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Abstract 
For many applications, such as aesthetic designs or camera paths, 
nicely rounded, smooth, interpolatory paths – free of cusps and 
abrupt hairpin turns – are most important. Such curves can be 
obtained from globally optimized minimum variation curves 
(MVC) [Moreton and Séquin 1992], but at high computational 
costs. We present a blending scheme between circles that robustly 
produces equally good-looking G2-continuous curves through 
very challenging sets of interpolation points. One basic method 
produces such curves in the plane, on a sphere, and in 3D space. 
 
1 Introduction 
When the constraints permit it, the MVC will produce circular 
arcs as solutions, since these have zero variation cost. Thus it is 
natural to use blends between circular arcs to generate the kind of 
fair curves mentioned above, and several such schemes have been 
published, e.g. [Szilvasi-Nagy and Vendel 2000]. But even the 
best of those can produce unwanted hairpin turns (Fig.1a). We 
have found that this is caused by the positional interpolation 
between corresponding arc points, but that it can be overcome, if a 
suitably chosen angle-based parameterization is used instead. 
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Figure 1.  Blended circle spline segment using  (a) positional 
interpolation, and  (b) angle-based parameterization. 

 
2 Construction 
Given a sequence of constraint points P0, P1, ... Pi, ... Pn to be 
interpolated (the “control polygon”), we form a blend between 
two circular arcs for every segment (Pi, Pi+1). The first arc (A) is 
defined to go through points Pi-1, Pi, Pi+1 in sequence, and the 
second one (B) through points Pi, Pi+1, Pi+2. These two “base arcs”  
define the tangent vectors ti and ti+1 and the curvatures of the 
composite curve at points Pi and Pi+1, respectively. Our approach 
guarantees, that the blend curve picks up these end conditions at 
points Pi, Pi+1 and that it is well-behaved in between, i.e., has no 
cusps and no self-intersections, and finite curvature, as long as the 
control polygon does not have a joint with a turning angle of 180o.  
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Figure 1b shows the construction in the plane. The blend between 
the top (A) and bottom (B) arcs does not occur by simply 
interpolating circle point positions, as is the case in Figure 1a. 
Instead, as the point P(u) travels across an arc from Pi to Pi+1, the 
arc morphs from A (u=0) to B (u=1). Any intermediate Arc(u) is 
defined by the two points Pi and Pi+1 and by its tangent t(u) at Pi.  
The direction angle τ(u) of this tangent is used to parameterize the 
morphing process of these arcs. It performs a trigonometric blend 
between the two extreme directions τi and τi+1 given by the 
tangent vectors ti and ti+1 of the base arcs A and B: 

     τ(u) = τi cos2(u π/2) + τi+1 sin
2(u π/2).                               (1) 

To handle robustly the case of arcs of arbitrary large radii, 
including straight-line connections between Pi and Pi+1, the point 
P(u) traveling on Arc(u) is parametrically described as a distance 
f(u) = |Pi, Pi+1| sin(u τ(u)) / sin(τ(u))  from endpoint Pi and a 
deviation angle φ(u) = (1-u) τ(u)  from line segment (Pi, Pi+1). This 
blending scheme guarantees that the parameter lines of constant u 
do not cross each other (Fig.1b), thereby preventing the blend 
curve from creating cusps or loops. 

If the four points involved in the construction of one blend 
segment do not lie in a plane, then the blend operation also causes 
the plane p(u) that contains Arc(u) to swivel around line segment 
(Pi, Pi+1). This happens automatically as the tangent vector t(u) 
rotates according to Eqn(1) in the plane defined by its two 
extreme positions ti and ti+1. Thus the blend curve segment will 
automatically lie on the sphere that passes through the four 
defining points. If all points of the control polygon lie on the same 
sphere, then the whole composite curve will lie on this sphere 
(Fig.2a). If the control points lie in arbitrary positions in 3D space, 
space, a nice, fair 3D curve results (Fig.2b).   

  
Figure 2.  Angle-interpolated circle splines (a) on a sphere,  
and  (b) in unconstrained 3D space (cross-eye stereo view). 

The resulting curves have local support and exhibit linear and 
circular precision by construction, and in general show MVC-like 
behavior. They are G2-continuous, and with a simple re-
parametrization based on arc-length, can also be made C2-
continuous. They preserve all symmetries exhibited by the 
original set of points, including “ front-to-back”  symmetry, i.e., the 
curve is not dependent on the direction of evaluation, unlike some 
quaternion splines.  
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