Looking for a Hamiltonian 2-manifold on the 120-Cell

What can we hope to find ???

Adrian, 
Looking at the paper models, I think we are safe to demand: 
1.) Every edge carries exactly 2 pentagons of one color and 1 penta of the other. 
2.) Every vertex accommodates exactly 3 pentas of both colors, both sets are in a "Z"-configuration; no "Y" configurations or triangles of faces are allowed. 
3.) Probably we can expect that every dodecahedral cell carries 6 pentas of both colors, in the form of two intertwined "S" path strips. 
(This may give us the option of building one such prototype cell, and then assembling the 
whole thing by rotating all cells into compatible orientations.) 

BUT: What will not work, is to expect "linear" (1-manifold) paths formed from continuous penta-strips with no branchings! In such a strip every new penta adds an inner, pass-through edge, and three outer, boundary edges. This 1:3 ratio is no good, if every edge in the 120-Cell is supposed two accommodate one pass-through edge and one boundary edge! 


Thus we need branches -- lots of them! 
To get the right ratio, every pentagon has to serve as a branch point. For the 360 pentas of one color, 240 of them have to be 3-way branch points, adding 3/2 inner edges and 2 outer edges, 120 of them have to be 4-way branch points, adding 4/2 inner edges and 1 outer edge. this gives the ratio 3/2 + 3/2 + 4/2 inner edges versus 2 + 2 + 1 outer edges, 
and that is the 1:1 edge ratio that we desire! (Or arguing in a slightly different way: 
240 of them have to be 3-way branch points, adding 3 inner edge uses and 2 outer edges, 
120 of them have to be 4-way branch points, adding 4 inner edges uses and 1 outer edge. 
This gives the ratio 3 + 3 + 4 inner edge uses versus 2 + 2 + 1 outer edge uses, 
and that is the 2:1 ratio in terms of edge uses that we desire!) 

Now if we assemble pentagons while observing all of the above constraints, we notice that at every vertex, two inner edges of one color and two inner edges of the other color come together. Thus, if we color those edges with the color of the pentas that form the inner edges, we see two paths of different colors pass through every vertex. These path segments will then merge into longer path sections and eventually will have to close into one or more loops. 


This the raises the question, could those two paths both be Hamiltonian cycles? -- and could they both be congruent to one another? Thus we may be facing again the problem of looking for a pair of Hamiltonian cycles on the edges of the 120-Cell, but now with the added constraints of accommodating a suitable coloring of the pentagon faces: Whenever such a path uses two consecutive edges of a pentagon then that penta will take on the color of that path segment.
Results reported by Adrian Marple, Nov. 12, 2008:

Found a “Hamiltonian carpet” in 4 seconds. Uses half of all pentagons (3 per vertex, 1 or 2 per edge). Complement (obviously) also meets those constraints, but may have unrelated shape. If we color the edges, we find that the edges of the first color form six loops of length 100. Is this also true for the remaining edges of the second color ??

Do those edges exhibit the symmetries that map the 6 tetrahedron edges into one another?

e.g.: 

   Original (prototype) in RED; 
   GREEN:    rotate(1 1 1)(120) 
   BLUE:     rotate(1 1 1)(240) 
   CYAN:                         rotate(0 0 1)(180) 
   MAGENTA:  rotate(1 1 1)(120)  rotate(1 0 0)(180) 
   YELLOW:   rotate(1 1 1)(240)  rotate(0 1 0)(180)

Does the whole carpet exhibit this symmetry? Does the complement carpet also show it?

In addition, can we also enforce a C2-symmetry around the middle of  the “virtual tetrahedral edges” corresponding to the above symmetry transformations, i.e., can we give the carpet the full 12-fold symmetry of an oriented tetrahedron?
What other symmetries could be exploited?

When trying to pair point-symmetric faces in 4-space (opposite in 3-space and on complementary face-shells), then the program did not find a solution.

I think that's about right.  I do have to add some clarifications about

the times though.  The 4 second solution that I mentioned was actually for an I/O self-symmetry "carpeting" (since it assigns faces faster), also the I/O complementary congruence failure only took 2 hours while the display was running and actually only takes a little under 7 minutes to run to completion.  I haven't yet done any analysis on the complementary path, but it shouldn't be very hard to incorporate.  As for the other questions, that's what I'll be tackling in the coming weeks.

Adrian

On a more positive note, I was able to find out a little more about the

pentagonal carpet of the 120-cell.

First, it turns out that there are exactly 120 allowable carpetings given no initial colorings.  Of course the number of unique carpetings is far smaller and yet to be determined.

Second, of those exactly half are of the type we discussed before (6 edge paths of length 100) and half the carpetings have 8 edge paths of length 30 and 6 edge paths of length 60. This readily shows that it is not possible to find a Hamiltonian path s was earlier tried.

Third, the total of number of carpetings remains the same when I equire he carpet to have I/O self-symmetry implying that all carpetings must have this symmetry.

CHS:

Interesting !! 
I wonder whether one type of carpeting combines always with the other type ...

