e0 · e2)− ‖e2‖ (e0 · e1)) ‖e0,0 × e0,1‖

+‖e0‖ (‖e0‖‖e1‖ − (e0 · e1)) ‖e2,0 × e2,1‖





den
(A.39)

0 ≤




den (e0 · e0,1)− (‖e1‖ (e0 · e2)− ‖e2‖ (e0 · e1)) ‖e0,0 × e0,1‖

+‖e0‖ (‖e0‖‖e1‖ − (e0 · e1)) ‖e2,0 × e2,1‖





den
(A.40)

0 ≥




den (e1 · e1,0) + ‖e1‖ (‖e1‖‖e2‖ − (e1 · e2)) ‖e0,0 × e0,1‖

−‖e1‖ (‖e0‖‖e1‖ − (e0 · e1)) ‖e2,0 × e2,1‖





den
(A.41)

0 ≤




den (e1 · e1,1) + ‖e1‖ (‖e1‖‖e2‖ − (e1 · e2)) ‖e0,0 × e0,1‖

−‖e1‖ (‖e0‖‖e1‖ − (e0 · e1)) ‖e2,0 × e2,1‖





den
(A.42)

0 ≥




den (e2 · e2,0)− ‖e2‖ (‖e1‖‖e2‖ − (e1 · e2)) ‖e0,0 × e0,1‖

− (‖e0‖ (e1 · e2)− ‖e1‖ (e0 · e2)) ‖e2,0 × e2,1‖





den
(A.43)

0 ≤




den (e2 · e2,1)− ‖e2‖ (‖e1‖‖e2‖ − (e1 · e2)) ‖e0,0 × e0,1‖

− (‖e0‖ (e1 · e2)− ‖e1‖ (e0 · e2)) ‖e2,0 × e2,1‖





den
(A.44)

The following first two predicates check if the circle center is closer to one of the two end points of

a fourth edge segment E3 rather than the body of the segment. The third predicate checks if a vertex

V3 lies inside the circle. Note that V3 can be set to be one of the end points of an edge segment. The

final predicate tests whether the body of an edge E3, represented as an infinite line, penetrates the
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circle.

0 ≤




den (e3 · e3,0)− (‖e1‖ (e2 · e3)− ‖e2‖ (e1 · e3)) ‖e0,0 × e0,1‖

− (‖e0‖ (e1 · e3)− ‖e1‖ (e0 · e3)) ‖e2,0 × e2,1‖





den

0 ≥




den (e3 · e3,1)− (‖e1‖ (e2 · e3)− ‖e2‖ (e1 · e3)) ‖e0,0 × e0,1‖

− (‖e0‖ (e1 · e3)− ‖e1‖ (e0 · e3)) ‖e2,0 × e2,1‖





den

0 <



















den2‖v3‖2 + 2den (e1 · v3) (‖e2‖‖e0,0 × e0,1‖ − ‖e0‖‖e2,0 × e2,1‖)
+2den (e0 · v3) ‖e1‖‖e2,0 × e2,1‖ − 2den (e2 · v3) ‖e1‖‖e0,0 × e0,1‖

+‖e0,0 × e0,1‖2 (‖e1‖‖e2‖ − (e1 · e2))
2

+2‖e0,0 × e0,1‖‖e2,0 × e2,1‖‖e1‖ (‖e0‖ (e1 · e2) + ‖e2‖ (e0 · e1))

−2‖e0,0 × e0,1‖‖e2,0 × e2,1‖‖e1‖2 (‖e0‖‖e2‖+ (e0 · e2))

−2‖e0,0 × e0,1‖‖e2,0 × e2,1‖‖e0 × e1‖‖e1 × e2‖
+‖e2,0 × e2,1‖2 (‖e0‖‖e1‖ − (e0 · e1))

2



















den

a =




(‖e2‖‖e1 × e3‖ − ‖e1‖‖e2 × e3‖) ‖e0,0 × e0,1‖

+(‖e1‖‖e0 × e3‖ − ‖e0‖‖e1 × e3‖) ‖e2,0 × e2,1‖





b =‖e0 × e1‖‖e2,0 × e2,1‖+ ‖e1 × e2‖‖e0,0 × e0,1‖

0 <
a2 + 2den‖e3,0 × e3,1‖a + ‖e3,0 × e3,1‖2den2 − ‖e3‖2b2

‖e3‖2den2
(A.45)

A.7.1 EvEE Parallel
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Figure A.13: EvEE Parallel

The EvEE parallel case arises when the vertex site is the starting endpoint of the subse-

quent edge site (Figure A.13). This case is diagnosed using topological and numerical tests. It is

equivalent to vEE with V0 = E0,1.
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Appendix B

Linear Algebra

B.1 Introduction

This appendix describes some basic linear algebra concepts about eigen-decompostions

and more general Jordan decompositions of matrices. It shows how to derive these decompositions

and how to use them to quickly raise a matrix to an integer power.

B.2 Eigen-decomposition

Constant time evaluation of subdivision schemes depends on raising the stationary matrix

A to a variable power g − 1 in a constant number of matrix operations. Diagonalizing A into its

eigen-decomposition makes this possible. In this section, we will review the eigen-decomposition

and use a general 2× 2 matrix as an example.

B.2.1 General 2× 2 Matrices

Matrix A2 in Equation B.1 is a general 2× 2 matrix. The inverse, A−1
2 , can be computed

in closed form as shown in Equation B.2, if the determinant of A2, Det (A2) = (ad−bc)
α

, does not

equal zero.
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A2 =
1

α




a b

c d



 (B.1)

A−1
2 =

α

ad− bc




d −b

−c a



 (B.2)

B.2.2 Eigenvalues

For a general n × n square matrix A, the eigenvalues of A are n special scalar values

λi {i ∈ [1, n]} such that for special corresponding eigenvectors vi {i ∈ [1, n]}, multiplication of A

with vi is the same as scaling vi by λi, Equation B.3. By substituting vi with itself multiplied by the

identity matrix I in Equation B.4, we can then combine terms in Equation B.5.

λivi = Avi (B.3)

λi (Ivi) = Avi (B.4)

λiIvi = Avi

0 = (A− λiI) vi (B.5)

vi is in the nullspace of the matrix (A− λiI), but the vector vi = 0 always satisfies Equa-

tion B.5. We are interested in nonzero eigenvectors vi only, so (A− λiI) must be singular so that

its nullspace will be nonempty. (A− λiI) is singular if its determinant is zero. Equation B.6 is the

characteristic equation of A, and the n roots of this equation define the eigenvalues λi {i ∈ [1, n]}.

0 = Det (A− λiI) (B.6)

For the case of the general 2× 2 matrix A2, the characteristic equation, Equation B.7 can

be expanded analytically to yield an equation that is quadratic in λi, Equation B.11.
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0 = Det (A2 − λiI) (B.7)

0 = Det




1

α




a b

c d



−




λi 0

0 λi







 (B.8)

0 =
1

α
Det








a b

c d



−




αλi 0

0 αλi







 (B.9)

0 =
1

α

∣
∣
∣
∣
∣
∣

a− αλi b

c d− αλi

∣
∣
∣
∣
∣
∣

(B.10)

0 =
1

α

(
α2λ2

i − α (a + d) λi + (ad− bc)
)

(B.11)

Equation B.11 can be solved analytically using the quadratic equation to yield the 2 eigen-

values λ1 and λ2 in Equation B.12.

λ1,2 =
a + d±

√

(a− d)2 + 4bc

2α
(B.12)

B.2.3 Eigenvectors

For a general n × n square matrix A, once the eigenvalues λi {i ∈ [1, n]} have been

computed, the corresponding eigenvectors vi {i ∈ [1, n]} are computed by finding the nullspace

of the matrix (A− λiI). The null space is computed for each λi by substituting its value into the

matrix (A− λiI) and then performing Gaussian elimination. The matrix will be singular, so at least

one row will become all zeroes. It is then possible to solve for the components of vi as parametric

equations of a subset of free components.

The parametric nature of the vi’s show that the eigenvectors are not unique. In Equa-

tion B.3, vi can be replaced with itself multiplied by an abitrary scalar. This arbitrary scaling of

the eigenvectors is the only degree of freedom if the eigenvalues are unique, i.e. their algebraic

multiplicities are all one. In this case, the nullspaces are all 1-dimensional subspaces, lines through

the origin.

If there are multiple roots to the characteristic equation, then the algebraic multiplicity m

of some of the eigenvalues will be greater than one. The m eigenvectors corresponding to such an

eigenvalue will be a set of linearly independent vectors that span the m-dimensional subspace. The
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choice of these vectors has more degrees of freedom than the scaling in the 1-dimension case. If

m = 2, then the subspace is a plane through the origin, and there is a rotational degree of freedom

for choosing the eigenvectors as well as the scaling degree of freedom.

In general, there are some matrices with eigenvalues of algebraic multiplicity m > 1 that

do not have a complete set of m associated eigenvectors, i.e. the geometric multiplicity is less than

the algebraic multiplicity. These matrices are defective, and the more general Jordan decomposition

must be used, see Section B.3.

If the eigenvalues are all unique, then the eigenvectors will all be orthogonal.

For the case of a non-defective 2 × 2 matrix A2, we will try to solve for the eigenvectors

analytically by substituting the eigenvalues from Equation B.12 into the matrix in Equation B.10

and then performing Gaussian elimination.

0 =
1

α




a− αλi b

c d− αλi



 vi (B.13)

0 =




a− αλi b

c d− αλi








vi,x

vi,y



 (B.14)

0 =




a− a+d±

√
(a−d)2+4bc

2 b

c d− a+d±
√

(a−d)2+4bc

2








vi,x

vi,y



 (B.15)

0 =





(a−d)∓
√

(a−d)2+4bc

2 b

c
−(a−d)∓

√
(a−d)2+4bc

2








vi,x

vi,y



 (B.16)

0 =




0 0

1
−(a−d)∓

√
(a−d)2+4bc

2c








vi,x

vi,y



 (B.17)

Equation B.17 shows that the matrix (A− λiI) is singular. We will let vi,y = 1 then we

can solve for vi,x, Equation B.18.

v1,2 =





(a−d)±
√

(a−d)2+4bc

2c

1



 (B.18)

In Equation B.18, if c = 0, then the eigenvector is not well defined. We must handle

the case where c = 0 or b = 0 separately. In this case the eigenvalues simplify to λ1 = a
α

and

λ2 = d
α

, and Gaussian elimination will produce a matrix with a single non-zero element. Hence,

v1 =
[

1 0
]t

and v2 =
[

0 1
]t

, respectively.
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B.2.4 Eigen-Decomposition

For a non-defective n×n square matrix A, the geometric multiplicity equals the algebraic

multiplicity for all of the eigenvalues λi {i ∈ [1, n]}, so there is a corresponding set of n linearly

independent eigenvectors vi {i ∈ [1, n]}. It is then possible to diagonalize A by transforming A by

the eigenvectors and their inverse. Remembering Equation B.19 that defines each eigenvector, we

can write all n equations as columns next to each other in Equation B.20.

Avi = viλi (B.19)

A




v1 v2 · · · vn

↓ ↓ ↓



 =




v1λ1 v2λ2 · · · vnλn

↓ ↓ ↓



 (B.20)

We will define V as the matrix of column eigenvectors. We can rewrite the right side

of Equation B.20 as the eigenvector matrix V multiplied by a diagonal matrix Λ that has the n

eigenvalues along its diagonal, Equation B.21. After right multiplying by V −1, we derive the eigen-

decomposition of A, Equation B.24.

AV =




v1 v2 · · · vn

↓ ↓ ↓














λ1 0 · · · 0

0 λ2 0
...

. . .
...

0 0 · · · λn










(B.21)

AV = V Λ (B.22)

AV V −1 = V ΛV −1 (B.23)

A = V ΛV −1 (B.24)

The eigen-decomposition of A, Equation B.24, makes it very efficient to raise A to an

integer exponent g. Consider first squaring A, Equation B.25.

A2 = AA

= V ΛV −1V ΛV −1

= V ΛΛV −1

= V Λ2V −1 (B.25)
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Equation B.26 for A to an integer exponent g is then derived by induction. This is very

efficient to compute because raising Λ to the exponent g can be computed by simply raising the n

diagonal elements to g, instead of performing g matrix multiplications.

Ag = V ΛgV −1 (B.26)

For the 2× 2 matrix A2, the eigen-decomposition is the following:

A2 = V2Λ2V
−1
2 (B.27)

V2 =





a−d−
√

(a−d)2+4bc

2c

a−d+
√

(a−d)2+4bc

2c

1 1



 (B.28)

Λ2 =





a+d−
√

(a−d)2+4bc

2α
0

0
a+d+

√
(a−d)2+4bc

2α



 (B.29)

V −1
2 =

−c
√

(a− d)2 + 4bc




1 −a−d+

√
(a−d)2+4bc

2c

−1
a−d−

√
(a−d)2+4bc

2c



 (B.30)

B.2.5 Product of eigenvalues

We remember that the determinant of the multiplication of two n × n matrices A and B

is the product of their determinants.

Det (AB) = Det (A) Det (B) (B.31)

We can then prove that the determinant of a matrix is equal to the product of its eigenval-

ues, using the eigen-decomposition.

A = V ΛV −1 (B.32)

Det (A) = Det
(
V ΛV −1

)
(B.33)

= Det (V ) Det (Λ) Det
(
V −1

)
(B.34)

= Det
(
V −1V Λ

)
(B.35)

= Det (Λ) (B.36)

=
∏

λi (B.37)
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For the 2× 2 matrix A2 the analytic solution is as follows:

λ1λ2 =
ad− bc

α
= Det (A2) (B.38)

B.2.6 Sum of eigenvalues

We can prove that the trace of a matrix is equal to the sum of its eigenvalues, using the

eigen-decomposition and the Einstein tensor notation. Equation B.39 defines matrix multiplication

using tensor notation. Note that the order of terms in tensor notation does not matter, but the order

of the indices does. Equation B.40 defines the Kronecker delta or identity tensor δij .

AB = AikBkj = BkjAik (B.39)

AA−1 = I = AikA
−1
kj = δij (B.40)

Using these tensor relations and the eigen-decomposition of A, we can derive the trace of

A.

A = V ΛV −1 (B.41)

Aij = VikΛkmV −1
mj (B.42)

Trace (A) = Aii (B.43)

= VikΛkmV −1
mi (B.44)

= V −1
mi VikΛkm (B.45)

= δmkΛkm (B.46)

= Λmm (B.47)

= Trace (Λ) (B.48)

=
∑

λi (B.49)

For the 2× 2 matrix A2 the analytic solution is as follows:

λ1 + λ2

2
=

a + d

2α
=

Trace (A2)

2
(B.50)
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B.2.7 Eigen-decomposition of A
′
= A− λI

Given a matrix A and its eigen-decomposition, we will show that a matrix A′ equal to

the matrix A minus a matrix which is a uniform scaling by the factor λ has a very similar eigen-

decomposition.

AV = V Λ (B.51)

A′ = A− λI (B.52)

A′V = (A− λI)V (B.53)

= AV − (λI) V (B.54)

= V Λ− V (λI) (B.55)

= V (Λ− λI) (B.56)

A′V = V Λ′ (B.57)

Equation B.57 shows that A′ has the same set of eigenvectors V as A. The eigenvalues λ′
i

of A′ differ from the eigenvalues λi of A by the scalar λ.

Λ′ = Λ− λI (B.58)

λ′
i = λi − λ : i ∈ [1, n] (B.59)

B.2.8 Inverses and Pseudoinverses

Given a matrix A and its eigen-decomposition, it is easy to form its inverse A−1, if it

exists.

A = V ΛV −1 (B.60)

A−1 =
(
V ΛV −1

)−1
(B.61)

=
(
V −1

)−1
Λ−1V −1 (B.62)

A−1 = V Λ−1V −1 (B.63)

Inverting A then reduces to inverting the eigenvalue matrix Λ which is a non-uniform

scaling matrix. Λ−1 is also a diagonal matrix where the entries on the diagonal are:
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λ−1
i =

1

λi
: i ∈ [1, n] (B.64)

A is invertible if none of its eigenvalues equal zero.

If A is non-invertible, then its pseudoinverse can be formed by inverting all non-zero

eigenvalues while keeping all zero eigenvalues as zero. The pseudoinverse will then ignore projec-

tions of the matrix onto the subspace spanned by the eigenvectors corresponding to zero eigenvalues.

A† = V Λ†V −1 (B.65)

B.3 Jordan Decomposition

Exact evaluation of stationary subdivision schemes depends on the ability to raise the sta-

tionary subdivision matrix A to an arbitrary power g in constant-time. The subdivision matrices

for smooth extraordinary patches [29] are all diagonalizable by their eigen-decomposition, so rais-

ing them to a power simplifies to raising the scalar diagonal eigenvalues to that power and then

performing a constant number of matrix operations.

A = V ΛV −1 (B.66)

Ag = V ΛgV −1 (B.67)

On the other hand, the subdivision matrices for patches near crease and corner vertices of certain

valences are defective, i.e. the algebraic multiplicity of certain eigenvalues is higher than the geo-

metric multiplicity, so it is impossible to find a full rank set of eigenvectors. In the case of a defective

matrix, it is still always possible to find its Jordan decomposition, which is block diagonal and easy

to raise to an arbitrary power g in constant-time.

A = V JV −1 (B.68)

A Jordan block Jb of J will be of size nb equal to the number of missing eigenvectors plus one for

an associated eigenvalue λb with algebraic multiplicity ≥ nb. Jb has λb along the diagonal, and

under our definition, ones below the diagonal. Jb can be thought of as a diagonal matrix Λb plus a
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nilpotent subdiagonal matrix Lb.

Jb = Λb + Lb










λb 0 0 0

1 λb 0 0

0 1 λb 0

0 0 1 λb










=










λb 0 0 0

0 λb 0 0

0 0 λb 0

0 0 0 λb










+










0 0 0 0

1 0 0 0

0 1 0 0

0 0 1 0










(B.69)

The vectors {vi : i = 1→ nb − 1} of V associated with a Jordan block Jb satisfy the equation

Avi = λbvi + vi+1, while the final vector vnb
satisfies the eigenvector equation Avnb

= λbvnb
.

We can then express J
g
b as the binomial expansion of (Λb + Lb)

g.

J
g
b = (Λb + Lb)

g =

g
∑

i=0

(

g

i

)

Λg−i
b Li

b (B.70)

L0
b is defined to be the identity matrix Ib of size nb. Λg−i

b is simply a uniform scaling matrix, so it

can be replaced by the scalar λ
g−i
b . If g < i, then

(

g

i

)

≡ 0. Each multiplication of Lb to itself

moves the line of ones diagonally down to the left, so if i ≥ nb then Li
b ≡ 0. This truncates the sum

to the first nb terms.

J
g
b =

nb−1
∑

i=0

(

g

i

)

λ
g−i
b Li

b (B.71)

=












(

g

0

)

λ
g
b 0 0 0

(

g

1

)

λ
g−1
b

(

g

0

)

λ
g
b 0 0

(

g

2

)

λ
g−2
b

(

g

1

)

λ
g−1
b

(

g

0

)

λ
g
b 0

(

g

nb − 1

)

λ
g−(nb−1)
b

(

g

2

)

λ
g−2
b

(

g

1

)

λ
g−1
b

(

g

0

)

λ
g
b












(B.72)

The necessary set of binomial coefficients

(

g

i

)

can be computed in O (nb) time by starting with

(

g

0

)

≡ 1 and iteratively applying the formula:

(

g

i + 1

)

=

(

g

i

)

g − i

i + 1
(B.73)

Left multiplying J
g
b by a row vector x = {x0, x1, · · · xnb−1} reduces to the sum:

i ∈ [0, nb − 1] : yi =

min(nb−1−i,g)
∑

j=0

(

g

j

)

λg−jxi+j (B.74)
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The Jordan decomposition is easy and robust to use, once it has been derived. For the subdivision

matrices that we are considering, J will have at most one Jordan block of size nb = 2, and all

other blocks will be eigen blocks of size 1. Unfortunately numerical methods to find the Jordan

decomposition, such as in Mathematica [31], are not stable and are likely to return a diagonal matrix

where some of the eigenvectors differ by ε. The eigenvector matrix V is then noninvertible, so the

decomposition is invalid. Fortunately, for the subdivision matrices we are interested in, we are able

to derive analytic forms for their Jordan decompositions (see Chapter 4 for details).
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[18] S. McMains, J. Smith, J. Wang, and C. Séquin. Layered Manufacturing of Thin-Walled Parts.

ASME Design Engineering Technical Conferences 2000, 26th Design Automation Conference,

September 2000.

[19] Sara McMains, Jordan Smith, and Carlo Séquin. Thin-Wall Calculation for Layered Manu-

facturing. Transactions of the ASME Journal of Computing and Information Science in Engi-

neering, 3(3):210–218, September 2003.

[20] Jörg Peters and Le-Jeng Shiue. 4-3 Directionally Ripple-free Subdivision. ACM Transactions

on Graphics, pages 1–22, MONTH 20YY.

[21] Pixar. The RenderMan Interface Version 3.2. https://renderman.pixar.com, July 2000.

[22] U. Reif. A unified approach to subdivision algorithms near extraordinary vertices. Computer-

Aided Geometric Design, 12(2):153–174, March 1995.

[23] M. Sabin. Cubic Recursive Division with Bounded Curvature. Curves and surfaces, pages

411–414, 1991.



264

[24] S. Sarma and P. Wright. Reference Free Part Encapsulation: A New Universal Fixturing

Concept. Journal of Manufacturing Systems, 16(1), 1997.

[25] M. I. Shamos and D. Hoey. Closest Point Problems. Proceedings 16th Annual IEEE Sympo-

sium on Foundation of Computer Science, October 1975.

[26] J. R. Shewchuk. Adaptive Precision Floating-Point Arithmetic and Fast Robust Geometric

Predicates. Discrete & Computational Geometry, 18(3):305–363, October 1997.

[27] J. Stam. Evaluation Of Loop Subdivision Surfaces. Proceedings of SIGGRAPH 1998, pages

395–404, July 1998.

[28] J. Stam. Evaluation of Loop Subdivision Surfaces. Technical report,

Alias|Wavefront, 1218 Third Ave, 8th Floor, Seattle, WA 98101, 1998.

http://www.dgp.toronto.edu/people/stam/reality/Research/pdf/loop.pdf.

[29] J. Stam. Exact Evaluation Of Catmull-Clark Subdivision Surfaces At Arbitrary Parameter

Values. Proceedings of SIGGRAPH 1998, pages 395–404, July 1998.

[30] J. Stam and C. Loop. Quad/Triangle Subdivision. Computer Graphics Forum, 22(1):1–7,

2003.

[31] Wolfram, S. The Mathematica Book. Wolfram Media, Champaign, IL, fourth edition, 1999.

[32] L. Ying and D. Zorin. A Simple Manifold-Based Construction of Surfaces of Arbitrary

Smoothness. ACM Transactions on Graphics, 23(3):XX, July 2004.

[33] D. Zorin. Personal correspondence, December 2003.

[34] D. Zorin and D. Kristjansson. Evaluation of Piecewise Smooth Subdivision Surfaces. The

Visual Computer, 18, pages 299–315, 2002.


