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Charles Perryôs monumental sculpture Solstice is analyzed and its generative geometrical logic based on a twisted toroidal 

sweep is captured in a computer program with interactively adjustable control parameters. This program is then used to 

generate other models of ribbed sculptures based on one or more interlinked torus knots. From this family of sculptures 

related to Perryôs Solstice we derive a broader paradigm for the generation of ñribbedò sculptures. It is based on one or two 

simple, mathematically defined ñguide rails,ò which are then populated with a dense set of thinner ñribsò to create light-

weight, transparent surfaces. With this broadened concept and a few suitably modified and parameterized programs we can 

emulate many other ribbed sculptures by Charles Perry and also create new sculpture designs and mathematical 

visualization models that profit from the semi-transparent look of these structures. 
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Figure 1. Five different views of Charles Perryôs Solstice in downtown Tampa, Florida (1985)  

[Photos copyright C. H. Séquin, 2007] 
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1. Introduction  

The 28-foot tall Solstice sculpture by Charles Perry (Figure 1), located in downtown Tampa, Florida is a prime 

example of the ñribbed sculpturesò to be discussed here. Ribbed sculptures offer a translucent, ñairyò presence in 

indoor as well as outdoor settings. Because of the substantial open space between the ribs, they do not cast harsh 

shadows or block views completely. Moreover, they are reasonably cost effective to be constructed at a large 

scale ï much less expensive than large free-form bronze sculptures, investment cast from many individual molds.  

These ribbed sculptures may trace their roots to the pioneering work of some constructivist artists as well as 

to the mathematical string models of conic and bilinear surfaces that one can find in science museums. The ribbed 

approach to defining a shape in space is particularly valid and economical at an architectural scale, as it makes use 

of Naum Gaboôs vision that space could be represented without having to employ a lot of mass. Gabo 

demonstrated this principle with more than two dozen versions of his Linear Construction made of nylon 

monofilament strung over transparent plastic frames. Serious artists often implement many versions of some 

worthwhile concept, trying to find a perfect combination of the many variables that define a particular instance. 

With the availability of interactive computer graphics tools, we now have the possibility to do much of this 

exploration and fine-tuning with virtual models, if we succeed in capturing our conceptual idea in the form of a 

computer program with an appropriate set of adjustable control parameters. Such virtual evaluation may be just a 

convenience when designing table-top sculptures; it becomes a crucial tool in the design of architectural sculpture.  

In this paper we discuss our efforts to capture a variety of ribbed sculptures by Charles Perry [4] in this 

manner. By extracting an implicit framework that underlies most of his ribbed sculptures, we define a broad 

approach that enables a wide variety of new ribbed sculptures and mathematical visualization models. We will 

start our discussion with an analysis of Solstice, because it has a particularly compelling underlying representation 

that lends itself to an elegant parametrization. 

As one walks around Perryôs Solstice sculpture, one is amazed at the richness of diverse views that present 

themselves from different viewing directions (Figure 1). From some angles the sculpture looks like intertwined 

organic forms; other views inspire an association of a roller coaster on steroids. But from a few privileged vantage 

points, a wonderful symmetry is revealed, and the pattern becomes surprisingly regular. At this point an 

inquisitive mind just wants to know what is going on and whether there might be a simple generative principle 

that lies at the root of this elegant masterpiece. In the case of Solstice, this analytic task was made easy, since 

Charles Perry was quite forthcoming with explanations of how he planned this sculpture and how he went about 

constructing it. In a personal communication he wrote: 

ñThe perimeter of Solstice is created by placing an equilateral triangle on a ring, so the centroid of 

the triangle connects with the ring. The triangle is rotated by two-thirds twists as it rotates around the 

ring. The figure produced by the three vertices of the triangle is a two-thirds twist torus Möbius. 

Intuition told me of the right diameter of the tube for the edge of the torus. I made a 12 inch model 

and worked from that somehow. I found that there are four equal quarters going around the torus. I then 

made a full-scale mockup of 1/4th of the edge. It looked like a section of a roller coaster in my clean 

new studio. It was in three dimensions. I took this template to a tube-bender; they had a skilled old man 

who could bend the tube in compound curves to match the template.  This was done in sections. In the 

studio I matched and welded these pieces. I had to cut off the excess ends. Now I had four equal tubes, 

probably about fifteen feet long. I then determined where the cross tubes would be closest to each other. 

This part was done by referencing the 1-foot model. 

Now, these holes for the cross tubes had to be a variable distance from each other and had to rotate 

around the edge tube as they progressed. Masking tape, Magic Marker and a center punch for each hole 

was the method.  Certainly I had to measure the total length of each quarter edge and divide this into the 

number of holes. All the cross tubes are equal. There are more than 600 cross tubes, and thus more than 

1200 roto-broached holes, each at a different angle. The four equal edge pieces and the 600 tubes were 

shipped separately to Tampa. -- I don't even know how I registered the four edge pieces when it was 

assembled in Tampa.ò 



 

Perryôs description and images of Solstice from different angles (Figure 1) allow an easy construction of a 

generating paradigm that can be captured in a computer program. Some of the crucial parameters in this 

generative program can then be made into variables, and by setting these variables to new (somewhat constrained) 

values, novel sculpture designs of ñthe same kindò can be generated. Before any of these modified designs are 

sent to the machine shop, one has to make an artistic judgment, whether the new forms have enough aesthetic 

merit to warrant an actual construction. If the answer is affirmative, then many more details will have to be 

worked out about how exactly to bend the many ribs into their specified shape, and how to connect them to the 

supporting tubular rails. Considerable engineering effort goes into working out those details. 

In this paper we are mainly concerned with the primary design aspect of variations of Solstice and of other 

ribbed sculptures by Charles Perry [4]. We have generalized this paradigm and captured it in several small 

computer programs that allow us to design a wide variety of such sculptures. Our new designs are presented in 

virtual form by means of computer graphics renderings. Most of the construction details and engineering issues 

are ignored at this stage. As the reader will see, even the geometrical design phase offers several intriguing 

puzzles and programming challenges. 

 

2. Geometrical Emulation of Solstice 

Based on the information obtained directly from Charles Perry, we know that the thicker tubular ñguide railò lies 

on the surface of a torus. In the case of Solstice, it forms a (3,2) torus knot, i.e., the guide rail runs three times 

around the big loop of the torus and passes twice through its tunnel before it closes again onto itself (Figure 2a). 

The thinner ñribsò attached to this guide rail are not simply the edges of a rotating equilateral triangle; straight 

edges would look rather stiff. The ribs are planar curves, three of which form an approximate ñhyperbolicò 

triangle composed of three inward-bending concave circular arcs. Furthermore, the ribs do not form closed, three-

sided, planar loops, but rather form a spiral staircase. The two ribs that would end in the same triangle vertex have 

been offset along the guide rail by half the distance between subsequent triangles, so that the ribs seem to land on 

the guide rails individually, with apparently uniform spacing (Figure 2b). Of course, on the inside of the torus the 

spacing is much denser than on the outside, since the truly relevant spacing parameter is the ñequatorialò angle 

around the torus. Strictly speaking, this forces the geometry of the many ribs to vary ever so slightly. However, 

the geometrical deviations are small, and they are within the tolerances to which the actual tubular ribs can be 

bent. Thanks to their curvature, the ribs can thus readily be fit into the toroidal guide rail at assembly time. 

To capture this constructive paradigm, we wrote a program module to generate a guide rail in the form of a 

sweep surface along an arbitrary (p,q) torus knot. The parametric representation of this sweep line, lying on a 

torus surface with big radius R and small radius r, is: 

 

 

     
where 0 < ʌ < 2p .́ 

 
This loose frame is then populated with a parameterized set of ribs, which themselves are circular arcs. More 

explicitly, the guide rail is specified by the integer constants p and q of the torus knot, by the radii, R and r, of the 

major and minor circles that define the torus on which this knot is embedded, and by the diameter of the guide rail 

tube itself.  



Next we specify the total number of ribs and the offset of the two rib endpoints from an exact cross-sectional 

plane (cutting a minor circle from the tube of the torus). This offset is measured as an angle along the circular 

sweep path that defines the major loop of the torus. An offset of zero keeps the ribs entirely in the cross-sectional 

plane, and an offset of 1 degree would move one of the endpoints of the rib forward by that amount in the major 

sweep direction. Actually, in our programs this offset is typically defined as a fraction of the total sweep angle of 

the torus knot guide rail. This makes it easier to interleave properly the rib endings on the guide rail. For a total 

number of 500 ribs an offset of 0.1% would evenly stagger all rib endings with a minimal amount of helical twist. 

The individual ribs themselves are circular arcs between their two end points on the guide rail. The amount 

of arching of each rib can be specified as the turning angle that this circular arch segment is bending through. 

Alternatively, the amount of bulging can be characterized by the maximal distance of the arc from the chord 

connecting the two rib endpoints. Different versions of our programs have used different approaches. In either 

case, the amount of bulging is normalized so that a unit of ñ1ò leads to ribs that would hug the torus surface (at 

least for small values of the offset parameter); this normalization varies with the variable p. A ñbulgeò of zero 

always results in a straight rib, and a negative bulge value indicates that the arc is curving in the inward direction 

(Figure 2c). 

  

                  

Figure 2. Graphical illustration of the key design parameters in the Solstice program: (a) the torus knot formed 

by the guide rail, (b) a rib-end offset resulting in ñevenlyò spaced ribs, (c) a negative bulge of the individual ribs. 

 

By tuning all the above mentioned parameters carefully, a rather faithful emulation of Perryôs Solstice sculpture is 

obtained. In the emulation shown in Figure 3 the program parameters listed in Table 1 were used. (As far as the 

number of ribs is concerned, we guess that Perryôs memory was off by a factor of 2.) 

 

Table 1.  Program parameters used in the emulation of Perryôs Solstice sculpture 

 

p 3 

q 2 

R 6.5 

r 6.0 

Guide-rail diameter 0.15 

Rib diameter 0.1 

Number of ribs 300 

Rib offset 1.8° 

Rib bulge -0.5 
 



 
 

Figure 3.  Emulation of Solstice:  (a) Perryôs sculpture in Tampa [Photo copyright C. H. Séquin, 2007],  

(b) computer  emulation shown from the same angle.   

 

3. Solstice Variations 

With the basic generating paradigm captured in our program, it is now easy to make variations of this sculpture. 

In a first example we reduce the amount of twisting in the overall toroid to obtain a shape more closely related to 

Helaman Fergusonôs bronze sculpture called Umbilic Torus NC [1], in which the total twist of the triangular cross 

section is only 120° (Figure 4a). This can be readily achieved by changing the parameter q to 1, yielding a guide 

rail in the form a (3,1) torus knot ï which is actually not knotted at all. 

 

     

Figure 4.  Solstice variations: (a) emulating the (3,1) torus knot of Helaman Ferguson;  

 (b) (4,3) torus knot variation; (c) (2,3) torus knot  variation.     

 

Alternatively we may choose to increase the twist in the toroidal sweep structure. Avoiding the case (3,3), where 

the guide rail would break up into 3 separate loops, the next connected candidate is the (3,4) torus knot. This 

however looks too twisty for our taste; instead we explore the case of the (4,3) torus knot. This results in a 

quadrilateral cross section that makes a 3/4 turn while traveling once around the toroidal sweep (Figure 4b). This 

configuration certainly has the potential for another large-scale ribbed sculpture. 



Another experiment is to simply switch the values of p and q of the original Solstice, thereby generating a 

(2,3) torus knot, while leaving the rib specifications unchanged. Even though topologically the structure of the 

knot has not been changed by this switch, the result now looks quite different (Figure 4c). There are two main 

reasons: First, the geometry of the guide rail now has a totally different structure, even though it describes the 

same mathematical knot; second, the behavior of the ribs has changed dramatically. There are now only two 

passes of the guide rail through every minor circle of the torus, and this is not sufficient to form a rib triangle. 

Also, retaining the parameterized rib endpoint values of the original Solstice leads to an effective angular offset of 

about 120°. This happens because the rib endpoints are specified by a parameter that relates to the whole length of 

the guide rail. While in the original Solstice one third of the length of the rail completed one sweep around the 

torus, in this new variant with only two major loops in the guide rail, it brings the second rib endpoint only about 

2/3 around the torus. Thus the new configuration of the ribs yields the looks of a puffed up cushion and adds more 

ñvolumeò to the appearance of the sculpture. 

 

4. Other Ribbed Sculptures by Charles Perry 

Charles O. Perry has created several other Ribbed Sculptures [4] that can be modeled with this paradigm. His 

sculptures inspired us to extend and generalize the generating paradigm of populating one or more guide rails with 

a set of closely spaced ribs. First we made a few modified versions of the Solstice emulation program to capture 

the geometries of some other Perry sculptures. Keeping the programs separate, kept them light-weight and easy-

to-modify, and is preferably to a monolithic heavy-weight program in this early phase of exploration. 

 

Ribbed Mace (1998), located in Falls Church, VA (Figure 5a), is probably the simplest of Perryôs ribbed 

structures, yet it is definitely eye-catching. It uses two separate semi-circular guide rails in planes that stand at 

right angles to each other. Its 49 straight ribs form an elegant ruled surface that connects the two guide rails. In 

our first emulation we have slightly increased the number of ribs and placed them evenly spaced onto the guide 

rails (Figure 5b). Figure 5c shows a variation with curved ribs, which seems to give the sculpture a more light-

weight, wing-like look. 

 

          

Figure 5. Ribbed Mace: (a) Perryôs sculpture [Photo copyright C. Perry, 1998],  

 (b) emulation (differing rib density),  (c) variation with curved ribs. 

 



Harmony (1990), located in Hartford, CT (Figure 6a), also uses two separate semi-circular guide rails. However, 

it comprises four distinct ribbed surfaces, each composed of 18 ribs of varying curvature. Figure 6b shows our 

emulation of this sculpture, but with 21 ribs in each of the four sets. 
  

                 
 

Figure 6. Harmony: (a) Perryôs sculpture [Photo © Perry, 1990],  (b) an emulation with higher rib density. 

 

Early Mace (1971), located in Atlanta, GA (Figure 7a), uses ribs in the shape of circular arcs connecting two 

separate guide rails. In this case the rails are two pairs of (almost) great semicircles on an invisible sphere, held 

together by two small semicircles at both ends; this gives the mace shape some thickness. The ribs form inwards-

bending quarter arcs. Figure 7b shows an emulation of this sculpture, while Figures 7c and 7d demonstrate what 

happens when the ribs are first straightened and finally bent outward to follow the surface of the sphere, 

respectively. 

 
 

Figure 7. Early Mace: (a) Perry sculpture  [Photo © Perry, 1971],  (b) emulation,  (c)(d) rib variations.    
















