Chapter 1

An Introduction to
Evolutionary Design by Computers

By Peter Bentley

1.1 Introduction

Computers can only do what we tell them to do. They are our blind, unconscious digital slaves,
bound to us by the unbreakable chains of our programs. These programs instruct computers
what to do, when to do it, and how it should be done.

But what happens when we loosen these chains? What happens when we tell a computer
to use a process that we do not fully understand, in order to achieve something we do not fully
understand? What happens when we tell a computer to evolve designs?

As this book will show, what happens is that the computer gains almost human-like qualities
of autonomy, innovative flair, and even creativity. These ‘skills’which evolution so mysteriously
endows upon our computers open up a whole new way of using computers in design. Today our
former ‘glorified typewriters’ or ‘overcomplicated drawing boards’ can do everything from gen-
erating new ideas and concepts in design, to improving the performance of designs well beyond
the abilities of even the most skilled human designer. Evolving designs on computers now
enables us to employ computers in every stage of the design process. This is no longer computer
aided design — this is becoming computer design.

The pages of this book testify to the ability of today’s evolutionary computer techniques
in design. Flick through them and you will see designs of satellite booms, load cells, flywheels,
computer networks, artistic images, sculptures, virtual creatures, house and hospital architec-
tural plans, bridges, cranes, analogue circuits and even coffee tables. Out of all of the designs
in the world, the collection you see in this book have a unique history: they were all evolved
by computer, not designed by humans.

1.1.1 Evolutionary Tools

This may sound a little alarming to the designers and artists amongst us, but it should not
be. In fact, these are the people who should feel most excited and optimistic by these
advances, for it is the designer and artist who are the main beneficiaries of this field of
research. Evolutionary design systems are advanced software tools which are intended to be
used by people, not to replace people. They are the latest in a number of computer soft-
ware advances created to improve the productivity, quality, speed and reduce the expense
of designing.

EVOLUTIONARY DESIGN BY COMPUTERS Copyright © 1999 Morgan Kaufmann
ISBN 1-55860-605-X All rights of reproduction in any form reserved

2 Evolutionary Design by Computers

Today, designers recognise the usefulness of computers for data management and draw-
ing — most art and design departments use graphics software or computer aided design
(CAD) packages to draw, manipulate and store their designs. These software tools are
becoming more and more advanced, with many having the ability to render designs with pho-
torealism, produce animations, or even generate stereoscopic virtual reality worlds. Analysis
tools that can simulate and measure the performance of designs are also becoming more
common, with much of engineering design relying on software analysis to test designs before
prototypes are built.

Evolutionary design builds on these software tools by actually taking over part of the
design process. It allows designers to improve the performance of their designs automatically,
judged by analysis software. It allows a designer to explore numerous creative solutions to
problems (overcoming ‘design fixation’ or limitations of conventional wisdom) by generating
these alternative solutions for the designer. It can use knowledge from designers to generate
new solutions, based on many separate ideas. It can even suggest entirely new design concepts
or new ways of using existing technology. Evolutionary design can and does achieve all of this
with the blinding speed and low cost of the computer.

However, although the field of evolutionary design is showing some impressive results, the
computers are not fully autonomous. People are required to work out what function the design
should perform, and how a computer should be applied to the problem. As this book describes,
there are many complex issues involved in getting a computer to evolve anything useful at all.
And although the ‘design skills’ of the computer are surprisingly good, they are still no match
for the human brain.

1.1.2 The Unconscious Power of Evolution

In reality, evolutionary design by computers does not involve conscious design at all. How
could it, for today’s computers are incapable of independent conscious thought, and evolu-
tion has no consciousness of its own. Evolutionary design is simply a process capable of
generating designs, it can never truly be called a designer. This can be difficult to understand
— surely an intricate design must be designed? The answer is no, an intricate design can arise
through slow, gradual, mindless improvement. Evolutionary biology has taught us this harsh
lesson — and there are no designs more complex than those evolved in nature.

Natural evolution is, of course, the original and best evolutionary design system. Designs
have been evolving in nature for hundreds of millions of years. Biological designs that far
exceed any human designs in terms of complexity, performance, and efficiency are prolific
throughout the living world. From the near-perfection of the streamlined shape of a shark, to
the extraordinary molecular structure of a virus, every living thing is a marvel of evolved
design. Moreover, as biologists uncover more information about the workings of the
creatures around us, it is becoming clear that many human designs have existed in nature
long before they were thought of by any human, for example: pumps, valves, heat-exchange
systems, optical lenses, sonar. Indeed, many of our recent designs borrow features directly
from nature, such as the cross-sectional shape of aircraft wings from birds, and velcro from
certain types of ‘sticky’ seeds. As Ray Paton observed: ‘A very good example of how bio-
logy can inspire engineering solutions is the work of Professor O. H. Schmitt who introduced
the term “biomimetic” (emulating biology) into the US literature over a decade ago. It is

An Introduction to Evolutionary Design by Computers 3

fascinating to see how, following his Ph.D. thesis on the simulation of nerve action, four
well-known electronic devices emerged: Schmitt trigger, emitter-follower, differential
amplifier and heat pipe.’ (Paton, 1994, p. 51).

1.1.3 Evolutionary Design by Computers

So it is clear that evolutionary design in nature is capable of generating astonishingly in-
novative designs. This book demonstrates how evolutionary design by computers is also cap-
able of such innovation. To achieve this, the highest achievers in evolutionary design have
come together for the first time to contribute chapters and provide a showcase of the best and
most original work in this exciting new field. The book promotes the use of the word
‘Design’ in its broadest sense, allowing all aspects of evolutionary design to be explored,
including: evolutionary optimisation, evolutionary art, evolutionary artificial life and cre-
ative evolutionary design. Of course the number of pages available for such a volume is finite,
and so not every researcher in this field can be a contributor of a chapter. As the editor of
this book | have tried my hardest to ensure a coherent and definitive selection of significant
developments in evolutionary design is included, but there will always be omissions, and for
that | apologise.

The contributors all have considerable technical expertise in this area, but beginners to
this field should take heart, for the concept of evolution is a simple one, and the simpler
forms of evolutionary design do not require years of study to achieve. Indeed, to help
budding evolutionary designers get started, the CD-ROM included with this book contains
code from many of the contributors of the chapters, including some demonstration evolu-
tionary design systems. Perhaps one of the primary barriers to understanding is the
terminology, which often seems to be an impenetrable tangle of words suanteiasis
allele, epistasisandembryogenyNever fear: even the most experienced of us sometimes for-
get what the latest term to be stolen from biology means, so do not be afraid to consult the
glossary included in the book!

And finally: before we open up evolutionary design by computers and explore its gory
innards, a warning. This has been an area of computer science which has fascinated and
thrilled me for some years. Like any researcher with a ‘pet subject’, | cannot pretend to hold
unbiased views in this area. But | still find the excitement of my computer evolving an innov-
ative design is undiminished, despite the hundreds | have already been privileged enough to
see evolving before my eyes. | hope | can transfer some of my enthusiasm to you, my percep-
tive reader, so sit back and enjoy the ride!

1.1.4 What's to Come

This chapter gives an introduction to evolutionary design by computers. It is structured into
three major sections: first, a general summary of evolutionary computation and the dominant
evolutionary algorithms is given. Second, definitions and reviews of the significant aspects of
evolutionary design are provided, to place the contents and structure of the rest of the book into
context. Finally, some important technical issues in evolutionary design are explored.

However, before we explore these more detailed aspects of evolutionary design by
computers, there is a question which must be tackled:

4 Evolutionary Design by Computers

1.2 Why Evolve Designs?

This is an important and fundamental question, asked by many people. There are a number of
reasons why we choose to use evolution, most which boil down to: ‘because it seems to work
rather well’. In more detail, there are perhaps four main reasons why the choice of evolution-
ary algorithms (EAS) is appropriate for design problems:

REASON 1: Evolution is a good, general-purpose problem solver.

Evolutionary algorithms are just one of many types of method known in computer science. It
is currently not possible to define exactly which of these methods is best for which problem
or even class of problems (Fogel, 1997), except in a very broad sense. However, it is possible
to identify methods that consistently produce improved results (compared to results produced
by other techniques) for a wide range of different problems. Indeed, as will be explained later,
the evolutionary algorithms fall into this category, having been demonstrated successfully with
hundreds of different types of problem. Table 1.1 lists some of these types of application. (It
should be noted that there are literally hundreds of researchers working in each of the areas
listed, all developing their own evolutionary systems.)

Researchers and software developers apply computers to a wide variety of design
problems. Rather than spending time, effort and money developing new specialised compu-
tational techniques for every new problem, most developers prefer to use an algorithm proven
through extensive trials to be reusable and robust — such as an evolutionary algorithm.

REASON 2: Uniquely, evolutionary algorithms have been used successfully in every type
of evolutionary design.

Although there are contenders to the throne of computational design, evolutionary algorithms
are, without doubt, the leading techniques at present. Hill-climbing, simulated annealing, Tabu
search and other techniques have all been applied successfully in certain areas, but only evolu-
tionary algorithms such as the genetic algorithm have been used successfully in all types of
automated design system. Indeed, the popularity of genetic algorithms in engineering design

Table 1.1 Examples of types of applications tackled
successfully by evolutionary computation.

Control systems (Husbands et al., 1996).

Data mining (Radcliffe and Surrey, 1994b).
Fault-tolerant systems (Thompson, 1995).

Game playing (Axelrod, 1987).

Machine learning (Goldberg, 1989).

Ordering problems (Schaffer and Eshelman, 1995).
Scheduling (Yamada and Nakano, 1995).
Set covering and partitioning (Levine, 1994).

Signal timing (Foy et al., 1992).

Strategy acquisition (Greffenstette, 1991).

An Introduction to Evolutionary Design by Computers 5

has led to workshops, conferences, and books devoted entirely to this subject (Fleming et al.,
1995; Gen and Cheng, 1997; Bentley, 1998b).

REASON 3: Evolution and the human design process share many similar characteristics.

Some researchers claim that natural evolution and the human design process are directly com-
parable (Fogel et al., 1966; Goldberg 1991; French 1994). It is clear that our designs have
evolved, as flint hand-axes became arrowheads, as the first primitive computers have
become the powerful supercomputers of today. The ‘arms race’ which is known to dramatically
increase the complexity of our designs is thought by biologists to be responsible for the devel-
opment of the complexity in living creatures (Dawkins, 1982). Comparative studies of our own
designs also reveals the development of ‘species’ of designs which fit within clearly defined
‘niches’ (French and Ramirez, 1996).

Indeed, Goldberg actually attempts to formally define human design in terms of evolution
by the genetic algorithm (Goldberg, 1991). He compares the recombination of genetic mater-
ial from parent solutions when forming a new child solution, with a human designer combin-
ing ideas from two solutions to form a new solution. (These ideas and others are explored
further in the first section of the book.)

REASON 4: The most successful and remarkable designs known to mankind were
created by natural evolution, the inspiration for evolutionary algorithms.

Natural evolution has been creating designs successfully for an unimaginable number of years.
Even a cursory study of the myriad of extraordinary designs in nature should be sufficient to
inspire awe in the power of evolution. Indeed, conceivably the most complex and remarkable
miracle of design ever created — the human brain — was generated by evolution in nature. Not
only is it an astonishing design in its finished form, but equally astonishingly, its huge complex-
ity grew from a single cell using instructions contained in one molecule of DNA. This is perhaps
the most conclusive demonstration of all that the evolution-based techniques of evolutionary
computation are highly suitable for design problems.

1.3 Evolutionary Computation

Evolutionary computation is all abosearch In computer science, search algorithms define a
computational problem in terms of search, wherestrch-spacés a space filled with all
possible solutions to the problem, and a point in that space defines a solution (Kanal and
Cumar, 1988). The problem of improving parameter values for an application is then trans-
formed into the problem of searching for better solutions elsewhere in the solution space, see
fig 1.1. There are many types of search algorithm in existence, of which evolutionary search is
a recent and rapidly growing subset.

Evolutionary search algorithms are inspired by and based upon evolution in nature. These
algorithms typically use an analogy with natural evolution to perform searavdilying
solutions to problemSHence, instead of working with one solution at a time in the search-
space, these algorithms consider a large collectigropulationof solutions at once.

Although evolutionary algorithms (EAs) do make computers evolve solutions, this evolu-
tion is not explicitly specified in an EA, it is @mergent propertgf the algorithm. In fact, the

6 Evolutionary Design by Computers

M m
Mo M m
o m mm |:|:|ﬂ|:|:|
.4
o m m m m
m[m mm o0
w
]
m m =] o
oo ==Ral==] M pm

Figure 1.1 Searching for a solution in an example search space of house designs.

computers are not instructed to evolve anything, and it is currently not possible for us to
explicitly ‘program-in’ evolution — for we do not fully understand how evolution works.
Instead, the computers are instructed to maintain populations of solutions, allow better solutions
to ‘have children’, and allow worse solutions to ‘die’. The ‘child solutions’ inherit their
parents’ characteristics with some small random variation, and then the better of these
solutions are allowed to ‘have children’ themselves, while the worse ones ‘die’, and so on.
This simple procedure causes evolution to occur, and after a number of generations the com-
puter will have evolved solutions which are substantially better compared to their long-dead
ancestors at the start, see fig. 1.2.

By considering the search space, it is possible to get an idea of how evolution finds good
solutions. Figure 1.3 shows the search space for the example shown in fig. 1.2. It should be
clear that evolution searches the space in parallel (in the example, it considers four house

GENERATION 1 GENERATION 2 GENERATION 3 GENERATION 4

~ - ~

e N - N\
S LN N e N =
R —~ (N N |mm| N |
' i 1\ ! | s Mo oo m] m
\ E===] = .- /4N !
| AN ====1 mf|m| ! - M 1 rIII|'||I| /
) ' ’ ' . , mnm
N ’

. \ !
T mpm

[/~ > ["mm | — (Eam) " —>

‘\lo [| AR) e N MM

== o T 1 |= LT
! o m

Figure 1.2 Four generations of evolving house designs using a population
size of four. Parents of the next generation are circled.

' It must be stressed that evolution is not simulated in these algorithaxstually happensWhile EAs
may simulate natural evolution, to call this process simply ‘simulated evolution’is incorrect — an EA no more
simulates evolution than a pocket calculator simulates addition, or a typewriter simulates text. (Indeed, it
could be argued that compared to our pocket calculators, we are the ones who simulate addition, for we often
rely on memory to provide us with answers, but the calculator must always calculate the sum.) Evolutionary
search generates evolution in a different medium compared to evolution in nature, but both are equally valid

forms of evolution.

An Introduction to Evolutionary Design by Computers 7

14
\
[]
.
fe)
[J

o)

e
(o
2

Figure 1.3 The location of the evolving houses in the space of house designs, each generation.
Better solutions are found in the centre of this example space.

designs at a time). It should also be clear that evolution quickly ‘homes in’ on the best area
of the search space, resulting in some good designs after only four generations.

All EAs require guidance to direct evolution towards better areas of the search space. They
receive this guidance lgvaluatingevery solution in the population, to determinefitisess
The fitness of a solution is a score based on how well the solution fulfils the problem object-
ive, calculated by éitness functionTypically, fitness values are positive real numbers, where a
fitness of zero is a perfect score. EAs are then used to minimise the fithess scores of solutions,
by allowing the fitter solutions to have more children than less fit solutions. In the ‘house’
example, the problem objective might be to find a house design which has four evenly placed
windows, a door in the centre, a chimney, and so on. The fitness function would take a solution
as input and return a fitness value based on how well the solution satisfies these objectives, e.g.
when evaluating the number of windows, the fithess score could simply be incremented by:

| 4 —no. of windows in solutioh

Fitness values are often plotted in search spaces, giving mountéitness landscapes
where a high peak corresponds to solutions in that part of the search space which have optimal
fitnesses (i.e., low fitness scores). If the problem has many separate optima (i.e., if the fitness
function ismultimoda), finding a globally optimal solution (the top of the highest mountain)
in the landscape can be difficult, even for an EA.

There are four main types of evolutionary algorithm in use today, three of which were
independently developed more than thirty years ago. These algorithms agendtie algo-
rithm (GA) created by John Holland (1973, 1975) and made famous by David Goldberg (1989),
evolutionary programming (EP) created by Lawrence Fogel (1963) and developed further by
his son David Fogel (1992), aeglolution strategies(ES) created by Ingo Rechenberg (1973)
and today strongly promoted by Thomas Béack (1996). The fourth major evolutionary algo-
rithm is a more recent and very popular development of John Koza (1992), kngenedis
programming (GP). The field of evolutionary computation has grown up around these tech-
niques, with its roots still firmly in evolutionary biology and computer science, see fig. 1.4.
Today researchers examine every conceivable aspect of EAs, often using knowledge of
evolution from evolutionary biology in their algorithms, and more recently, using EAs to help
biologists learn about evolution (Dawkins, 1986).

Evolution-based algorithms have been found to be some of the most flexible, efficient and
robust of all search algorithms known to computer science (Goldberg, 1989). Because of these

8 Evolutionary Design by Computers

Evolutionary Evolutionary Computer

Biology Computation Science

Figure 1.4 Evolutionary computation has its roots in computer science
and evolutionary biology.

properties, these methods are now becoming widely used to solve a broad range of different
problems (Holland, 1992).

The following sections briefly summarise the four dominant types of EA, and then a
general architecture for EAs is introduced, to show how these separate techniques follow a
common evolutionary paradigm.

1.3.1 Genetic Algorithms

A Summary

The genetic algorithm is perhaps the most well known of all evolution-based search algo-
rithms. GAs were developed by John Holland in an attempt to explain the adaptive processes
of natural systems and to design artificial systems based upon these natural systems (Holland,
1973, 1975). (Precursors of GAs were developed by Alex Fraser in 1957 and Hans Bremer-
mann in 1962) Whilst not being the first algorithm to use principles of natural selection and
genetics within the search process, the genetic algorithm is today the most widely used. More
experimental and theoretical analyses have been made on the workings of the GA than any
other EA. Moreover, the genetic algorithm (and enhanced versions of it) resembles natural
evolution more closely than most other methods.

Having become widely used for a broad range of optimisation problems in the last fifteen
years (Holland, 1992), the GA has been described as being a ‘search algorithm with some of
the innovative flair of human search’ (Goldberg, 1989). GAs are also very forgiving algorithms
— even if they are badly implemented, or poorly applied, they will often still produce accept-
able results (Davis, 1991). GAs are today renowned for their ability to tackle a huge variety of
optimisation problems and for their consistent ability to provide excellent results, i.e. they are
robust(Holland, 1975; Goldberg 1989; Davis 1991; Fogel 1994).

Genetic algorithms use two separate spaces: the search space soidtitme spaceThe
search space is now a spaceafiedsolutions to the problem, and the solution space is the
space of actual solutions. Coded solutiongiearotypesnust be mapped onto actual solutions,
or phenotypeshefore the quality diithnessof each solution can be evaluated, see fig. 1.5.

% This information was kindly provided by David Fogel, private communication.

An Introduction to Evolutionary Design by Computers 9

Search space Solution space

110 001]

100 011 phenotypes

genotypes —_

—>» Iy EE
010 000 . =
mapping

001 110 ﬁ
|

Figure 1.5 Mapping genotypes in the search space to phenotypes in the solution space.

GAs maintain a population afdividualswhere each individual consists of a genotype and
a corresponding phenotype. Phenotypes usually consist of collections of parameters (in our
‘house’ example, such parameters might define the number and position of windows, the posi-
tion of the roof, the width and height of the house, and so on). Genotypes consist of coded ver-
sions of these parameters. A coded parameter is normally referredgerssvaith the values
a gene can take being knownalkeles A collection of genes in one genotype is often held
internally as a string, and is known ashsiomosome

The simplest form of GA, theanonicalor simpleGA, is summarised in fig. 1.6. This algo-
rithm works as follows: The genotype of every individual in the population is initialised with
random alleles. The main loop of the algorithm then begins, with the corresponding phenotype
of every individual in the population being evaluated and given a fitness value according to
how well it fulfils the problem objective or fithess function. These scores are then used to deter-
mine how many copies of each individual are placed into a temporary area often termed the
‘mating pool’ (i.e. the higher the fitness, the more copies that are made of an individual).

INITIALISE POPULATION WITH RANDOM ALLELES

> EVALUATE ALL INDIVIDUALS TO DETERMINE THEIR FITNESSES

REPRODUCE (COPY) INDIVIDUALS ACCORDING TO THEIR FITNESSES
INTO ‘MATING POOL’ (HIGHER FITNESS = MORE COPIES OF AN INDIVIDUAL)

RANDOMLY TAKE TWO PARENTS FROM ‘MATING POOL" <€—
USE RANDOM CROSSOVER TO GENERATE TWO OFFSPRING
RANDOMLY MUTATE OFFSPRING
PLACE OFFSPRING INTO POPULATION
HAS POPULATION BEEN FILLED WITH NEW OFFSPRING?

] ves
IS THERE AN ACCEPTABLE SOLUTION YET?
o (OR HAVE x GENERATIONS BEEN PRODUCED?)
] ves
FINISHED

Figure. 1.6 The simple genetic algorithm.

10 Evolutionary Design by Computers

Two parents are then randomly picked from this area. Offspring are generated by the use
of the crossover operator, which randomly allocates genes from each parent’s genotype to each
offspring’s genotype. For example, given two parents: ‘ABCDEF’ and ‘abcdef’, and a random
crossover point of, say, 2, the two offspring generated by the simple GA would be: ‘ABcdef’
and ‘abCDEF’, see fig. 1.7. (Crossover is used about 70% of the time to generate offspring, for
the remaining 30% offspring are simply clones of their parents.) Mutation is then occasionally
applied (with a low probability) to offspring. When it is used to mutate an individual, typically
a single allele is changed randomly. For example, an individual ‘111111’ might be mutated into
‘110111, see fig. 1.8.

Using crossover and mutation, offspring are generated until they fill the population (all
parents are discarded). This entire process of evaluation and reproduction then continues until
either a satisfactory solution emerges or the GA has run for a specified number of generations
(Holland, 1975; Goldberg, 1989; Davis, 1991).

The randomness of the genetic operators can give the illusion that the GA and other EAs
are nothing more than parallel random search algorithms, but this is not so. Evolutionary
search has a random element to its exploration of the search space, but the search is unques
tionably directedby selection towards areas in the search space that contain better solutions.
Unless the genetic operators are very badly designed, an EA will always ‘home-in’ on these
areas, and because the search is performed in parallel, these algorithms are rarely fooled by
local optima, unlike many other search algorithms (Goldberg, 1989).

However, the simple GA is just that — very simple and a little naive. This GA is favoured
by those that try to theoretically analyse and predict the behaviour of genetic algorithms, but
in reality, typical GAs are usually more advanced. Common features include: more realistic

Parent 1 chromosome Parent 2 chromosome

OCO0OO0OO0OO0 OO0OOO0

—

OC0O0OO0OO0OO0 OOO0OO0O0OO0

Child 1 chromosome Child 2 chromosome

Figure 1.7 The behaviour of the crossover operator. The vertical line shows the
position of the random crossover point.

Child chromosome

ONCACRORONG®

ORCACRONORG®)

Mutated child chromosome

Figure 1.8 The behaviour of the mutation operator.

An Introduction to Evolutionary Design by Computers 11

natural selection, more genetic operators, ability to detect when evolution ceases, and over-
lapping populations or elitism (where some fit individuals can survive for more than one gen-
eration) (Davis, 1991). Because of this improved analogy with nature, thegeroduction

is normally used as it is in biology to refer to the entire process of generating new offspring,
encompassing the crossover and mutation operators. (This is in contrast to the somewhat
confusing use of the word ‘reproduction’ to mean an explicit copying stage within the
simple GA.)

GA Theory

Whilst there is no formal proof that the GA will always converge to an acceptable solution to
any given problem, a variety of theories exist (Holland, 1975; Kargupta, 1993; Harris, 1994),
the most accepted of these being Holland’s Schema Theorem (Holland, 1975) and the Build-
ing Block Hypothesis (Goldberg, 1989).

Briefly, a schemais a similarity template describing a set of strings (or chromosomes)
which match each other at certain positions. For example, the schema *10101 matches the two
strings {110101, 010101} (using a binary alphabet and a metasymbtohtircaresymbol *).

The schema *101* describes four strings {01010, 11010, 01011, 11011}. As Goldberg (1989)
elucidates, in general, for alphabets of cardinality (number of alphabet characedstring
lengths ofl characters, there ark ¢ 1)I schemata.

Theorder of a schema is the number of fixed characters in the template, e.g. the order of
schema *1*110 is 4, and the order of schema *****Q is 1. @kéning lengttof a schema is
the distance between the first and last fixed character in the template, e.g. the defining length
of 1****Q is 5, the defining length of 1*1*0* is 4, and the defining length of 0***** js Q.

Holland’s Schema Theorem states that the action of reproduction (copying, crossover and
mutation) within a genetic algorithm ensures that schemata of short defining length, low order
and high fitness increase within a population (Holland, 1975). Such schemata are known as
building blocks.

The building block hypothesis suggests that genetic algorithms are able to evolve good
solutions by combining these fit, low order schemata with short defining lengths to form bet-
ter strings (Goldberg, 1989). However, this still remains an unproven (though widely accepted)
hypothesis.

GA Analyses

Experimental results show that for most GAs (initialised with random values), evolution makes
extremely rapid progress at first, as the diverse elements in the initial population are combined
and tested. Over time, the population begins to converge, with the separate individuals resem-
bling each other more and more (Davis, 1991). Effectively this results in the GA narrowing its
search in the solution-space and reducing the size of any changes made by evolution until
eventually the population converges to a single solution (Goldberg, 1989). When plotting the
best fitness value in each new population against the number of generations, a typical curve
emerges, fig 1.9 (Parmee and Denham, 1994).
Theoretical research to investigate the behaviour of the various varieties of GAs for differ-

ent problems is growing rapidly, with careful analyses of the transmission of schemata being
made (De Jong, 1975; Kargupta, 1993). The use of Walsh function analysis (Deb et al., 1993)

12 Evolutionary Design by Computers

fit A

fitness

unfit —
generations

Figure 1.9 Typical curve of evolving fithess values over time.

and Markov chain analysis (Horn, 1993) has led to the identification of some ‘deceptive’ and
‘hard’ problems for GAs (Deb and Goldberg, 1993). Chaptdihé: Race, the Hurdle, and the
Sweet Spoby David Goldberg summarises some of the significant advances in the under-
standing of GAs made to date.

Advanced Genetic Algorithms

When applying GAs to highly complex applications, some problems do occasionally arise.
The most common igremature convergenaghere the population converges early onto non-
optimal local minima (Davis, 1991). Problems are also caused by deceptive functions, which
are, by definition, ‘hard’ for most GAs to solve. In addition, noisy functions (Goldberg et al.,
1992) and the optimisation of multiple criteria within GAs can cause difficulties (Fonseca and
Fleming, 1995a). In an attempt to overcome such problems, new, more advanced types of GA
are being developed (Goldberg, 1994). These include:

Steady-state GAswhere offspring are generated one at a time, and replace existing indi-
viduals in the population according to fithess or similarity. Convergence is slower, but very
fit solutions are not lost (Syswerda, 1989).

Parallel GAs, where multiple processors are used in parallel to run the GA (Adeli and
Cheng, 1994; Levine, 1994).

Distributed GAs, where multiple populations are separately evolved with few interactions
between them (Whitley and Starkweather, 1990)

GAs with niching and speciation where the population within the GA is segregated into
separate ‘species’ (Horn, 1993; Horn and Nafpliotis, 1993; Horn et al., 1994).

Messy GAs (mGA) which use a number of ‘exotic’ technigques such as variable-length
chromosomes and a two-stage evolution process (Deb, 1991; Deb and Goldberg, 1991).
Multiobjective GAs (MOGASs), which allow multiple objectives to be optimised with
GAs (Schaffer, 1985; Srinivas and Deb, 1995; Bentley and Wakefield, 1997c).

Hybrid GAs (hGAs), e.g. memetic algorithms, where GAs are combined with local
search algorithms (George, 1994; Radcliffe and Surrey, 1994a).

Structured GAs (sGAs), which allow parts of chromosomes to be switched on and
off using evolveable ‘control genes’ (Dasgupta and McGregor, 1992; Parmee and
Denham, 1994).

An Introduction to Evolutionary Design by Computers 13

GAs with diploidy and dominance which can improve variation and diversity in addi-
tion to performance (Smith and Goldberg, 1992).

Mutation-driven GAs, such as Harvey's SAGA (Harvey and Thompson, 1997), which
uses converged populations modified primarily by mutation to allow the constant
‘incremental evolution’ of new solutions to varying fitness functions.

GAs with ‘genetic engineering; which identify beneficial genetic material during evolu-
tion and prevent its disruption by the genetic operators (Gero and Kazakov, 1996).
Injection Island GAs (IIGAs), which evolve a number of separate populations (‘islands’)
with representations and fitness functions of different accuracy, and occasionally ‘inject’
good solutions from one island into another (Eby et al., 1997).

Most of these advanced types of GA are described further in the chapters of this book.

Recommended Books for GAs:

Adaptation in Natural and Artificial Systems.
by John Holland (1975).

Genetic Algorithms in Search, Optimization & Machine Learning.
by David Goldberg (1989).

The Handbook of Genetic Algorithms.
edited by Lawrence Davis (1991).

Genetic Algorithms + Data Structures = Evolution Programs.
by Zbigniew Michalewicz (1996).

Practical Handbook of Genetic Algorithms.
edited by Lance Chambers (1995).

An Introduction to Genetic Algorithms.
by Melanie Mitchell (1996).

Evolutionary Computation: Toward a New Philosophy of Machine Intelligence.
by David B. Fogel (1995).

The Design of Innovation: Lessons from Genetic Algorithms
by David Goldberg (1998).

1.3.2 Genetic Programming

A Summary

Genetic programming is not, strictly speaking, a separate evolutionary algorithm in its own
right. It is a specialised form of genetic algorithm, which manipulates a very specific type of
solution using modified genetic operators.

GP was developed by Koza (1992) in an attempt to make computers program themselves
(i.e., performautomatic programmingby evolving computer programs. Perhaps because
of this application, or perhaps because of the higher conceptual level at which the algorithm

14 Evolutionary Design by Computers

operates, GP has become immensely popular amongst computer scientists, and it seems likely
that the number of publications on this new evolutionary technique will soon approach the
wealth of publications in its parent field, genetic algorithms. Practitioners of GP are beginning
to move away from the original application of evolving computer programs, with GP now being
applied in alternative areas, evolutionary design amongst them. John Koza describes one such
application in his chaptérhe Design of Analog Circuits by Means of Genetic Programming

in the last section of the book.

GP follows essentially the same procedure as described previously for GAs. Populations
of individuals are maintained. These individuals are initialised randomly, evaluated and patr-
ents are selected for reproduction based on fitness. Offspring are generated using crossover an
mutation operators, and these offspring replace some or all of their parents in the population.
The individuals are then evaluated, parents are selected for reproduction, and so on.

However, unlike GAs, GP does not make a distinction between the search space and the
solution space. In GP, genotypes are the same as phenotypes, i.e. GP does not manipulate
coded versions of the solutions, it manipulates the solutions themselves. This means that for
GP, the search space and solution space are identical. In addition, unlike GAs (which use
almost any conceivable representation), GP represents solutions in a very specific, hierarchical
manner. Figure 1.10 shows an example solution for GP.

A strong motivation in the use of such hierarchical representations was the problem of
applying crossover to variable-length chromosomes. Computer programs are obviously of
variable sizes — they can be anything from a few characters to thousands of lines long. The
standard crossover operator for GAs simply cannot cope with performing recombination with
two chromosomes that are of different lengths. To illustrate this, consider two chromosomes:
‘A +B/C’and ‘~A/B+C’. Using the simple crossover of GAs, if the random crossover point
happened to be 1, the two child chromosomes would-beB/C’ and ‘AA/B+C’. These are
clearly meaningless and invalid expressions. The solution suggested by Koza for GP is to
arrange its solutions in hierarchical tree-structures, and then crossover can be used to inter-
change randomly chosen branches of the parents’ trees without the syntax of the programs
being disrupted, as shown by fig. 1.11. (In fact, this is just one solution to the problem of
variable-length crossover. There are many types of GA which use a number of alternatives
(Bentley and Wakefield, 1996c).)

X

Figure 1.10 A simple computer program defined by GP’s hierarchical representation.

An Introduction to Evolutionary Design by Computers 15

GP also has a modified mutation operator. This operator picks a random point in a tree and
deletes everything below it, replacing it with a randomly generated subtree, see fig. 1.12. How-
ever, because the crossover operator plays a similar role to mutation in GP, mutation is often
considered unnecessary (Koza,1992).

The other major distinction between GAs and GP is in the evaluation of solutions. As
described previously, GAs require the genotypes of individuals to be mapped onto the pheno-
types before evaluation. Phenotypes are then analysed by fithess functions. In standard GP,
there is no mapping process — because GP evolves phenotypes directly — and the evaluation
process is very different. To calculate the fithess of solutions, these evolved programs must be
run to find out what they do. Normally a series of input values and desired output values are
provided, and the fithess of the program is based on how closely actual output values match
the desired output values, for each set of input values. GP terminates evolution when a solu-
tion has been evolved which has a satisfactory fitness value (or after a predefined number of
generations).

GP normally evolves symbolic expressions (S-expressions) in languages such as LISP — a
computer programming language which uses combinations of functions written as lists. For

?. -
®) ©
® O O 6
®)
Child 1 A><A Child 2

Figure 1.11 The behaviour of the crossover operator in GP. The thick lines show the
positions of the random crossover points.

16 Evolutionary Design by Computers

Child Mutated child

Figure 1.12 The behaviour of the GP mutation operator.
The random mutation point is shown in bold.

example, the two parent solutions used to illustrate the crossover operator in fig. 1.11 would
be written in LISP as:

(+A(/BC)) and
(+(/(~A)B)C).

LISP allows the usual high-level programming operators, including conditional operators,
to be applied in the same way. For example, the following LISP S-expression tells the com-
puter to add 1, 2 and 3 (ifneis greater than 10) or 4 (tiimeis less than 10):

(+12(IF(>time 10)34))

Because solutions can contain such conditional statements, it is possible for evolving
solutions to contain redundant code which is never executed. For example, the following S-
expression will always return the result ofi/B. The sub expressionHA (/B C)) will
never be executed by the computer:

(IF5>0(+AB)(—A(/BQ)))

Solutions with redundant code in them are said to copakor introns. Such solutions
are common in GP, with most solutions steadily increasing in size as evolution progresses. This
tendency is known asloat (Langdon and Poli, 1997). The effects of bloat can be reduced by
penalising the fitness of any solutions that become oversized.

Conditional statements in GP allow a simple form of imptoininanceo occur in evol-
ving S-expressions. Normally implementations of dominant and recessive alleles in EAs require
diploid chromosomes (pairs of chromosomes) where the value of a gene is the combined
meaning of both alleles from the twin chromosome. Certain alleles are defined to be dominant
and others recessive, ensuring that the phenotypic effect of a gene is caused by dominant
alleles in preference to recessive ones. GP allows a simpler version of this with conditional

An Introduction to Evolutionary Design by Computers 17

statements. For example, if in the following S-expressiocan only take the values 0, 1, or
2, then the result A could be regarded as being dominant to theBesult

(IF (> X 0) AB)

Conditional statements in GP also resemble the operons and regulons found in our
own DNA, used to switch on and off other genes during the development of the organism
(Paton, 1994).

GP Theory

Because there are significant differences between the representation and operators of GP and
GAs, it is not clear whether the Schema Theorem and Building Block Hypothesis described
previously can be applied to GP. Koza (1992) attempts to achieve this by defining a schema to
be the set of all individual trees from the population that contain, as subtrees, one or more
specified subtrees. So for GP, disruption is smallest and the deviation from the optimum num-
ber of trials is smallest when the schema is defined in terms of a single compact subtree (Koza,
1992). As long as crossover is not too disruptive, the fittest of such compact subtrees should
exponentially grow within the population, and be used as building blocks for constructing fit
new individuals.

Unfortunately, it seems that crossover in GP is often too disruptive for such theories to
be applicable. Definitions of schema and the Schema Theorem are still the subject of much
research in the GP community (O’'Reilly and Oppacher, 1995; Poli and Langdon, 1997h).

Advanced GP

Just as GAs have many other advanced genetic operators, GP has a number of specialised oper-
ators. These includ@ermutation which swaps two characters in a trediting which allows

the optimisation and reduction of long S-expressions;emedpsulatiorwhich allows a sub-

tree to be converted into a single node, preserving it from disruption by crossover or mutation.

One commonly used technique, which is a more advanced version of encapsulation, is the
evolution ofautomatically defined functiof@&DFs). Typically, the GP system is set up to
evolve a predetermined number of functions in addition to the main program. Each function
can then be called in the program, allowing the multiple use of code without the need to re-
evolve it each time, and also minimising the danger of disruption by crossover or mutation.
The use of ADFs has been shown to enhance the performance of GP (Koza, 1992).

Figure 1.13 shows an example solution with two ADFs. The first ADF (ADFO) takes a
single argument and returns its cube, the second (ADF1) takes two arguments and returns
1/(ARGO*ARG1). The main program (at the right of the tree) adds the result of calling both
ADFs with parameters A and B. When expanded into a single LISP S-expression, the solution
becomes:

(+(*CAAA)(/(1(*AB))))

Should it be necessary, hierarchical ADFs can be employed to allow one ADF to call
another (Koza, 1992). Researchers are now exploring other styles of function creation, e.g. Yu

18 Evolutionary Design by Computers

Figure 1.13 A solution with two ADFs (the two left branches of the tree).
Note the function calls within the program in the right branch of the tree.

evolves anonymous functions knowniaabstractions, which are reused through recursion (Yu
and Clack, 1998a,b). Current research also investigates the automatic creation of iterations
(ADIs), loops (ADLSs), recursions (ADRs), and various types of memory stores (ADS), see
(Koza et al., 1999).

The hierarchical tree representation used by GP allows crossover and mutation to manip-
ulate solutions whilst preserving the syntax of LISP S-expressions. However, there are prob-
lems of excessive disruption with these genetic operators (O’Reilly and Oppacher, 1995). In
GAs, the operators tend to be constructive: many offspring generated using crossover or muta-
tion from fit parent solutions will be at least as fit as their parents. In GP, the reverse is true:
the operators tend to be destructive, with many offspring less fit than their parents. This sorry
state of affairs has led to the development of new crossover operators, designed to minimise
the disruption of good solutions. Most of these new operators limit the use of crossover to the
recombination of similarly structured parent solutions (Poli and Langdon, 1997a).

Recommended Books for GP:

Genetic Programming: On the Programming of Computers by Means of
Natural Selection
by John Koza (1992).

Genetic Programming II: Automatic Discovery of Reusable Programs
by John Koza (1994).

Genetic Programming 11l
by Koza, Andre, Bennett and Keane (1999).

Advances In Genetic Programming
Edited by Kenneth E. Kinnear Jr. (1994).

Advances In Genetic Programming 2
by Peter Angeline and Kenneth E. Kinnear Jr. (Eds) (1996).

An Introduction to Evolutionary Design by Computers 19

Genetic Programming — an Introduction
by Wolfgang Banzhaf, Peter Nordin, Robert E. Keller and
Frank D. Francone (1998).

Genetic Programming and Data Structures
by Bill Langdon (1998)

1.3.3 Evolution Strategies

A Summary
Evolution strategies (oevolutionstrategie were developed in Germany in the 1960s by
Bienert, Rechenberg and Schwefel (Back, 1996). Evolutionary design was one of the very first
applications of this technique, involving shape optimisation of a bent pipe, drag minimisation
of a joint plate and structure optimisation of nozzles. However, these early experiments were
not performed using computers. Instead, actual physical designs were built, tested and mutated
by changing the joint positions or adding and removing segments.

The first ES computer algorithm was demonstrated initially by Schwefel (1965), and then
developed further by Rechenberg (1973). This simple form of ES, known tagthe&embered
ES, used only two individuals: a parent and child. Like GP, it made no distinction between
genotype and phenotype, each individual being represented as a real-valued vector. It has a
simple operation: the child solution is generated by randomly mutating the problem parameter
values of the parent. Mutation is performed independently on each vector element by aggre-
gating a normal-distributed random variable with zero mean and a pre-selected standard devi-
ation value. The child is then evaluated, and if its fitness is better than the fitness of its parent,
the child survives and becomes the parent solution. Otherwise, the child is discarded and the
original parent is mutated once again to produce another child solution. This selection scheme
is known as (% 1)-selection.

Unfortunately, there were a couple of drawbacks to thelJdES: the point-to-point
search made the procedure susceptible to stagnation at local optima, and the constant standard
deviation for each vector element made the procedure slow to converge on optimal solutions.

Advanced ES

Other ES selection schemes followed, incorporating the idea of populations of solutions. By
the early 1980s, the current state-of-the-art evolutionary strategies had been developed (Béck,
1996), known as theu(+4)-ES and f,4)-ES (whereu is the number of parents ands the
number of offspring). These new types of ES now strongly resemble the genetic algorithm, by
maintaining populations of individuals, selecting the fittest individuals, and using recombina-
tion and mutation operators to generate new individuals from these fit solutions.

There are some significant differences between ES and GAs, however. For example,
although ES maintains populations of solutions, it separates the parent individuals from the
child individuals. In addition, as mentioned above, ES does not manipulate coded solutions
like GAs. Instead, like GP, the decision variables of the problem are manipulated directly by the
operators. Also unlike the probabilistic selection of GAs and GP, ES selects its parent solutions
deterministically.

20 Evolutionary Design by Computers

The (+A1)-ES picks the begt individuals from both child and parent populations. The
(u,A)-ES picks the begt individuals from just the child population. In order to ensure that a
selection pressure is generated, the number of paremisst always be smaller than the num-
ber of offspring,.. Back (1996) recommends the use of theXES with a parent:offspring
ratio of 1:7.

Figure 1.14 shows the operation of the population-based evolutionary strategy. The ES is
initialised with a population of random solutions, or from a population of solutions mutated
from a single solution provided by the user. Parent solutions are chosen randomly from the
‘parent population’, and a number of random recombination operators are used to generate
child solutions, which are placed in the ‘child population’. These operators may recombine the
values within two parents like the crossover operator of GAs, or they may use a parent for
every decision variable in the solution. New solutions are then mutatedstisiteyy para-
meterswithin each solution.

Mutation plays an important role in ES, and is regarded as the primary search operator.
Unlike the entirely random mutation of simple GAs and GP, the mutation of ES follows-a
mal distribution The distribution of possible mutated values is guided by two types of strategy
parameter: standard deviatierand rotation angle for each decision variable in the solution.
(Infact, ES does not require these two parameters for every variable in the solution — it permits
the use of the same strategy parameters for multiple variables.) The strategy parameters influ-
ence the direction of search in the search space taken by mutation, and by modifying the values
of ¢ anda. for each variable, the ES is able to use mutation to follow the contours of the search
space and quickly find the optimal solutions, see fig. 1.15.

But the ES has another trick up its sleeve. Not only does it have directed mutation, it
actually evolvesthis direction. ES achieves this by placing the strategy parameters for each

INITIALISE PARENT POPULATION
—> RANDOMLY TAKE TWO PARENTS FROM PARENT POPULATION q¢——

USE RANDOM RECOMBINATION TO GENERATE OFFSPRING IN THE
CHILD POPULATION

MUTATE OFFSPRING

HAS CHILD POPULATION BEEN FILLED WITH NEW OFFSPRING?

NO
¢YES

EVALUATE ALL CHILDREN TO DETERMINE THEIR FITNESSES

DETERMINISTICALLY SELECT NEW PARENTS FROM FITTEST OF
CHILD POPULATION (AND PARENT POPULATION*) AND PLACE
THEM IN THE PARENT POPULATION

IS THERE AN ACCEPTABLE SOLUTION YET?
(OR HAVE x GENERATIONS BEEN PRODUCED?)

NO
iYES

FINISHED *for the (u +))-ES

Figure 1.14 The evolutionary strategy.

An Introduction to Evolutionary Design by Computers 21

OREN

® 01&%

9

Figure 1.15 Mutation hyperellipsoids defining equal probability density around each solution. In
this example, each solution has tewparameters and oreparameter to guide mutation. Note
how mutations towards the better area of the search space are encouraged.

variable within the individual solution. The operators of ES are then able to modify the strat-
egy values in addition to the values of the variables within individuals, and hence optimise the
direction of mutation in parallel to the optimisation of the variables. This important feature

(which has only been introduced into advanced GAs in the last 5 years or so) is known as
self-adaptation

Once mutation and recombination has generated enough new individuals to fill the child
population, these individuals are evaluated to obtain fithess measures, as described earlier for
GAs. The fittest offspring are then deterministically selected to become parents and these are
placed into the parent population.

With the parent population filled with (mostly) new individuals, the ES randomly picks
parents from this population to generate new child solutions, which are then evaluated, and so
on. Evolution terminates after a predefined number of generations, or when a solution of
sufficient quality has been generated.

ES Theory

Like GA theory, the theory of ES was developed in the 1970s, and applies to the simplest form
of the algorithm, in this case the{1)-ES with no self-adaptation. Rechenberg analysed the
convergence rates of this two-membered ES for two objective functions, and calculated the
optimal standard deviation and probability values for a successful mutation. From this he
formulated thel/5 success rule

The ratio of successful mutations to all mutations should be 1/5. If it is greater than 1/5,
increase the standard deviation, if it is smaller, decrease the standard devi{&emhenberg,
1973.)

In order to apply the 1/5-success rule, the ES keeps track of the observed ratio of success-
ful mutations to the total number of mutations, measured over intervalsohltails, where
nis the number of variables in the individual. According to this ratio, the standard deviation is
increased, decreased, or remains constant. Born (1978) subsequently formally proved that this

22 Evolutionary Design by Computers

simple form of (& 1)-ES will result in global convergence with a probability of one under the
condition of a positive standard deviation. Other theoretical analyses have shown that the intro-
duction of populations in ES causes a logarithmic speed-up in evolution, compared to the
(1+1)-ES.

As Back (1996) describes, Schwefel derived an approximation theory for the convergence
rate of the simplifiedy,4)-ES and f+1)-ES (one standard deviation for all object variables;
no crossover nor self-adaptation). More recently, Rudolph (1996, 1997, 1998) has used
Markov chains to investigate the convergence theory in EAs.

Recommended Books for ES:

Evolutionstrategie: Optimierung Technischer Systeme nach Prinzipien der
Biologischen Evolution
by Ingo Rechenberg (1973).

Numerical Optimization of Computer Models
by H.-P. Schwefel (1981).

Evolution and Optimum Seeking
by H.-P. Schwefel (1995).

Evolutionstrategie’94(volume 1 ofWerkstatt Bionik und Evolutionstechnik)
by Ingo Rechenberg (1994).

Evolutionary Algorithms in Theory and Practice
by Thomas Béck (1996).

Evolutionary Computation: Toward a New Philosophy of Machine Intelligence
by David B. Fogel (1995).

1.3.4 Evolutionary Programming

A Summary

Evolutionary programming resembles evolutionary strategies closely, although EP was devel-
oped independently (and earlier) by Lawrence Fogel in the 1960s. The early versions of EP
were applied to the evolution of transition tables of finite state maél{F@hls), and the fit-

ness of individuals was based on how closely the output sequence of letters generated by eact
individual matched a target sequence. A single population of solutions was maintained, and
reproduction used mutation alone (Fogel et al., 1966).

® In fact, EP was proposed as a procedure to generate machine intelligence. Intelligent behaviours were
viewed as the ability to predict one’s environment and to provide a suitable response in order to achieve a
given goal.

For the sake of generality, the behaviours were represented in finite state machines (FSMs). For each state
of an FSM, each possible input symbol has an associated output symbol and next-state transition. A sequence
of input symbols such as 010001 is given to an FSM as an observed environment. A behaviour is then con-
sidered to be ‘intelligent’ if it predicts what the next symbol will be and satisfies a pay-off function.

An Introduction to Evolutionary Design by Computers 23

Unfortunately, despite many theses written on EP at New Mexico State University during
the 1970s, this algorithm was either misunderstood or overlooked for many years. It was only
when Lawrence Fogel’'s son, David Fogel, redeveloped EP in the late 1980s, that this technique
was rediscovered by the research community.

Advanced EP

David Fogel extended the original EP, which could only evolve discrete parameterisations, to
allow it to be used for continuous parameter optimisation (fixed-length real-valued vectors).
Another important addition to EP was self-adaptation — the use of evolveable strategy para-
meters to guide mutation in a very similar way to ES.

There are three main types of EP in udandard ER meta—EF,’4 and Rmeta-EP These
three types differ by the level of self-adaptation employed. Standard EP uses no self-adaptation,
meta-EP incorporates mutation variance parameters in individuals to allow self-adaptation,
and Rmeta-EP incorporates mutation variance and covariance parameters into individuals to
permit more precise self-adaptation (Fogel, 1995). Figure 1.16 shows the working of a general
evolutionary program.

Like ES, EP operates on the decision variables of the problem directly (i.e. the search
space is the same as the solution space). During initialisation, these variables are given random
values, often with a uniform sampling of values between predefined ranges. These solutions
are then evaluated to obtain the fitness values (which in EP may involve some form of scaling
or the addition of a random perturbation). Next, parents are pickedtasimgment selection
This type of selection is commonly used in GAs, and involves a series of tournaments between

INITIALISE POPULATION BY FILLING WITH RANDOM INDIVIDUALS AND
RANDOMLY MUTATED VERSIONS OF THOSE INDIVIDUALS

EVALUATE INDIVIDUALS TO DETERMINE THEIR FITNESSES

> RANDOMLY PICK A PARENT BASED ON FITNESS P R—
USING TOURNAMENT SELECTION

GENERATE CHILD BY MUTATING A COPY OF THE PARENT

HAS POPULATION DOUBLED IN SIZE?

NO
¢ YES

EVALUATE ALL CHILDREN TO DETERMINE THEIR FITNESSES
DELETE THE HALF OF THE POPULATION WITH THE LOWEST FITNESSES

IS THERE AN ACCEPTABLE SOLUTION YET?
(OR HAVE x GENERATIONS BEEN PRODUCED?)

¢YES

FINISHED

NO

Figure 1.16 The evolutionary programming algorithm.

* Meta-EP is now the standard form of EP in use today, and is usually called simply EP.

24 Evolutionary Design by Computers

each individual and a group of randomly chosen individuals. The probability of being selected
for reproduction is then based on how many other individuals the prospective parent has
managed to beat during the tournament (i.e., a solution with a better fitness than most of the
others it ‘played’ in the tournament has a higher probability of being selected than a solution
with a worse fitness compared to its competitors). The number of individuals in each tournament
is a global parameter of the algorithm.

Children are generated asexually, by simply creating a copy of the parent and mutating
it. In a similar way to ES, meta-EP and Rmeta-EP ensure that mutation will favour the search
towards the areas of the search space containing better solutions, by the use of variance and
covariance strategy parameters held within individuals for each variable. EP allows muta-
tion to modify these parameters, thus permitting self-adaptation to occur. Unlike any of the
evolutionary algorithms mentioned so far, EP does not use any form of recombination oper-
ator. All search is performed by mutation, following the assumption that mutation is capable
of simulating the effects of operators such as crossover on solutions (Fogel, 1995).

Child solutions are generated and placed into the population until the population has
doubled in size. All new solutions are evaluated, and then the half of the population with the
lowest fitnesses are simply deleted. Parents are then picked, offspring generated, and so on.
Evolution is typically terminated after a specific number of generations have passed.

All three types of EP can also bentinuous(Fogel and Fogel, 1995), where instead of
generating offspring until the population size has doubled and then deleting the unfit half, a
single individual is generated, evaluated, and inserted into the population, replacing the least
fit individual. Thisreplacementmethod strongly resembles that used by steady-state GAs
(Syswerda, 1989).

New advances in EP continue, as this EA is applied to new types of problem. Chellapilla
(1997) has recently expanded EP to allow it to evolve program parse trees. Various subtree
mutation operators were designed in solving four benchmark problems. He reported that the
experiment results showed the technique compares well with EAs which use the crossover
operator.

EP Theory

Although ES theory can be applied with little modification to EP (Back, 1996), Fogel has per-
formed independent analyses of various forms of EP, including the case where the population
size= 1 (in which case EP strongly resembles thetES (Back, 1996)). He calculated that
mutations should increment or decrement the value of a decision variable by no more than the
square root of the fitness score of the solution.

Fogel proved that the simple EP will converge with a probability of one, however conver-
gence rates (time taken to converge) and other significant features of EP remain unsolved.
Complete details of the proofs are beyond the scope of this chapter; interested readers should
consult (Fogel, 1992b).

Yao and Liu (1996) proposed a Cauchy instead of Gaussian mutation operator as the primary
search operator in EP. In (Yao, Lin and Liu, 1997), an analysis based on the study of neighbour-
hood and step size of the search space is performed to compare these two mutation operators.
Their work provides a theoretical explanation, supported with empirical evidence, of when and
why Cauchy mutation is better than Gaussian mutation in EP search. The long jumps provided

An Introduction to Evolutionary Design by Computers 25

by Cauchy mutation increase the probability of finding a near-optimum when the distance
between the current search point and the optimum is large. The Gaussian mutation, on the other
hand, is a better search strategy when the distance is small.

A study by Gehlhaar and Fogel (1996) also indicates that the order of the modifications of
object variables and strategy parameters has a strong impact on the effectiveness of self-adap-
tation. It is important to mutate the strategy parameters first and then use them to modify the
object variables. In this way, the potential of generating good object vectors that are associated
with poor strategy parameters can be reduced. Thus the likelihood of stagnation can be
reduced.

Experimental comparisons between the different types of EP are ongoing. For example, EP
with self-adaptation has now been reapplied to the original task of evolving FSMs (Fogel et
al., 1995; Angeline and Kinnear, 1996). Each state in an FSM was associated with mutation
parameters to guide which component of the FSM was to be mutated and how to perform the
mutation. Angeline and Kinnear (1996) reported that EP with self-adaptation performs better
than a standard EP when solving a predication problem.

Recommended Books for EP:

Artificial Intelligence through Simulated Evolution
by L. J. Fogel, A. J. Owens and M. J. Walsh (1966)

System Identification through Simulated Evolution: A Machine Learning Approach to
Modeling
by David B. Fogel (1991).

Evolutionary Computation : Toward a New Philosophy of Machine Intelligence
by David B. Fogel (1995).

Evolutionary Algorithms in Theory and Practice
by Thomas Back (1996).

1.3.5 A General Architecture for Evolutionary Algorithms (GAEA)

Sadly, the four major types of evolutionary algorithm are rarely considered in unison. Most
researchers are genetic algorithmists, genetic programmers, evolutionary strategists, or evolu-
tionary programmers —there are very few evolutionary computationists. Researchers in the field
of evolutionary computation spend considerable time and energy exploring their favourite EA,
and usually no time at all on considering the general concepts behind Basis unfortunate,
because it should be clear that these algorithms are hardly different at all. Consequently, rather
than dwell on the differences between the four major types of EA summarised previously, it
is perhaps more appropriate to stress the similarities of these techniques.

® As the editor of this book, | cannot claim to be any different. My first venture into this field was when, as a
teenager, | wrote a program called Evolve, which | discovered years later was essentially both a real-coded
steady-state genetic algorithm, and a continuous standard evolutionary program, except that all evolutionary
pressure was exerted using negative selection. Despite being yet another ‘independent discoverer’ of an evolu-
tionary algorithm, it will be apparent to any knowledgeable reader that today | am a genetic algorithmist at
heart.

26 Evolutionary Design by Computers

In general, as suggested by the theory of Universal Darwinism (Dawkins, 1983), for evo-
lution to occur, the following criteria must be met (where ‘transmission’ has been expanded to
‘reproduction’ and ‘inheritance’ for clarity):

reproduction inheritance variation selection

In other words, as long as some individuals generate copies of themselves which inherit
their parents’ characteristics with some small variation, and as long as some form of selection
preferentially chooses some of the individuals to live and reproduce, evolution will occur. As
Chapter 3The Memetics of Desigdescribes in this book, this is true regardless of what the
individual is, be it an ant, an artificial creature, or an idea.

Evolutionary search algorithms are no exception. All EAs performrépeoduction of
individuals, either directly cloning parents or by using recombination and mutation operators
to allow inheritance with variation. These operators may perform many different tasks,
from a simple random bit inversion to a complete local search algorithm. All EAs also use
some form ofselectionto determine which solutions will have the opportunity to reproduce,
and which will not. The key thing to remember about selection is that it exeléstion pres-
sure or evolutionary pressuréo guide the evolutionary process towards specific areas of the
search space. To do this, certain individuals must be allocated a greater probability of having
offspring compared to other individuals. Selection is often misunderstood by developers of
EAs, who often regard it to mean simply ‘selection of parents’. As will be shown, however,
selection does not have to mean parent selection — it can also be performed using fertility,
replacement, or even ‘death’ operators. It is also quite common for multiple evolutionary
pressures to be exerted towards more than one objective in a single EA.

Unlike natural evolution, evolutionary algorithms also require three other important
features:

initialisation evaluation termination

Because we are not prepared to wait for the computer to evolve for several million gener-
ations, EAs are typically given a head startrbyalising (or seeding them with solutions that
have fixed structures and meanings, but random values. In our earlier ‘house’ example, each
solution might consist of ‘number of windows’, ‘position of roof’, ‘height’ and ‘width’ para-
meters.

Evaluation in EAs is responsible for guiding evolution towards better solutions. Unlike
natural evolution, evolutionary algorithms do not have a real environment in which the ‘sur-
vivability’ or ‘goodness’ of its solutions can be tested, they must instead rely on simulation,
analysis and calculation to evaluate solutions.

Extinction is the only guaranteed waytésminate natural evolution. This is obviously a
highly unsuitable way to halt EAs, for all the evolved solutions will be lost. Instead, explicit
termination criteriaare employed to halt evolution, typically when a good solution has evolved
or when a predefined number of generations have passed.

There are two other important processes, which although not necessary to trigger or
control evolution, will improve the capabilities of evolution enormously. These processes are:

mapping moving

An Introduction to Evolutionary Design by Computers 27

Currently only the genetic algorithm separates the search space (containing genotypes)
from the solution space (containing phenotypes), and has an ermigiting stage between
the two. This is unfortunate, for embryogeny and ontogeny are known by biologists to be
highly significant, allowing highly complex solutions to be specified using a compact set of
instructions, incorporating constraint handling and error checking.

Using EAs to evolve more than one populatiorspeciesconcurrently and separately is
becoming an important tool in the optimisation of difficult or multimodal functibimsing
(or migrating or injecting individuals from one population to another, or from one species to
another, allows separately evolving individuals to occasionally share useful genetic informa-
tion, reducing premature convergence within species, reducing the number of evaluations
needed, and improving the quality of solutions evolved.

Figure 1.17 shows the general architecture of evolutionary algorithms (GAEA). This archi-
tecture should be regarded as a general framework for evolutionary algorithms, not an algo-
rithm itself. Indeed, most EAs use only a subset of the stages listed. For example, EP uses:
initialisation, evaluation selection reproduction replacementaindtermination Alternatively,

a simple GA usegnitialisation, mapping evaluation selectionfertility, reproductionandter-
mination (Each optional stage in the architecture is marked as such.)

To help give the reader a more general view of using computers to perform evolution, this
introductory section of the chapter will now briefly examine each of the stages in GAEA.

Initialisation

Evolutionary algorithms typically seed the initial population with entirely random values
(i.e., starting from scratch). If, like the genetic algorithm, a distinction is made between the
search space and the solution space, themémetypeof every individual will be filled with
random alleles. Evolution is then used to discover which of the randomly sampled areas of
the search space contain better solutions, and then to converge upon that area. Sometimes the
entire population is constructed from random mutants of a single user-supplied solution.
Often random values are generated between specified ranges (a form of constraint handling).
It is not uncommon for explicit constraint handling to be performed during initialisation, by
deleting any solutions which do not satisfy the constraints and creating new ones.

More complex problems often demand alternative methods of initialisation. Some
researchers provide the EA with ‘embryos’ — simplified non-random solutions which are then
used as starting points for the evolution of more complex solutions. John Koza describes such
an approach in Chapter 16. Some algorithms actually attempt to evolve representations or
low-level building blocks first, then use the results to initialise another EA which will evolve
complex designs using these representations or building blocks. John Gero and Michael
Rosenman describe this approach in Chapter 15.

Although most algorithms do use solutions with fixed structures (i.e. a fixed number of
decision variables), some, like GP, allow the evolution of the number and organisation of para-
meters in addition to parameter values. In other words, some egtilueture as well as
detail. For such algorithms, initialisation will typically involve the seeding of solutions with
both random values and random structures.

28 Evolutionary Design by Computers

random (coded) values

Initialise ¢
enotypes
genotyp m
_ <
) py)
_’ .9 -<
g 2
@]
h Q =
enotypes =
Evaluate . ¢typ Z
) m
fitness values ()
(02}
3
2 m
S —
m
g
T - enotypes, fithess values =
s Fertility genotyp %
) fertility values oI
m
arent genotypes, fertility values s 2y
Reproduce P g P genetic c%{erators ;)E J_>|
child genotypes 5 g
O —_—
= 5
a en es (%)) P
§ Replace E Oiyrpeplace m = <
3 genotypes m
o>
w =
5 o5
'*;é_ Z
0
m
] opulation
5 Move Pop migrate/inject Q
g. . genotypes)>
3 population d
@]
Pz

>
'

Figure 1.17 The general architecture of evolutionary algorithms (GAEA).

Map
Only algorithms which make a distinction between the search space and the solution space
require a mapping stage to convert genotypes into phenotypes. Consequently, the genetic algo-
rithm is the only major EA which uses mapping. This mapping stage is often trivially simple,
e.g. converting a binary allele in the genotype to a decimal parameter value in the phenotype.
However, as some chapters in this book describe, this mapping stage can also be very complex.
So why bother with it? This is a difficult question which neatly divides evolutionary com-
putation into two camps: those who believe the effects of genetic operators can be simulated on

An Introduction to Evolutionary Design by Computers 29

phenotypes without needing to resort to storing, modifying, and mapping genotypes, and those
who prefer to ‘do it properly’ and actually perform search at the genotype-level. There can be
no doubt that evolution will occur whether genotypes are maintained or not, but most genetic
algorithmists would argue that evolutionary search is improved if genotypes are employed.
Certainly the latest advances in the understanding of natural evolution are from the level of the
gene, not of the organism (Dawkins, 1976, 1986, 1996).

But the mapping process should not be viewed as a time-consuming side-effect of main-
taining genotypes. Quite the opposite — this process, known by biologisisbagogenyis
highly important in its own right. Indeed, the advantages of embryogeny have caused some
researchers to introduce genotypes into traditionally ‘phenotype-only’ algorithms such as GP
(Banzhaf, 1994).

There are many good reasons to use a mapping stage in an EA. These include:

Reduction of search spaceEmbryogeny permits highly compact genotypes to define
phenotypes. This reduction (often recursive, hierarchical and multifunctional) results in
genotypes with fewer parameters than their corresponding phenotypes, causing a reduction
in the dimensionality of the search space, and hence a smaller search space for the EA.
Better enumeration of search spaceMapping permits two very differently organised
spaces to coexist, i.e. a search space designed to be easily searched can allow the EA to
locate corresponding solutions within a hard-to-search solution space.

More complex solutions in solution spaceBy using ‘growing instructions’ within geno-

types to define how phenotypes should be generated, a genotype can define highly complex
phenotypes. Chapter 14 gives an excellent example of this, using a Lindenmayer system
as the embryogeny process.

Improved constraint handling. Mapping can ensure that all phenotypes always satisfy all
constraints, without reducing the effectiveness of the search process in any way, by mapping
every genotype onto a legal phenotype.

The use of simple mapping stages is increasing, but research in artificial embryogenies is
still in its infancy, with most researchers designing their own. Many of the chapters in the last
two sections of this book describe approaches for evolutionary design. The design of artificial
embryogenies is not trivial, so it seems likely that researchers will attempt to evolve them in
the future (just as our own embryogeny evolved in nature). Section 1.5.2 in the final part of this
chapter describes embryogenies in more detail.

Evaluation

Every new phenotype must be evaluated to provide a level of ‘goodness’ for each solution.
Often a single run of an EA will involve thousands of evaluations, which means that almost
all computation time is spent performing the evaluation process (most EAs use negligible
processing time themselves). In evolutionary design, evaluation is often performed by dedi-
cated analysis software which can take minutes or even hours to evaluate a single solution,
so there is often a strong emphasis towards reducing the number of evaluations during evo-
lution. Chapters 5, 6 and 7 describe various advanced techniques in EAs to reduce evaluation
times.

30 Evolutionary Design by Computers

Evaluation involves the use of fitness functions to assign fitness scores to solutions. These
fithess functions can have single or multiple objectives, they can be unimodal or multimodal,
continuous or discontinuous, smooth or noisy, static or continuously changing. EAs are known
to be proficient at finding good solutions for all these types of fithess function, but specialised
techniques are often required for multimodal, multiobjective, noisy and continuously changing
functions. Some of these are summarised at the end of this chapter.

Evaluation is not always performed by explicit fitness functions. Some EAs employ human
evaluators to view and judge their solutions — the chapters on evolutionary art describe this
approach. Fitness can also be determined by competition between solutions (for example, each
solution may represent a game playing strategy, and the fithess of each strategy depends or
how many other solutions in the population the current strategy can beat (Axelrod, 1987)).

Once fitness values have been calculated, some form of scaling is common. For example,
if multiple species of individuals are being evolvéithess sharingeduces the fithess of any
individuals in large groups to encourage the development of more groups containing smaller
numbers of individuals (Goldberg, 1989). Fitness scores are also commonly scaled as part of
multiobjective optimisation (Bentley and Wakefield, 1997c) or to prevent unwanted biases
during parent selection (Goldberg, 1989).

Parent Selection

Parent solutions are always required in an EA, or no child solutions can be generated. How-
ever, thepreferential selectiomf some parents instead of others is not essential to evolution.
(If parent selection is not present in the EA, then all solutions are permitted to generate off-
spring with equal probability.) Every one of the major EAs does perform parent selection, but
evolution will still occur without it, as long as evolutionary pressure is exerted by one of the
three other selection methodettility, replacemenanddeath

Choosing the fitter solutions to be parents of the next generation is the most common and
direct way of inducing a selective pressure towards the evolution of fitter solutions. Typically,
one of three selection methods are utilised: fithess ranking, tournament selection, or fitness pro-
portionate selection. Fitness ranking sorts the population into order of fithess and bases the prob-
ability of a solution being selected for parenthood on its position in the ranking. Tournament
selection bases the probability of a solution being selected on how many other randomly picked
individuals it can beat (see the section on EP). Fitness proportionate selection (or roulette wheel
selection) bases the probability of a parent being selected on the relative fithess scores of each
individual, e.g. a solution ten times as fit as another is ten times more likely to be picked as a par-
ent (Goldberg, 1989). This method also incorporateddttdity selection method, see below.

Although fitter parents are normally selected, this does not have to be the case. It is pos-
sible to select parents based on how many constraints they satisfy, or how well they fulfil other
criteria, as long as a fitness-based selection pressure is introduced elsewhere in the algorithm.
The selection of pairs of parents is usually limited by EAs with speciation or multiple popula-
tions (i.e. two parents from different species or different populations/islands will not be per-
mitted to generate offspring together). In algorithms that record the age of individuals,
parent selection may be limited to individuals that are ‘mature’ or individuals which are below
their maximum lifespans. Any individual that is sterile (see below) should not be selected for
parenthood.

An Introduction to Evolutionary Design by Computers 31

Fertility

Thefertility of a parent solution is the number of offspring that parent can have, e.g. a parent
with a high fertility will have more offspring than a parent with low fertility. The fertility of
parent solutions is often confused with the selection of parent solutions. For example, fithess
proportionate selection not only selects parents based on their relative fitnesses, it also
increases the fertility of fitter parents based on fithesses. This confusion is unfortunate,
because in reality, changing the fertility of parents is an independent and separate way to exert
selection pressure in EAs.

The separation of parent selection and fertility is perhaps clearest in natural evolution. A
peahenselectsthe most attractive peacock it can find (perhaps based on the size and
pattenation of the tail) to be the parent of its offspring (Dawkins, 1986). Conversely, the
fertility of the two parents is an innate characteristic of the parents, based on their fitness, their
age, and, for some birds, the number of other birds sharing the same neighbourhood (Dawkins,
1976). Because unhealthy birds tend to have lower fertilities than healthy’tarigvolu-
tionary pressure is exerted towards healthy birds, in addition to the selective pressure towards
birds with ornate tails.

Currently the use of fertility to induce selection pressures towards explicit goals in EAs
has been limited to constraint handling. Experimental results have shown that selecting
parents based on fithess, and setting fertility values based on how many constraints each
solution satisfies, can be a very effective method of performing twin-objective optimisation
using EAs (Yu and Bentley, 1998).

Individuals in the population may have reduced fertilities, or may even be sterile (i.e., have
a fertility of zero) if immature or too old. Two parents from different species are typically
regarded as having very low fertilities (e.g., a one in twenty chance of generating any off-
spring). EAs that do not employ fertility ensure that every parent has a fixed, unchanging
number of offspring — usually with each parent producing one child.

Reproduction

Reproduction is the cornerstone of every evolutionary algorithm — it is the stage responsible
for the generation of child solutions from parent solutions. Crucially, child solutions must
inherit characteristics from their parents, and there must be gariability between the child
and parent. This is achieved by the use of the genetic operators: recombination and mutation.
Recombination operators require two or more parent solutions. The solutions (or the geno-
types, if the algorithm distinguishes between search and solution spaces) are ‘shuffled
together’ to generate child solutions. EAs normally use recombination to generate most or all
offspring. For example, ES often uses recombination to generate offspring, GAs typically use
recombination with a probability of 0.7, with the remaining offspring being clones of their
parents. Only EP uses no recombination at all.

® This is an oversimplification: in nature most creatures have an optimal fertility rate — if it is too low, none
may survive predation, if too high, the excessive cost of rearing all the offspring may cause all to die of
malnutrition. If the creature is unfit, it may have too many or too few offspring, with the net result that fewer
survive (Dawkins, 1976).

32 Evolutionary Design by Computers

Recombination is normally performed by crossover operators in EAs. Examples of the
working of various types of crossover were provided in the previous sections on specific EAs.

Mutation operators modify a single solution at a time. Some EAs mutate a copy of a par-
ent solution in order to generate the child, some mutate the solution during the application of
the recombination operators, others use recombination to generate children, and then mutate
these children. In addition, the probability of mutation varies depending on the EA. For
example, GAs use low probabilities, often between 0.01 and 0.001 per bit in the genotype,
whereas EP always uses mutation.

There are huge numbers of different mutation operators in use today. Examples include:
bit-mutation, translocation, segregation, inversion (GAs), structure mutation, permutation,
editing, encapsulation (GP), mutation directed by strategy parameters (ES and EP), and even
mutation using local search algorithms (memetic algorithms) (Goldberg, 1989; Koza, 1992;
Radcliffe and Surrey, 1994a; Back, 1996). The previous sections on EAs described some of
these further.

An important feature of both recombination and mutationas-disruption Although
variation between parent and child is essential, this variation should not produce excessive
changes to phenotypes. In other words, child solutions should always be near to their parent
solutions in the solution space. If this is not the case, i.e. if huge changes are permitted, then
the semblance of inheritance from parent to child solutions will be reduced, and their position
in the solution space will become excessively randomised. Evolution relies on inheritance to
ensure the preservation of useful characteristics of parent solutions in child solutions. When
disruption is too high, evolution becomes no more than a random search algorithm.

This is the reason why researchers are trying to improve the crossover and mutation oper-
ators of GP — the existing operators disrupt so many of the offspring that most are less fit than
their parents. This is also the reason why ES and EP use a normal distribution to guide their
mutation operators — the distribution encourages smaller mutations.

Replacement
Once offspring have been created, they must be inserted into the population. EAs usually main-
tain populations of fixed sizes, so for every new individual that is inserted into the population,
an existing individual must be deleted. The simpler EAs just delete every individual and
replace them with new offspring. However, some EAs (such as the steady-state GA and con-
tinuous EP) use an explicit replacement operator to determine which solution a new child
should replace. Replacement is often fithess-based, i.e. children always replace solutions less
fit than themselves, or the weakest in the population are replaced by fitter offspring. Indeed,
the use of fithness-based replacement exemplifies the famous Darwinian phrase ‘survival of the
fittest’, for by replacing all the less-fit solutions, the fittest literally have an increased chance
of survival.

Replacement is clearly a third method of introducing evolutionary pressure to EAs, but
instead of being a selection method, it isegative selectiomethod. In other words, instead
of choosing which individuals should reproduce or how many offspring they should have,
replacement chooses which individuals will die. (Negative selection also takes place within
immune systems; recent work using computers to evolve artificial immune systems uses
negative selection as the sole purveyor of evolutionary pressure (Forrest et al., 1995)).

An Introduction to Evolutionary Design by Computers 33

Replacement need not be fithess-based, it can be based on constraint satisfaction, the sim-
ilarity of genotypes, the age of solutions, or any other criterion, as long as a fithess-based
evolutionary pressure is exerted elsewhere in the EA. Replacement is also limited by speciation
within EAs: a child from two parents of one species/population/island should not replace an
individual in a different species/population/island.

Kill

The fourth and final way to induce evolutionary pressure in an EA is very similar to the
replacement method. It involves ‘killing’ individuals based on some criterion, and conse-
guently is also a negative selection method. ‘Kill’ is related to replacement, but is subtly dif-
ferent. Replacement involves the comparison of a child with the solution it may replace. ‘Kill’
operates on a single solution — if the solution does not fulfil the criterion, it is removed from
the population. Also unlike replacement, the ‘kill" operator is usually used for constraint
satisfaction rather than to help generate fit solutions. (Non-continuous EP is the exception to
this — ‘kill' is used to remove the weakest half of the population after the generation of off-
spring.)

Typically, the child solution is ‘killed’ before it has a chance to reproduce. This may hap-
pen during initialisation or during reproduction, but in either case, once a solution has been
deleted, another attempt will be made to generate a solution (possibly using the same parents).
If every child that does not fulfil the criterion is deleted without exception, the maximum pos-
sible level of negative selection is exerted, i.e. every solution will always satisfy the criterion.
Simply deleting solutions in an EA is very much a brute-force method, often used to enforce
hard constraints. As will be described later in this chapter, this approach suffers from signifi-
cant drawbacks such as reduced diversity and increased difficulty of search for the EA.

‘Kill'can also be used as a ‘die of old age’ operator. This is normally achieved by record-
ing the number of generations each individual has been in the population in the EA and
‘killing’ solutions when they reach a maximum lifespan (although most will have been
replaced by fitter offspring long before then). Deleting older individuals can be a useful
method of preventing very fit individuals from becoming ‘immortal’ and corrupting evolution
by filling the entire population with their numerous progeny — particularly if the immortal
individual only received a good fithess score because of random noise in the fitness function
(Bentley, 1997).

Move

All evolutionary algorithms search populations of solutions in parallel, but most converge onto

a single point in the search space after a number of generations. If the fithess function has a
single optimal solution, this behaviour is acceptable, but if the fithess function is multimodal
(i.e., it has multiple optima), then it is often desirable to use an EA to converge on as many of
the separate optima as possible. This is achieved by evolving a humber of separate, non-inter-
breeding groups of individuals (sometimes referred to as separate populations, species, islands,
or deme}, and allowing each of these groups to converge onto potentially different optima.
Such EAs are often termgghrallel or distributed Other motivations for the use of these EAs
include the reduction of evaluation times and improvement of solution quality (Eby et al.,
1997).

34 Evolutionary Design by Computers

If the separate groups of individuals evolving in the EA never interact in any way, this
becomes equivalent to running multiple EAs at the same time, or running one EA many times.
However, by permitting the occasional migration or injection of an individual from one group
to another, the behaviour becomes distinct.

‘Move’ encompasses such operators in EAs. ‘Move’ operators allow characteristics evol-
ving in one group of individuals to be passed to another group of individuals, to help propagate
the best independently evolving features. Typically only a single individual is moved (or
migrated, or injected) at a time, and usually this occurs infrequently. Individuals may be ran-
domly chosen, or, more commonly, selected according to fithess. The ‘movement’ may also
involve a translation from one representation to another. Chapidére7Optimization of Fly-
wheels using an Injection Island Genetic Algoritiescribes this process in more detail.

Termination

Evolution by an EA is halted by termination criteria, which are normally based on solution
quality and time. Most EAs use quality-driven termination as the primary halting mechanism:
they simply continue evolving until an individual which is considered sufficiently fit (or for GP,
until a program with hits for every exemplar) has been evolved. Some EAs will also reinitialise
and restart evolution if no solutions have attained a specific level of fithess after a certain
number of generations.

For algorithms which use computationally heavy fitness functions, or for algorithms which
must generate solutions quickly, the primary termination criterion is based on time. Normally
evolution is terminated after a specific number of generations, evaluations, or seconds. In order
to reduce the number of unnecessary generations, some algorithms measure the convergenct
rates during evolution, and terminate when convergence has occurred (i.e. when the genotypes,
phenotypes or fitnesses of all individuals are static for a number of generations). Many EAs
also permit the user to halt evolution — an option often misused by more impatient users.

Some EAs do not use explicit termination criteria. These rare beasts are used to
continuously adapt to changing fitness functions, and so must evolve new solutions unceas-
ingly. Experiments have shown that EAs with self-adaptation (such as ES and EP) seem to pro-
vide the best results when trying to evolve solutions towards a ‘moving target’ (Back, 1996).
Harvey and Thompson (1997) describe a GA created for this purpose. Nevertheless, even these
EAs are subject to the most fundamental of termination criteria: a power failure.

1.3.6 From Evolutionary Algorithms to Evolutionary Design

This section of the chapter has introduced the concept of using compgessdiafor good
solutions in aearch spacelhe parallel searching mechanism used by evolutionary algorithms
was described, and the four major EAs were summarised: genetic algorithms, genetic pro-
gramming, evolution strategies, and evolutionary programming. The section concluded by
describing the general architecture of evolutionary algorithms, showing that all EAs are
fundamentally the same.

Having now explained how computers are used to perform evolution, the following
section describes how computers perform evolutionary design.

An Introduction to Evolutionary Design by Computers 35

1.4 Evolutionary Design

Evolutionary design has its roots in computer science, design, and evolutionary biology. It is a
branch of evolutionary computation, it extends and combines CAD and analysis software, and
it borrows ideas from natural evolution, see fig. 1.18.

The use of evolutionary computation to generate designs has taken place in many differ-
ent guises over the last 10 or 15 years. Designers have optimised selected parts of their designs
using evolution, artists have used evolution to generate aesthetically pleasing forms, architects
have evolved new building plans from scratch, computer scientists have evolved morphologies
and control systems of artificial life.

In general, these varied types of evolutionary design can be divided into four main
categoriesevolutionary design optimisatipereative evolutionary desigmvolutionary art
andevolutionary artificial life formssee fig. 1.19. As is usually the case with any kind of clas-
sification system, the work of a few researchers does not fall neatly within one category, but
may be included in two or more categories. Such work comprises four ‘overlapping’ types of
evolutionary desigrintegral evolutionary desigraesthetic evolutionary desigartificial life-
based evolutionary desigandaesthetic evolutionary A(Bentley, 1998a). Figure 1.19 shows
all of these areas of research and how they relate to each other.

This middle section of the chapter summarises the scope of research in each area of evo-
lutionary design. The aims and objectives of researchers in each area are described, and some
key contributions to the fields of research is examined. For each of the four major aspects of
evolutionary design, examples are provided of how designs are represented, which evolutionary
algorithms are used and what designs have been evolved.

Evolutionary
Computation

Computer
Science

Evolutionary
Biology

Evolutionary
Design

Biomimetics,
Comparative
studies

Figure 1.18 Evolutionary design has its roots in computer science,
design, and evolutionary biology.

36 Evolutionary Design by Computers

Evolutionary Design Creative
Optimisation . Evolutionary Design

Aesthetic
Evolutionary Design

Evolutionary

e Artificial Life Forms

Figure 1.19 Aspects of evolutionary design by computers.

1.4.1 Four Aspects

Evolutionary Design Optimisation

The use of evolutionary computation to optimise existing designs (i.e., petéaied design

or parametric designwas the first type of evolutionary design to be tackled. Over the last fif-
teen years, a huge variety of different engineering designs have been successfully optimised
(Holland, 1992; Gen and Cheng, 1997), from flywheels (Eby et al., 1997) to aircraft geometries
(Husbands et al., 1996). Other more unusual types of evolutionary design optimisation include
reliability optimisation (see Chapter 8) and techniques for solving the protein folding problem
(Canal et al., 1998).

Although the exact approach used by developers of such systems varies, typically this type
of evolutionary design cannot be classedj@serativeor creative(see next section). Practi-
tioners of evolutionary optimization usually begin the process with an existing design, and
parameterise those parts of the design they feel need improvement. The parameters are thel
encoded as genes, the alleles (values) of which are then evolved by an evolutionary search
algorithm. The designs are often judged by interfacing the system to analysis software, which
is used to derive a fithess measure for each design.

Phenotype representations for these design optimisation problems are application-spe-
cific, consisting of existing designs for that application, with the evolved parameter values
simply inserted into the corresponding parameterised elements. Artificial embryogenies (map-
ping or ‘growth’ stages from genotypes to phenotypes (Dawkins, 1989)) are often rudimentary
or non-existent, simply because they are not necessary for such evolutionary design. Because
of this, genotype representations may match phenotype representations closely, often with a
one-to-one mapping between genes and parameters. Consequently, the addition or deletion of

An Introduction to Evolutionary Design by Computers 37

genes in genotypes, and parameters in phenotypes, is usually not performed by the evolution-
ary algorithm for evolutionary design optimisation.

To illustrate this form of evolutionary design, consider the design of a four-legged table. A
typical approach to evolutionary design optimisation would be to parameterise part of the table
design — for example, the position and length of the legs — and use an EA to optimise the
values of those parameters for some criteria — for example, maximise the stability of the
table (Bentley and Wakefield, 1996b). As fig. 1.20 shows, phenotypes could consist of eight
parameters, with genotypes being 64 bits.

In this trivial example, the optimal solution is clearly a table design with all four legs the
same length, and with the legs placed at the four corners of the table top, fig. 1.20 (right).

As the example illustrates, evolutionary optimisation finds functionally optimal (or at least
functionally good) permutations of the form of existing designs. However, it is incapable of
changing the design concept (i.e. a table top resting on a single pedestal with a wide base will
never be ‘invented’).

Evolutionary optimisation places great emphasis upon finding a solution as close to the
global optimal as possible — perhaps more so than for any other type of evolutionary design.
Often designs that are already of good quality are to be improved, and it can be a challenge to
improve them at all. Because of this motivation towards global optimality, researchers tend to
concentrate on methods for evolutionary search which reduce any tendencies towards conver-
gence upon local optima. In addition, because the analysis software used to provide fitness
functions for solutions can have heavy computational demands, there is often a strong em-
phasis towards reducing the number of evaluations required before a final solution is found.

Numerous techniques have been tried to achieve these goals. To improve performance,
sometimes multiple genetic representations are used in parallel (see Chapter 7). Many complex
types of genetic algorithm are used (Gen and Cheng, 1997). For example, Husbands et al. (1996)

Phenotype:

Table consisting of fixed top and four legs defined by:
Length of leg 1, Distance of leg 1 from centre
Length of leg 2, Distance of leg 2 from centre
Length of leg 3, Distance of leg 3 from centre
Length of leg 4, Distance of leg 4 from centre

Genotype:

\ 11010110 10101101 10101110 10011010 01101010 10001010 11110010 00101110
Length 1 Distance 1 Length 2 Distance 2 Length 3 Distance 3 Length 4 Distance 4

Figure 1.20 Evolutionary optimisation of a table.

38 Evolutionary Design by Computers

describes the use of a distributed GA and a distributed GA hybridized with gradient descent
techniques to evolve the cross-section of optimal aircraft wingboxes. The research found that
hybrid GAs outperformed many other search algorithms for this problem (Husbands et al.,
1996).

TheEvolutionary Optimizatiosection in this book provides two chapters on ‘classic’ evo-
lutionary optimisation. In Chapter 6, Andy Keane descibes the minimisation of the structural
vibration of designs such as satellite booms, using a GA to minimise fitness values returned by
a statistical energy analysis package. Gordon Robinson also describes his work to optimise
strain in load cells. In Chapter 7, Erik Goodman describes the optimisation of flywheels using
GAs. Cross-sections of flywheels are parameterised (into a collection of height parameters)
and evolved, see fig. 1.21. Evaluation of structure is performed using multiple finite element
models (Eby et al., 1997). In Chapter 8, Mitsuo Gen and Jong Ryul Kim describe a more
unusual application for evolutionary optimisation: reliabity design. For more examples of
evolutionary optimisation of designs, see Gen and Cheng’s recent ®enktic Algorithms
and Engineering DesigfGen and Cheng, 1997).

Creative Evolutionary Design

Calling anything generated by computer ‘creative’ is fraught with ambiguity and controversy,
so this section will begin by attempting to define, for the purposes of evolutionary design, what
‘creative’ actually means.

Writing about this very subject in his paper ‘Computers and Creative Design’, Gero (1996)
makes the distinction between cognitive and social views, i.e. an individual can display cre-
ativity when designing, and a design can have characteristics which may be regarded as being
creative. Gero concentrates on the former definition, and concludes that a computer is design-
ing creatively when it explores the set of possible design state spaces in addition to exploring
parameters within individual design spaces. In other words, Gero indicates that by evolving the

Centre Centre

Generation 21 Generation 400

Figure 1.21 Goodman'’s evolutionary optimisation of flywheels.

An Introduction to Evolutionary Design by Computers 39

numberof decision variables in addition to evolving teduesof those variables, a computer

is being creative (Gero, 1996). In a similar vein, Boden (1992) suggests in hefhmake-

ative Mind that creativity is only possible by going beyond the bounds of a representation, and

by finding a novel solution which simply could not have been defined by that representation.

Boden, however, does not feel that computers are capable of such creativity (Boden, 1992).
Other definitions for creative design include: the transfer of knowledge from other

domains (see Chapter 4), having the ability to generate ‘surprising and innovative solutions’,

or the creation of ‘novel solutions that are qualitatively better than previous solutions’ (Gero

and Kazakov, 1996). However, for the purposes of this book, Rosenman’s description seems

most apt:

The lesser the knowledge about existing relationships between the requirements and the
form to satisfy those requirements, the more a design problem tends towards creative design
(Rosenman, 1997).

Consequently, the main feature that all creative evolutionary design systems have in com-
mon, is the ability to generate entirely new designs starting from little or nothing (i.e. random
initial populations), and be guided purely by functional performance criteria. In achieving this,
such systems often do vary the number of decision variables during evolution (Bentley and
Wakefield, 1997b; Rosenman, 1997). They can often generate surprising and innovative solu-
tions, or novel solutions qualitatively better than others (Bentley and Wakefield, 1997a; Harvey
and Thompson, 1997). Whether this means that these systems are really ‘designing creatively’,
or whether they simply generate ‘creative designs’, will be left for the reader to decide.

Research in the field of creative evolutionary design is concerned with the preliminary
stages of the design process. There are two main approaches. Both involve the use of
evolutionary computation to generate entirely new designs from scratch, however the level at
which these designs are represented is different:

Conceptual evolutionary design

—the production of high-level conceptual frameworks for designs

In this type of evolutionary design, the relationships and arrangements of high-level design
concepts are evolved in an attempt to generate novel preliminary designs. A good example of
this is the work of Pham, who describes his preliminary design system known as TRADES
(TRAnsmission DESigner) (Pham and Yang, 1993). TRADES uses a genetic algorithm to
evolve the organisation of a set of conceptual building blocks (such as rack and pinion, worm
gear, belt drive). When given the type of input (e.g. rotary motion) and the desired output (e.g.
perpendicular linear motion), the system generates a suitable conceptual transmission system
to convert the input into the output.

In these systems, evolution is used to search through the possible networks of intercon-
nected conceptual building blocks. The genotype and phenotype representations of these sys-
tems are often simple, with rudimentary embryogenies, if any. Returning to our ‘table’
example, the typical approach to conceptual evolutionary design would be to devise a number
of conceptual building blocks, each having a specific behaviour, and use evolution to find
a suitable organisation of the blocks to ensure that the whole design behaves as a table, see
fig. 1.22.

40 Evolutionary Design by Computers

Conceptual Building Blocks:

Q Flat surface Leg

function: supports objects, provides function: supports flat surfaces, three or
a stable base, has negligible height more provide stable base, has height
Phenotypes:
Flat surface
Flat surface T
Leg Leg Leg
Leg Leg
Flat surface
Genotype:

\ 0000 1111 0001 0000 0001 0000 0001 0000 0001 0000 \
Conceptl Ptrl Concept2 Ptr2 Concept3 Ptr3 Concept4 Ptr4 Concept5 Ptr5

Figure 1.22 Conceptual evolutionary design of a table.

The example uses only two conceptual building bloft&ssurfaceandleg, each of which
have their behaviours predefined. Phenotypes consist of networks of these concepts. Figure
1.22 shows the phenotype representation of a four-legged table (middle left) and a table with
its table top resting on a single pedestal with a wide base (middle right). If GP is used to evolve
these designs, the phenotypes could be directly modified, and the number of concepts would
be variable. If a GA is used to evolve the designs, a genotype representation similar to the
one shown in fig. 1.22 (bottom) would be required. It should be clear that, unlike evolutionary
optimisation, conceptual evolutionary design is capable of generating new design concepts.
However, such systems are inevitably limited to the building blocks and their functions which
have been provided by the designer.

Basic evolutionary algorithms are usually sufficient for conceptual evolutionary design.
There are always exceptions to every rule, however, and the work of Parmee provides such an
exception. Parmee (1996) describes the use of structured GA to evolve a large-scale
hydropower system (this is intended to take place at the feasibility/bid stages of the design
process, after the conceptual design stage). His advanced GA manipulates a design hierarchy
of ‘sites’, ‘dam types’, ‘tunnel lengths’, ‘modes of operation’, etc., and allows appropriate ele-
ments to be switched on or off by control genes during evolution (Parmee, 1996a). This work
is mentioned by lan Parmee in Chapter 5.

Generative evolutionary design (or genetic design)

—the generation of the form of designs directly

Using computers to generate the form of designs rather than a collection of pre-defined high-
level concepts has the advantage of giving greater freedom to the computer. Typically such
systems are free to evolve any form capable of being represented, and the evolution of such
forms may well result in the emergence of implicit design concepts (Bentley and Wakefield,

An Introduction to Evolutionary Design by Computers 41

1997a; Harvey and Thompson, 1997). However, the difficulty of this type of creative evolu-
tionary design is severe, since it often involves the creation of dynamically specified represen-
tations and complex evaluation routines (see below).

Often involving just the preliminary stages of design, the emphasis for this type of evolu-
tionary design is on the generation of novelty and originality, and not the production of
globally optimal solutions. Representations of form vary tremendously, but they do all share
certain features. Because the emphasis is on the generation of new forms, phenotype repre-
sentations are typically quite general, capable of representing vast humbers of alternative
morphologies (this is in contrast to representations for optimisation, which can only define
variations of a single form). Representations range from direct spatial partitioning (e.g. voxels),
which have one-to-one mappings between genes in genotypes and elements of phenotypes
(Baron et. al., 1997), to highly indirect representations which use shape grammars or cellular
automata (CA) with some advanced embryogenies to map genotypes to phenotypes (Frazer,
1995; Coates, 1997; Rosenman, 1997).

Figure 1.23 shows how a generative evolutionary design system approaches the task of
evolving a table. The initial population begins with randomly shaped ‘blobs’ (fig. 1.23, left),
and evolution is used to gradually fine-tune these shapes until they function as tables (fig. 1.23,
right). The representation is crucial for such systems — every part of the design must be alter-
able. In this example, designs (phenotypes) are represented by a number of blocks, defined by
their 3D position and size. Genotypes defirsired3D position and size genes. As alleles are
mapped to parameter values, the values may change slightly (i.e. two overlapping blocks are
‘squashed’ until they touch rather than overlap). Genotypes may define partial designs, which
are subsequently reflected to form symmetrical phenotypes (fig. 1.23, right). These simple
mapping processes mean that there is no longer a direct one-to-one mapping between genes

Phenotype:
X, ¥, z, width, height, depth of block 1 x, y, z, width, height, depth of block 2
X, ¥, Z, width, height, depth of block 3 X, y, z, width, height, depth of block 4
X, y, z, width, height, depth of block 5 ...x, y, z, width, height, depth of block 16

Genotype:
‘ 11010110 10101101 10101110 10011010 01101010 01101010 ... 10001010 10001010 10001010 ‘
desired desired desired desired desired desired ... desired desired desired
Xpos 1 ypos 1 zpos 1 width 1 height1 height 1 width 4 height 4 depth 4

Figure 1.23 Generative evolutionary design of a table.

42 Evolutionary Design by Computers

and parameters — the form of designs is affected by interactions between different genes. More
details of this type of representation and how it can be used in a generic evolutionary design
system are provided in Chapter 18.

Because designs are generated ‘from the bottom up’, generative evolutionary design has
yet to be used for the evolution of complex designs with moving parts. Nevertheless, this type
of creative evolutionary design is capable of greater creativity than conceptual evolutionary
design, as it uses only the fitness functions to provide guidance. It also overcomes potential
limitations of ‘conventional wisdom’ and ‘design fixation’ by evolving forms without the use
of knowledge of existing designs or design components.

The final section of this book explores this exciting type of creative evolutionary design.
For example, Mike Rosenman describes the use of a GA to evolve house plans, using a design
grammar of rules to define how polygons should be constructed out of edge vectors (Chapter
15). John Koza uses genetic programming (GP) to evolve novel analogue circuits (Chapter 16).
John Gero attempts to evolve new higher-level representations of form, suitable for subsequent
evolution of house plans in a specific architectural style (Chapter 15).

Simple evolutionary algorithms are often sufficient for the design systems that employ
simpler representations (Baron et al., 1997). However, for creative evolutionary design systems
with advanced representations and corresponding embryogenies (e.g. to ‘grow’ phenotypes
from a set of shape-grammar rules defined in the genotypes), more advanced EAs are essen
tial. Typically, these EAs are used to evolve the larger structure of the representation (e.g. num-
ber and organisation of shape-rules) in addition to the detail (e.g. type and content of the
individual rules). In other words, these EAs are capable of evolving designs which have rep-
resentations of variable length — they explore new and different search spaces in addition to the
parameter values within each space (Bentley and Wakefield, 1996a). Typically, GAs and GP
are used to evolve these highly variable forms (Frazer, 1995; Bentley and Wakefield 1997b;
Coates, 1997), usually beginning from random, simple forms, and gradually improving the
structure and detail of these designs until some functional criteria are met. The objective of this
type of research is not normally to use computers to generate a single global optimal solution,
but rather to generate a number of ‘creative’ alternatives. The evaluation of designs can be
more difficult, since most off-the-shelf analysis packages are limited to judging specific types
of designs — when presented with some of the initially random forms generated by these sys-
tems, they simply generate errors. Consequently, many of these systems rely on simplified cus-
tom-written evaluation routines, which can analyse everything presented to them, but perhaps
not always with the desired accuracy (Bentley and Wakefield, 1997b).

However, this is one of the most recent and exciting types of evolutionary design, and is
already showing great potential in a number of application areas. Chapter 18 describes the
evolution, from scratch, of a number of unusual and inventive designs for numerous applica-
tions, such as tables, heatsinks, optical prisms, aerodynamic and hydrodynamic forms, etc., see
fig. 1.24. In Chapter 17, Jordan Pollack demonstrates the use of a GA to evolve novel bridge
and crane structures, which are subsequently built as LE@Odels. An application area
currently receiving much media attention is ‘evolveable hardware’, where new logic circuits are
evolved and evaluated in real silicon using FPGAs. Evolution is also how being used to gener-
ate analogue circuits (described by John Koza in Chapter 16). Already some surprising and novel
electronic solutions have been found using these techniques (Harvey and Thompson, 1997).

An Introduction to Evolutionary Design by Computers 43

S
g Ko

Figure 1.24 Examples of creative evolutionary design.

Evolutionary Art

Evolutionary art is perhaps the most commercially successful type of evolutionary design.
Although academic research in this area is less common than in the other fields, there are more
evolutionary art products available today than any other type of evolutionary design system
(see Chapter 11 for a review).

Most evolutionary art systems tend to resemble each other closely. They all generate new
forms or images from scratch (random initial populations). They rely completely upon a
human evaluator to set fithesses for each member of the population — normally based on aes-
thetic appeal. Population sizes are usually very small (often less than ten individuals), to allow
them all to be quickly judged every generation. User-interfaces are often similar, with mem-
bers of the current population shown on the screen in the form of a grid, allowing the user to
rank them, or assign fithess scores by clicking on them with a mouse.

The main differences between these systems lie in their phenotype representations. A
large variety of alternative representations have been employed, from fractal equations
(such as John Mount’s ‘Interactive Genetic Art’, which is shown on-line at http://www.
geneticart.org/), to recursive grammar-rules using constructive solid geometry (Todd and
Latham, 1992).

These representations are created with different intentions. For example, Dawkins’ recur-
sive tree-like structures were intended to resemble the recursive embryogenies found in nature,
in the hope that natural looking forms would emerge (Dawkins, 1986, 1989). Todd and
Latham'’s representation was based upon repeated elements such as spheres and tori, used to
form ‘horns’ and ‘ribs’ out of which images are constructed (Todd and Latham, 1992). Colour
and texture can also be incorporated into these representations (Dawkins, 1989; Sims, 1991;
Todd and Latham, 1992).

44 Evolutionary Design by Computers

Perhaps surprisingly, many of the representations are evolved with fixed structures (e.g.
Todd and Latham (1992) hand-designed the structures of forms, then evolved the detail within
these structures). Allowing evolution to vary structures (e.g. change the number of rules or
primitive shapes), as is done in creative evolutionary design, could possibly increase the
creativity of such systems.

Returning once again to the ‘table’ example, fig. 1.25 (left) shows the type of primitive
shapes an evolutionary art system might use to represent forms. Figure 1.25 (right) shows an
‘artistic table’ generated from such shapes. As this example shows, it is quite common for the
artist to employ a shape description language to specify the fixed structure of the designs to
be evolved. In the example, each ‘artistic table’ must be constructed from an ellipse and a
variable number of differently positioned and rotated swirls. This structure then defines how
many genes will be evolved by the system, and how the values of the genes will be used to
generate the phenotypes, i.e. the shape description language defines the genome and embryo
geny for evolutionary art systems. By evolving the values of the genes, a number of unusual
and hopefully aesthetically pleasing designs (some of which may behave as tables) will
emerge.

Evolutionary art is an effective way of creating highly original and unusual pieces of art,
but it is rarely used to generate anything as practical as a table. Since forms are not analysed

9 ®

Phenotype:
Ellipse, width 80, height 50, depth 4, rotated by 90 degrees
Spiral, radius 40, curliness 4, depth 6, shifted horizontally by 50, vertically by -20
Spiral, radius 40, curliness 4, depth 6, shifted horizontally by 50, vertically by -20, rotated 90 degrees
Spiral, radius 40, curliness 4, depth 6, shifted horizontally by 50, vertically by -20, rotated 180 degrees
Spiral, radius 40, curliness 4, depth 6, shifted horizontally by 50, vertically by -20, rotated 270 degrees

Fixed structure (embryogeny)
using Shape Description Language:

Table = { Ellipse (width, height, depth)
YZ_Rotate (angle) }
{Leg
X_Shift (distance)
Y_Shift (distance)
Rotate & Duplicate (angle, #duplicates) }

Leg= Spiral (radius, curliness, depth)
Genotype:
| 80 50 4 90 40 4 6 50 -20 90 4 |

width height depth angle radius curliness depth distance distance angle #duplicates

Figure 1.25 Evolving ‘artistic tables’.

An Introduction to Evolutionary Design by Computers 45

for their functionality (although users may be able to choose forms which appear more func-
tionally valid than others), the output from evolutionary art systems is usually attractive, but
non-functional.

One undesired side-effect of many of these representations is that they generate pieces of
art which have very distinct styles. Often the style of form generated using a particular repre-
sentation is more identifiable than the style of the artist used to guide the evolution. This can
cause problems if the artist wishes to take the credit for the piece. The cause of this ‘style prob-
lem’is perhaps due to the initial preconceptions and assumptions of the designer of the repre-
sentation. By limiting the computer to a specific type of structure, or a specific set of primitive
shapes and constructive rules, it will inevitably always generate forms with many common and
identifiable elements.

Because evolution is guided by a human selector (i.e. the ‘fitness function’is an artist), the
evolutionary algorithm does not have to be complex. Evolution is used more as a continuous
novelty generator, not as an optimiser. The artist is likely to score designs highly inconsistently
as he/she changes his/her mind about desirable features during evolution¢caatitheous
generation of new forms based on the fittest from the previous generation is essential. Conse-
quently, an important element of the EAs usembis-convergencdf the populations of forms
were ever to loose diversity and converge onto a single shape, the artist would be unable to
explore any further forms. Because of this, most evolutionary art systems do not employ
crossover within their EAs. Typically only mutation is used, with all offspring being mutated
copies of their parents (and often only a single parent is used per generation). This mutation-
driven evolution is similar to the approach used in EP and ES, which are known to be excellent
for finding solutions to problems with continuously changing fitness functions (Back, 1996).

Examples of such systems include Dawkins’ biomorphs program (included on the CD-
ROM) (Dawkins 1986, 1989), Todd and Latham’s evolutionary art (described in Chapter 9),
Rowbottom’s Evolutionary Art (described in Chapter 11, and shown in fig. 1.26) and Sims’
evolved computer graphics (Sims, 1991). Today, numerous evolutionary art systems are avail-
able on-line (see Chapter 11).

Evolutionary Artificial Life-forms

Evolutionary computation plays a significant role in many aspects of the new field of computer
science known as artificial life (AL). Artificial ‘brains’, behaviour strategies, methods of com-
munication, distributed problem solving and many other topics are commonly explored using
genetic algorithms and other evolutionary search techniques (Cliff et al., 1994).

Although all types of evolved AL could be described as aspects of evolutionary design, it
is clear that certain topics within AL fall into the ‘evolutionary design’ category more com-
fortably than others. For the purposes of this book, AL research that can be readily categorised
as an aspect of evolutionary design will be defined as research which aims to evolve ‘artificial
life-forms’. Examples of evolutionary AL-forms include: Lohn’s cellular automata (CA)
evolved to be capable of self-replication (Lohn and Reggia, 1995), Harvey’s evolved layout
and structure of neurons (Harvey, 1997), and the evolved plant-like and animal-like mor-
phologies of Dawkins (1986, 1989) and Sims (1994a,b)

Motivations for the creation of evolutionary AL-forms are usually theoretical. The goals of
such research are often to discover more about the mechanisms of natural evolution, to find

46 Evolutionary Design by Computers

Parent 1 2

3| a

Figure 1.26 Rowbottom’s evolutionary art.

explanations of forms observed in nature, or to exploit the solutions proven in nature by
attempting to duplicate them. Often the evolved AL-forms show the enormous potentials of
this type of evolutionary design, but as yet, practical applications are still scarce.

To illustrate this type of evolutionary design, we return to the ‘table’ example one final
time. However, instead of a static table, we now require a robot/virtual creature/animat cap-
able of carrying objects around — a robot waiter, perhaps. Figure 1.27 shows the dual nature of
these designs: evolutionary AL-forms typically involve the evolution of the form (or some
aspect of the form) and the brain. In this example, the form, or ‘body’ is defined by a collec-
tion of variable-sized blocks (which may be ‘sensors’, ‘body’ or ‘muscles’). The ‘brain’ is
defined by a network of neurons which receive input from ‘sensory blocks’ and produce out-
put to the ‘muscle blocks’. Each part of the phenotype is encoded as a variable-length chromo-
some in the genotype. The fithess function judges phenotypes on their ability to move whilst
keeping the flat upper surface level. Over time, evolution will co-evolve both chromosomes
in individuals to generate a virtual creature capable of supporting objects and movement in a
virtual world.

Figure 1.27 shows just one example of how such animats can be represented. In reality,
representations are typically specific to each system. For example, Lohn and Reggia (1995)
use CA ‘rule tables’ within the chromosomes of their GA. Sims (1994a,b) uses a hierarchi-
cal chromosome structure to define both ‘brain’and ‘body’. Ventrella (1994) combines ordered
morphology and control parameters of his animats in a flat chromosome structure, as does
Harvey et al. (1993) for his evolved robots. Many of these representations are inspired by the
genotype structure of natural organisms, and some researchers have attempted to evolve AL-
forms with complex embryogenies. Other researchers invent their own intricate coding
schemes (CIiff et al., 1994). Most such representations are highly flexible and of variable
length, requiring complex genetic operators with the EAs.

An Introduction to Evolutionary Design by Computers 47

/_\‘ musclel
sensorl

muscle2

sens% 6
N> muscle3
sensor3
/—\
muscle4

Phenotype:
body
type, X, y, z, width, height, depth of block 1 type, X, y, z, width, height, depth of block 2
type, x, y, z, width, height, depth of block 3 ... type, x, y, z, width, height, depth of block 9
brain
sensorl excites neuron 1, weight 5 neuron2 inhibits neuron 5, weight 0
neuronl excites neuron 6, weight 6 sensor3 excites neuron 3, weight 8

sensor2 excites neuron 2, weight 4 ... neuron 3 excites neuron 9, weight 4,
neuron2 excites neuron 4, weight 3 output of neuron 9 to muscle4
Genotype:

Chromosome 1
\ 11 11010110 10101101 10101110 10011010 01101010 01101010 ... 10001010 10001010 10001010\

typel xpos 1 ypos 1 zpos 1 width 1 height 1 depth1 ... width9 height 9 depth 9
Chromosome 2
\ 0000 10 1001 1 0110 1 1110 \
neuronl neuronltype neuronl linkl neuronl linkl neuronl link2 neuronl link1 ... neuron9 link2
marker (in/intl/out) type (ex/inhib) type (ex/inhib)

Figure 1.27 Evolutionary artificial life form.

Because research in this field is still very much at the ‘blue-sky’ stage, evolutionary tech-
niques are often used as exploration tools, in a similar way to evolutionary art. These algo-
rithms can be used to generate multiple solutions, incorporating niching, speciation,
parasitism, competition, co-operation and other advanced methods (Cliff et al., 1994). Evalu-
ation usually consists of analysing behaviour in simulated virtual worlds (although some
researchers do test solutions using real robots (Harvey, 1997)), and can be very time-consum-
ing. To try to shorten evolution run-times, advanced methods are commonly used, e.g. steady-
state GAs, parallel GAs, hybrid GAs (CIiff et al., 1994). Many systems that evolve AL-forms
also use changing fitness functions, which necessitate the use of other specialised genetic
search techniques (Harvey, 1997). Most systems evolve the forms from scratch (the initial
population is random), however some occasionally seed initial populations with the fittest
individuals from previous runs (Sims, 1994b). Figure 1.28 shows perhaps the most notable
work in this field: Sims’ evolved virtual creatures (see Chapter 13 for full details).

1.4.2 Combining Good Ideas by Merging the Boundaries

Many researchers confine themselves to one of the four aspects of evolutionary design men-
tioned above, and seem loath to consider alternative approaches. However, more recently,
some have begun to combine ideas from one or more of these areas in their work. This is

48 Evolutionary Design by Computers

. g

Figure 1.28 Sims’ evolved atrtificial life forms.

leading to four more (still very new and relatively unexplored) ‘overlapping’ areas of research
in evolutionary design (see fig. 1.19).

Integral Evolutionary Design

The evolution of engineering designs is becoming widespread today, with numerous academic
engineering design centres exploring these ideas. Although most research seems to fall into
either the evolutionary optimisation category, or the creative evolutionary design category, some
work does attempt to combine the two into unifiedirdegral evolutionary design systems.

For example, Parmee suggests that computers can be used within the entire design process
both the early conceptual design stages and the later, detailed design stages, by using a num
ber of adaptive techniques. He discusses how the use of several different systems, each dedi-
cated to a specific stage of design could be used in combination, thus ‘integrating adaptive
search at every stage of the design process’ (Parmee, 1996a). lan Parmee gives more details C
these ideas in Chapter 5.

Alternatively, Chapter 18 describes the investigation of the use of a single generic
evolutionary design system, to perform the complete design process without making any dis-
tinction between the stages of design. (It is ‘generic’ because it is capable of evolving designs
for multiple different design tasks.) This work has shown that it is possible to use a computer
to evolve new designs from scratch, and optimise them, such that they fulfil specific functional
criteria (Bentley and Wakefield, 1996b, 1997a,b).

With many optimisation systems beginning to be applied to more and more detailed
parameterisations of designs, and many creative design systems beginning to be used to
optimise the designs they generate, the field of integral evolutionary design looks set to grow
rapidly.

Artificial Life-based Evolutionary Design

Work in artificial life has generated forms of astonishing diversity and creativity, so some
researchers are now using some of the techniques from AL in their creative evolutionary design

An Introduction to Evolutionary Design by Computers 49

systems, in an attempt to improve the quality and originality of evolved engineering designs.
For example, Parmee (1996b) borrows distributed agent methods from AL to increase per-
formance of search, in his ‘ant colony’ method, which he combines with evolutionary search.
Coates (1997) employs L-systems with GP to evolve new architectural forms (described in
Chapter 14).

Many other unexplored possibilities still exist in this area. For example, Bonabeau et al.
(1994) describes an AL computer simulation of a swarm of artificial wasps, which build intri-
cate three-dimensional nest architectures. One future avenue of research may be to evolve
artificial wasps capable of building new engineering designs between them.

Aesthetic Evolutionary Artificial Life

The evolution of aesthetically pleasing AL was perhaps first performed by Dawkins (1986), who
hand-selected his artificial ‘biomorphs’ for reproduction in exactly the way artists select their
forms using evolutionary art systems. Ventrella (1994) has taken this one step further, and has
evolved aesthetically pleasing animats which resemble animated stick-men. These are evolved
for their ability to walk naturally in a virtual world, and evolution is also guided by the aes-
thetic judgement of the user. Alternatively, Lund et al. (1995) and Tabuada et al. (1998)
describe neural networks which judge the aesthetics of evolving images.

Although to date there have been few applications to benefit from this area of research, the
use of computers to evolve amusing or attractive animated characters may well be lucrative in
the computer games industry, or for television advertisements.

Aesthetic Evolutionary Design

The evolution of aesthetic designs is an area of research with obvious importance, which
should perhaps receive more attention than it does. Few designs are purely functional, most are
chosen partly because of their aesthetics, and some functionally outstanding designs are dis-
carded purely because of their ugly appearance. Furuta et al. (1995) describes an approach in
which bridge designs can be optimised using GAs, based on their appearance, using ‘psy-
chovectors’ to quantify the aesthetic factors of the structures. Frazer (1995) describes his sub-
stantial and pioneering research on the evolution of architectural forms, using a combination
of formal analysis and aesthetic guidance from designers. Husbands et al. (1996) describes the
evolution of 3D solid objects resembling propellers, using a superquadric shape-description
language and guided by ‘the eye of the beholder’.

1.4.3 Recommended Reading for Evolutionary Design

Advances in Design Optimization
by Hojjat Adeli (Ed) (1994).

Genetic Algorithms and Engineering Design
by Mitsuo Gen and Runwei Cheng (1997).

Artificial Intelligence in Design '94, '96 & '98
by John Gero and Fay Sudweeks (Eds) (1994, 1996, 1998).

50 Evolutionary Design by Computers

Modeling Creativity and Knowledge-Based Creative Design
by John Gero and Mary Lou Maher (Eds) (1993).

An Evolutionary Architecture
by John Frazer (1995).

The Creative Mind: Myths & Mechanisms
by Margaret Boden (1992).

Evolutionary Art and Computers
by Stephen Todd and William Latham (1992).

The Blind Watchmaker
by Richard Dawkins (1986).

Climbing Mount Improbable
by Richard Dawkins (1996).

Avrtificial Life: an Overview
by Chris Langton (Ed) (1995).

Artificial Life: Grammatical Models
by Gheorghe Paun (Ed) (1995).

Modern Heuristic Search Methods
by Victor Rayward-Smith et al. (Eds) (1996).

Soft Computing in Engineering Design and Manufacturing
by P. K. Chawdhry, R. Roy and R. K. Pant (Eds) (1997).

Advances in Soft Computing — Engineering Design and Manufacturing
by R. Roy, T. Furuhashi and P. K. Chawdhry (Eds) (1998).

1.4.4 From Perusals to Problem Solving
In summary, this middle section of the chapter has described how computers are used to per-
form evolutionary design. The four main aspeeislutionary design optimisatiporeative
evolutionary desigrevolutionary arf andevolutionary artificial life formswere surveyed in
detail. In addition, the four ‘overlapping’ types of evolutionary desigtegral evolutionary
design aesthetic evolutionary desigartificial life-based evolutionary desigandaesthetic
evolutionary Alwere introduced.

Having now explained both evolutionary computation and evolutionary design by com-
puters, the final major section of this chapter discusses some of the significant technical issues
faced by developers of evolutionary design systems.

1.5 Enumerations, Embryogenies and other Problems

There are a number of common problems encountered when attempting to perform evolution-
ary design using computers. As is usual when applying the techniques of evolutionary compu-
tation to anything, there are issues related to the fithess functions, such as noisy functions,

An Introduction to Evolutionary Design by Computers 51

discontinuous functions, and multimodal functions (Bentley and Wakefield, 1996¢; Parmee,
1996a). lan Parmee discusses some of these in Chapter 5. There are, however, some more
specific problems that typically arise more often with evolutionary design (Roston, 1997).

1.5.1 Enumerating the Search Space

Before an evolutionary algorithm can be applied to a problem, a suitable genotype and pheno-
type representation must be created. The genotype representation enumerates the search space
of the problem, i.e. it defines which genotypes should be next to each other in the search space.
The phenotype representation enumerates the solution space, i.e. it defines which phenotypes
should be next to each other in the solution space. Both spaces must be carefully designed to
ensure that the task of finding good solutions is not made any harder than it needs to be. The
key thing to remember when developing these representations is that two genotypes which are
closeto each other in the search space should map onto two solutions whsahikmeto each
other in the solution space. In other wordsmall change in the genotype should produce a
small change in the phenotyp@f the EA makes no distinction between genotypes and
phenotypes, this equates tm:small change in the value of any decision variable should
produce a small change in the desjgn

To illustrate this concept, consider the problem of evolving a two-dimensional rectangle of
specific size. Figures 1.29 and 1.30 show two ways in which the genotypes and corresponding
phenotypes can be represented for this problem. In fig. 1.29, the genotype representation
defines the path of a turtle using the three instructions: ‘forwards’ (F), turn right ‘R’, and ‘turn
left’ (L). The rectangle phenotype is defined by the starting and ending positions of the turtle. It
should be clear from the example that this is a very poor genotype representation — a small
change in the genotype will often cause a big change in the phenotype. Alternatively, fig. 1.30
shows a genotype representation which defines the corners of a rectangle using angle and
length parameters. This representation is far more conducive to search — a small change in the
genotype will usually produce a small change in the phenotype.

The first genotype representation is worse than the second because its enumeration of the
search space is very discontinuous: genotypes that map onto very dissimilar phenotypes are

o

>

FFRFFLFRFRFFRFF width, height FFRFFLFLFRFFRFF width, height
Genotype Phenotype Genotype Phenotype

Figure 1.29 Representing rectangles using the start and end points of a turtle trail. Note how the
smallest possible change in the genotype causes a very large change to the phenotype.

52 Evolutionary Design by Computers

—» —»

length angle width, height length angle width, height
00101010 00010101 00101010 000600101
Genotype Phenotype Genotype Phenatype

Figure 1.30 Representing rectangles using length and angle parameters. Note how a small
change in the genotype causes a small change to the phenotype.

placed next to each other in the search space. Evolution relies on inheritance with a small
degree of variation to ensure that most offspring resemble their parents and thus have similar
fitnesses to their parents. If the search space is too discontinuous, then every application of
crossover or mutation will generate offspring which hardly resemble their parents at all. This
reduces the effectiveness of traversing from parent solution to child in the search space, and
the search deteriorates into random exploration. As mentioned earlier in the chapter, this effect
is caused by the genetic operators disrupting the parent solutions too much. It should now be
clear that the level of disruption is often determined by the representations employed in the EA
(a poor representation will be disrupted by all standard operators — and may require the
creation of specially designed ‘non-disruptive’ operators).

Poorly designed representations are most problematical towards the end of an evolution-
ary run. As the population converges onto a small area of the search space, fine-tuning these
solutions becomes nearly impossible if every minor change in the genotype causes a major
change in the phenotype. Consequently, to ensure the successful evolution of good designs, all
representations should be created with care.

Often, the hardest type of representation to design is a genotype representation which
incorporates some form efnbryogenyo ‘grow’ phenotypes from the genotypes. Such repre-
sentations often use chains of rules which are epistatically linked — removing or altering one
rule can radically alter the action of many others, resulting in major phenotypic changes.

1.5.2 Designing Embryogenies

As mentioned earlier, an embryogeny is an advanced form of mapping, from genotypes to
phenotypes. Embryogenies have a number of advanced features:

Compression Because of their ability to allow simple genotypes to define complex
phenotypes, many of these mappings resemble compression techniques, with genes
performing more than one function during the development of the phenotype.

Repetition. Properly designed embryogenies can improve the ability of evolution to gen-
erate solutions with repeating structures such as symmetry, segmentation, and subroutines.
Adaptation. This is one of the most significant features of the use of embryogenies. It is
possible to ‘grow’ phenotypes from genotypes adaptively, allowing constraints to be
satisfied (Yu and Bentley, 1998), improvement to variable conditions, and correction of

An Introduction to Evolutionary Design by Computers 53

malfunctions in designs (Sipper, 1997). Such adaptation seems likely to play significant
roles in future applications of evolutionary design. For example, if the problem was to
evolve a building which had good access to fire exits, various simulations modelling ‘vir-
tual people’trying to escape fires could be performed during the ‘growth’ of each building,
thus ensuring that the final design was developed to maximise access (and satisfy the
constraint).

Unfortunately, embryogenies can suffer from some drawbacks:

Hard to design All types of embryogeny require careful design, and to date, only those
few researchers capable of performing this difficult art have demonstrated successful
results.

Hard to evolve Many embryogenies introduce problems for evolutionary algorithms.
Bloat, epistasis and excessive disruption of child solutions is common, resulting in the
need for carefully designed genetic operators.

In nature, embryogenies are defined by the interactions between genes, their phenotypic
effects and the environment in which the embryo develops. In evolutionary design by com-
puters, we can define embryogenies in three main veayetnally explicitly, andimplicitly.

External (non-evolved) Embryogenies

Embryogenies are, in a very real sense, complex designs in their own right. Most embryo-
genies are hand-designed and are defined globally and externally to genotypes. For example,
evolutionary optimisation systems usually use very simple, fixed, non-evolveable mapping
procedures to specify how the genes in the genotype are mapped to the parameters in the
phenotype. Evolutionary art systems often use more complex embryogenies defined by fixed,
non-evolveable structures which specify how phenotypes should be constructed using the genes
in the genotypes (see section 1.4.1, and Chapter 9). The advantage with such external embryo-
genies is that the user retains more control of the final evolved forms, and can potentially
improve the quality of evolved designs by careful embryogeny design. In addition, this type of
embryogeny produces the fewest harmful effects for evolution, and requires no specialised
genetic operators. The disadvantage of this approach is that these embryogenies are not evolved,
so they remain static and unchanging during the evolution of genotypes. This does not neces-
sarily imply that the evolved designs will be any less fit, but it does mean that the designer of the
embryogeny must take care to ensure that this complex mapping process will always perform
the desired function. Figure 1.31 provides a simple example of an external embryogeny.

Explicit (evolved) Embryogenies

If each step of an embryogeny is explicitly specified in a data structure, the embryogeny re-

sembles a computer program. Designs are ‘grown’ by following the instructions in this program,

and these instructions may contain conditional statements, iteration, and even subroutines.
Although it is possible to hand-design such ‘programs’, genetic programming allows us to

evolve them. Typically, the genotype and embryogeny are combined, allowing the evolution of

both simultaneously. Clearly, this approach avoids the need to hand-design embryogenies, and

54 Evolutionary Design by Computers

genotype exter nal embryogeny phenotype
Shape: gene 0
1010 1110 0011 0010 Offset: gene 1
Rotate: gene 2
Shrink: gene 3

If outer extents of design >
bounding box, then shrink design.

If an existing design obstructs
current design, then‘grow’ current
design around the existing design

Figure 1.31 An example of an external embryogeny. Note how the embryogeny is adaptive,
ensuring that the phenotype fits within a bounding box, and forcing the phenotype
to ‘grow’ around a circular obstacle.

allows the emergence of adaptive mapping from genotype to phenotype (i.e., different initial
conditions acting on conditional statements could trigger the growth of different phenotypes).
There are some disadvantages, however. The creation of suitable representations can be diffi-
cult. Successfully evolving such representations can also be difficult (often specialised genetic
operators are required to ensure disruption is minimised (Koza et al., 1998)). In addition,
because the complete embryogeny process must be defined explicitly, advanced features suct
as iteration, subroutines and recursion must be manually added to the GP system — they can-
not emerge spontaneously (see below).

Figure 1.32 gives a simple example of an explicit embryogeny. For a more detailed example
of the use of explicit embryogenies, readers should consult Chapter 16, which summarises the
use of David Andre’s cellular encoding embryogeny to evolve analogue circuits using GP.

Implicit (evolved) Embryogenies

Natural evolution does not use externally defined embryogenies, nor does it explicitly
represent embryogenies in our genes. Instead, natural evolution uses highly indirect chains of
interacting ‘rules’ to generate complex embryogenies, which result in the development of liv-
ing creatures. The flow of activation is not completely predetermined and preprogrammed, it
is dynamic, parallel and adaptive.

To summarise in very simple terms, natural embryogenies use chemicals surrounding each
cell to activate or suppress genes within the chromosomes of the cell, triggering patterns of cel-
lular growth. Cellular death, differentiation, and the production of chemicals is also triggered
by genes. Living creatures are grown in wombs or eggs with chemicals carefully placed to
guide the early development of the embryo. As embryos develop, complex chains of gene ac-
tivation occur, cells grow and die to form the appropriate shapes, and cells are differentiated to
perform specialised functions. Even the movement of the developing muscles of the embryo
affects the development and placement of cells.

Few researchers have explored the use of implicit embryogenies for evolutionary design,
and yet the potential advantages of this approach are significant. Because of the way in which

An Introduction to Evolutionary Design by Computers 55

phenotype

genotype and explicit embryogeny

Figure 1.32 An example of an explicit embryogeny, incorporated into the genotype. Note how
the embryogeny is adaptive, varying the phenotype depending on ‘Value'. Also note that the
same evolved embryogeny will generate different phenotypes if provided with a different

initial starting shape.

genes can be activated and suppressed many times during the development of phenotypes,
because the same genes can be used to specify multiple functions, and because of the inherent
parallelism of gene activation, such implicit embryogenies go far beyond today’s genetic pro-
gramming. Through emergence during evolution, these implicit embryogenies incorporate all
concepts of conditional iteration, subroutines, and parallel processing which must be manu-
ally introduced into explicit GP embryogenies. There is a serious disadvantage with the use

of implicit embryogenies, however. Currently, the design of suitable genetic representations is
proving prohibitively difficult, with very few useful designs having been evolved using this
approach. Figure 1.33 shows a simple example of an implicit embryogeny. For some more
detailed examples, readers should consult Chapter 12 by Hugo de Garis.

From Embryogeny to Ontogeny

Embryogeny defines the growth of a phenotype from zygote to new-born baby. Ontogeny
defines the growth (as specified by its genes) throughout the life of the phenotype. In nature,
our genes continue to affect our bodies and behaviour throughout our lives, defining when we
become sexually mature, how we grow, which diseases we will be immune to, and even affect-
ing aspects of our personalities and behaviour tendencies. To date there has been little research
performed on evolving and growing adult designs from child designs (basing fitness on the
life-time functionality of the design). Yet it is clear that our designs do often go through such
growth and change. For example a mature ‘adult’ building can be very different from the
‘child’ building designed by an architect, as walls and facades are added and removed, roofs
replaced, extensions added. If approximations of such phenotype growth were also incor-
porated into the genetic description (as an ontogeny) it might be possible to evolve designs

56 Evolutionary Design by Computers

genotype with implicit embryogeny decoded genotype

01010101 1010110101010110 RULE 0: IF AWEAK, C WEAK THEN:

11101101 1011101011010111 GROW TOWARDS A, EMIT B

00111010 1001101011101011 RULE 1: IF A STRONG THEN:

01101011 1000110101101010 GROW AWAY FROM A PARALLEL TO B, EMIT C

RULE 2: IF AWEAK, C STRONG THEN:
GROW AWAY FROM A, TOWARDS B
RULE 3: IF AWEAK, B STRONG, C STRONG THEN:
GROW TOWARDS A, AWAY FROM B

applyingrules 2,3 applyingrule 0 phenotype

Figure 1.33 An example of an implicit embryogeny in a genotype. The decoded genotype

provides an English description of the rules defined by the genes. Various components of

the phenotype are grown towards and away from the chemicals A, B and C, by switching
on and off rules. Note the reuse of rule 0.

which remain useful for many years, instead of simply evolving designs which satisfy certain
criteria at ‘birth’.

Our genes also control aspects of our bodies’ repair mechanisms: continuously defining
where cells should grow, and what type of cells they should be, to replace dying cells. By
evolving designs which have self-repair mechanisms defined in their genes, the possibility of
designs that can automatically correct faults within themselves becomes conceivable. Moshe
Sipper (1997) is leading research in this area, by attempting to evolve electronic hardware
capable of surviving ‘injury’.

1.5.3 Epistasis

Epistasis means the ‘degree of dependency’ between multiple genes in a chromosome.
Significantly, epistasis is all abogenesacting in combination to produs®lutions Conse-
quently, epistasis is defined by the genotype (and embryogeny) representation, and not by the
fitness functior.A genetic representation with high epistasis may have many genes whose

" Epistasis causes confusion in the GP community, as practitioners of GP make no distinction between
genotypes and phenotypes, so the epistatic properties of conditional statements in the evolved programs only

An Introduction to Evolutionary Design by Computers 57

phenotypic effect relies to a large degree on the alleles of other genes. For example, a single
shape-rule in a rule-based representation may have very different phenotypic effects, depend-
ing on which other shape-rules precede and succeed it. Conversely, a representation with low
epistasis has few or no genes whose phenotypic effect relies on the alleles of other genes. For
example, a simple voxel representation in which every gene switches on or off a single voxel
in a grid has zero epistasis.

Experiments investigating whether epistasis should be high or low have so far been
inconclusive (Schoenauer, 1996). However, a simple thought experiment can help explain
this dilemma. Consider a (fictional) representation which uses, say, ten genes to represent the
entire form of designs, and the phenotypic effect of every garmripletely dependenh all
of the other genes through some embryogeny process. With this (maximum) amount of epi-
stasis, these ten genes effectively become elements of a single overall gene. So our ten-gene
representation with complete epistasis could be considered as a single-gene representation.
Consider what effect varying any part of that gene would have on the phenotype. With every
part of the design epistatically linked to every other part, any attempt to improve just one
small area would result in changes to all of the rest of the degitgiofropy) — making
evolution to acceptable designs very difficult, if not impossible.

Alternatively, consider a representation with zero epistasis (e.g. a voxel representation
using a 3D array). This requires no embryogeny, since every gene maps directly onto a spe-
cific area of the phenotype, and only that area of the phenotype. It should be clear that such
a representation is well suited for evolution of small-scale detail, but evolution of large-scale
characteristics becomes immensely difficult, e.g. the scaling of the entire form in one dimen-
sion, or the duplication or mirroring of an existing feature in the design. (To duplicate or mir-
ror an existing feature in the way segmentation or symmetry does, each new duplicate part
would have to be re-evolved in entirety — highly unlikely to occur (Bentley and Wakefield,
1996D).

Having examined the two extreme cases, it should be clear that both too much epistasis
and too little epistasis in a representation is undesirable. Perhaps the ideal representation for
evolutionary design should have a ‘middling’amount of epistasis. However, it seems likely that
the best tutor on this subject will be natural evolution, which seems to use varying degrees of
epistasis in a single living creature, with recombination of DNA carefully controlled to avoid
disruption, and the harmful effects of pleiotropy minimised (Altenberg, 1995).

1.5.4 Incorporating Knowledge in Evolutionary Design

Experience, insight and judgement make a good designer. Evolutionary design often relies
only on the last of these attributes, for evolutionary algorithms are usually guided solely by
the fitness function. In other words, design knowledge is provided in terms of an objective
which must be met. As described in the previous section, this can be a significant strength of
evolutionary design, allowing the generation of creative designs, art and artificial life by the

seem to appear during the evaluation of those programs. The confusion can be avoided if the hierarchical
program structure is considered to be the genotype, anddbk of the action of the program as it russ
considered to be the phenotype. This corresponds nicely with nature: we are the result of the action of our
DNA — a continuously running program which builds and repairs us throughout our lives.

58 Evolutionary Design by Computers

computer. However, the use of a single fitness function to guide the evolution of designs does
prevent the computer from benefiting from the substantial knowledge of designers.

It is possible to add further knowledge to EAs by using more than one fitness function. In
this way, multiple design objectives can be specified, including partially or fully contradictory
objectives. These fitness functions need not define desired functionality — they can be used to
compare evolving designs with a database of different good designs, allowing evolution to
be guided by the case-based knowledge contained within each example design. Additional
knowledge can also be used to constrain evolution, and prevent it from generating designs
which are known to be unsatisfactory. (Handling multiple objectives and constraints in EAs is
discussed later in this section.) There are also two other ways to provide additional knowledge
to an evolutionary design system:

Knowledge-rich Representations

As described in the previous section, evolutionary optimisation uses EAs to optimise para-
meterised portions of existing designs. In other words, within the phenotype representation,
the EA is provided with knowledge of the general form or structure of a rough design, which
it then fine-tunes using the judgement provided by the fitness function. This is one way to
incorporate knowledge into the representation of an EA. Another method is to provide a
series of building blocks from which designs can be constructed. Conceptual evolutionary
design uses this approach, allowing designers to use EAs to ‘juggle’ with their knowledge
and find new ways of using it in combination. Alternatively, as John Gero illustrates in the
first part of Chapter 15, it is possible to use evolutioridarn representations which incor-
porate knowledge in the form of architectural styles, and then evolve new designs using such
knowledge-rich representations.

Knowledge Seeding

Evolutionary algorithms are often initialised with random values, but this is not a prerequisite
to evolutionary design. A common practice by some researchers is to seed the initial popula-
tion with non-random values, i.e. give the EA some examples of good designs to work from.
The advantage of this case-based design approach is the simplicity of introducing knowledge
into the system. Unfortunately, the disadvantages are two-fold: firstly a pair of very fit, but very
different parent designs provided by a designer may well generate nothing but unfit mal-
formations because of the large differences in their structures. Secondly, if one example design
is substantially fitter than the others provided by the designer, evolution will quickly seize upon
it, and base almost all future generations on that single design — disregarding the knowledge
contained within the other, less fit designs. Nevertheless, when performed with care, seeding
populations with designs (whether they are designed by human or previously evolved) can pro-
vide a boost to the quality of designs evolved by computers (Bentley and Wakefield, 1997a).

1.5.5 Multiple Objectives

A substantial proportion of evolutionary design problems involve the evolution of solutions to
problems with more than one criterion. More specifically, such problems consist of several
separate objectives, with the required solution being one where some or all of these objectives
are satisfied to a greater or lesser degree. Perhaps surprisingly then, despite the large number

An Introduction to Evolutionary Design by Computers 59

of these multiobjective applications being tackled using EAs, only a small proportion of the
literature explores exactly how they should be treated with EAs.

With single objective problems, the evolutionary algorithm stores a single fitness value for
every solution in the current population of solutions. This value denotes how well its corres-
ponding solution satisfies the objective of the problem. By allocating the fitter members of the
population a higher chance of producing more offspring than the less fit members, the EA can
create the next generation of (hopefully better) solutions. However, with multiobjective prob-
lems, every solution has a number of fithess values, one for each objective. This presents a
problem in judging the overall fithess of the solutions. For example, one solution could have
excellent fitness values for some objectives and poor values for other objectives, whilst another
solution could have average fitness values for all of the objectives. The question arises: which
of the two solutions is the fittest? This is a major problem, for if there is no clear way to com-
pare the quality of different solutions, then there can be no clear way for the EA to allocate
more offspring to the fitter solutions.

The approach most users of EAs favour to the problem of ranking such populations, is to
weight and sum the separate fitness values in order to produce just a single fitness value for
every solution, thus allowing the EA to determine which solutions are fittest as usual. How-
ever, as noted by Goldberg:.". there are times when several criteria are present simultan-
eously and it is not possible (or wise) to combine these into a single number’. (Goldberg,
1989). For example, the separate objectives may be difficult or impossible to manually weight
because of unknowns in the problem. Additionally, weighting and summing could have a detri-
mental effect upon the evolution of acceptable solutions by the EA (just a single incorrect
weight can cause convergence to an unacceptable solution). Moreover, some argue that to
combine separate fitnesses in this way is akin to comparing completely different criteria; the
guestion of whether a good apple is better than a good orange is meaningless.

The concept of Pareto optimality helps to overcome this problem of comparing solutions
with multiple fithess values. A solution is Pareto optimal (i.e., Pareto minimal, in the Pareto
optimal range, or on the Pareto front) if itnet dominatedy any other solutions. As stated
by Goldberg (1989):

A vectorx is partially less thag, orx < py when:
(x<py) = (L)X <=y) DX <)

x dominategy iff x <py.

However, it is quite common for a large number of solutions to a problem to be Pareto op-
timal (and thus be given equal fitness scores). This may be beneficial should multiple solutions
be required, but it can cause problems if a smaller number of solutions (or even just one) is
desired.

For example, consider the multiobjective function (to be minimised):

f, = (X + 50¥
f, = (x — 50Y where—64 < x < 64.

For this twin-objective function, the Pareto minimal solutions range & to 50 — so
almost every allowable value gfis Pareto optimal, see fig. 1.34. Although this is an extreme

60 Evolutionary Design by Computers

4— Pareto-Optima Range—),

f, = (x + 50) % f, = (x - 50)?

LI LI L I B B o B

64 48 -32 ‘16 0 16 32 48 &4

Figure 1.34 The Pareto optimal range of solutions for some multiobjective functions can include
almost all allowable solutions to the problem.

case, it does illustrate a fundamental flaw with the concept of Pareto optimality: the Pareto
front can be so large that it becomes infeasible to use the non-dominance of solutions as the
sole fithess measure for solutions in an EA.

Hence, for many problems, the set of solutions deemed acceptable by a user will be a small
subset of the set of Pareto optimal solutions to the problems (Fonseca and Fleming, 1995b).
Manually choosing an acceptable solution can be a laborious task, which would be avoided
if the EA could be directed by a ranking method to converge only on acceptable solutions
(Bentley and Wakefield, 1997c).

So why do multiobjective problems cause such difficulties for EAs? Fundamentally, suc-
cessful multiobjective optimisation is all abeahge-independence

Range-Independence

Throughout the evolution by the EA, every separate objective (fitness) function in a
multiobjective problem will return values within a particular range. Although this range may
be infinite in theory, in practice the range of values will be finite. This ‘effective range’ of every
objective function is determined not only by the function itself, but also by the domain of input
values that are produced by the EA during evolution. These values are the parameters to be
evolved by the EA and their exact values are normally determined initially by random, and
subsequently by evolution. The values are usually limited still further by the coding used, for
example 16 bit sign-magnitude binary notation per gene only permits values-82#68 to

32768.

Although occasionally the effective range of all of the objective functions will be the
same, in most more complex multiobjective tasks, every separate objective function will have
a different effective range (i.e., the function ranges are non-commensurable (Schaffer, 1985)).
This means that a bad value for one could be a reasonable or even good value for another,
see fig. 1.35. If the results from these two objective functions were simply added to produce
a single fitness value for the EA, the function with the largest range would dominate evolu-
tion (a poor input value for the objective with the larger range makes the overall value much
worse than a poor value for the objective with the smaller range).

An Introduction to Evolutionary Design by Computers 61

effective range 1

BAD

% »

GOOD T GOOD

effectiverange2 &

Figure 1.35 Different effective ranges for different objective functions (to be minimised).

For example, consider the two objective functions:
fia =
f, = (x— 2)/1000

(both to be minimised).

Given a non-optimal input value, the output value fifgrwill normally be three orders of
magnitude worse than that frdimg (i.e., the second function will be approximately one thou-
sand times closer to the minimum of zero). As can be seen in the simplest of tests, if the outputs
from both were simply summed, the first function would completely dominate the second,
resulting in the effective evolution of a good solution only to the first function.

Thus, the only way to ensure that all objectives in a multiobjective problem are treated
equally by the EA is to ensure that all the effective ranges of the objective functions are the
same (i.e., to make all the objective functions commensurable), or alternatively, to ensure that
no objective is directly compared to another. In other words, either the effective ranges must
be converted to make them equal, and a range-dependent ranking method used, or a range-
independent ranking method must be used (Bentley and Wakefield, 1997c). Typically, range-
dependent methods (e.g., ‘sum of weighted objectives’, ‘distance functions’, and ‘min-max
formulation’) require knowledge of the problem being searched to allow the searching algo-
rithm to find useful solutions (Srinivas and Deb, 1995). Range-independent methods require
no such knowledge, for being independent of the effective range of each objective function
makes them independent of the nature of the objectives and overall problem itself. Hence,
a ranking method should not just be independent of individual applications (i.e., problem
independent), as stated by Srinivas and Deb (1995), it should be independent of the effective
ranges of the objectives in individual applications (i.e., range-independent).

For example, the standard ‘sum of weighted objectives’ method favoured by so many, uses
the weights to make the effective domains of each objective equal, then provides a single fit-
ness value by summing the resulting values. This is a range-dependent method, for it relies
completely on the weights being set precisely for every problem. Should any of the objectives
be changed, or the allowable domain of input values be changed (perhaps by a change in cod-
ing, or seeding the initial population with anything other than random values), then these
weights may have to be changed.

Alternatively, the non-dominated sorting method, and variants of it, is a range-independent
method. It requires no weighting of the objective values, for the fithess values from each
objective function are never directly compared with each other. Only values from the same
objective are ever compared in the process of determining the non-dominance of solutions
(Goldberg, 1989). For complex multiobjective problems, this range-independence is extremely

62 Evolutionary Design by Computers

advantageous: good results do not depend on the ability of the user to fine-tune weights cor-
rectly. However, a disadvantage of non-dominated sorting is that all Pareto optimal solutions
are considered equally good, regardless of what the user actually regards as being acceptable

For a detailed review, analysis and investigation of six different multiobjective handling
methods for GAs, see Bentley and Wakefield (1997c).

1.5.6 Constraints

Constraints form an integral part of every problem, and yet they are often overlooked in
evolutionary algorithms (Michalewicz, 1995, 1996). It is vital to perform constraint handling
with care, for if evolutionary search is restricted inappropriately, the evolution of good
solutions may be prevented.

A problem with constraints has both an objective, and a set of restrictions. For example,
when designing a VLSI circuit, the objective may be to maximize speed and the constraint may
be to use no more than 50 logic gates. When writing a computer program, the objective is to
generate a program which performs a specific task and a constraint is not to violate the syntax
of the language. A good problem solution must both fulfil the objective and satisfy these
restrictions.

In the same way that phenotypes are evaluated for fitness, not genotypes, it is the
phenotypes which must satisfy the problem constraints, not the genotypes (although their
enforcement may result in the restriction of some genofypetowever, unlike the fitness
evaluation, constraints can be enforced at any point in the algorithm to attain legal phenotypes.
As is described by Yu and Bentley (1998), they may be incorporated into the genotype or
phenotype representations, during the seeding of the population, during reproduction, or
handled at other stages.

There are two main types of constraint: fodt constraintand thehard constraint Soft
constraints are restrictions on phenotypes that should be satisfied, but will not always be. Such
constraints are often enforced by using penalty values to lower fitnesses. lllegal phenotypes
(which conflict the constraints) are permitted to exist as second-class, in the hope that some
portions of their genotypes will aid the search for fit phenotypes (Michalewicz, 1995). Hard
constraints, on the other hand, must always be satisfied. lllegal phenotypes are not permitted
to exist (although their corresponding genotypes may be, if the constraints are enforced in the
mapping stage).

Just as evolution requires selection pressure to generate phenotypes that satisfy the objec-
tive function, evolution can have a second selection pressure placed upon it in order to gener-
ate phenotypes that do not conflict the constraints. However, pg#sgurein evolutionary
search to evolve legal solutions is no guarantee that all of the solutions will always be legal
(i.e., they are soft constraints).

Constraints can also be handled in two other ways: solutions that do not satisfy the con-
straints can bpreventedrom being created, or they can d@rected Such methods can have
significant drawbacks such as loss of diversity and premature convergence. Nevertheless, these

® There are other types of constraints, e.g. minimisation of the number of evaluations, which may be
applied to the evolutionary algorithm as a whole. This section focuses on evolving solutions which satisfy
constraints, not on handling constrained evolutionary algorithms.

An Introduction to Evolutionary Design by Computers 63

Table 1.2 Classification of constraint handling.

Prevention HARD
Correction HARD
Pressure SOFT

two types of constraint handling ensure that all solutions are always legal (i.e., they are hard
constraints). Table 1.2 shows the three conceptual categories for constraint handling.

As is typical in evolutionary computation, researchers typically investigate constraint
handling from the perspective of a single evolutionary algorithm. For a general analysis and
investigation of constraint handling in evolutionary algorithms, see Yu and Bentley (1998).

1.5.7 Evolving Designs with Interdependent Elements

Opponents of Darwin’s theory of natural selection often give the example of the eye as a struc-
ture ‘impossible to occur by evolution’. They state that the eye consists of many interdepen-
dent parts: the iris, the retina, the cornea, the lens, with each element relying on the correct
functioning of all the other elements for the eye to work as a whole. Dawkins (1986) convinc-
ingly argues that there does exist a series of gradual evolutionary stepsfeyeio eye and

that not only has the eye evolved, but it has evolved many times independently in different
species. However, although it is clear that such intricate designs have been evolved in nature,
it is also clear that using evolutionary computation to generate designs with interdependent
elements is a very difficult task.

For example, Bentley and Wakefield (1997a) describe (amongst other things) the evolution
of a Penta prism. This design must bounce light twice using total internal reflection within its
solid glass structure in order to reflect an image through 90 degrees whilst keeping the output
image the right way up, see fig. 1.36. Although it is a single component, it does have two inter-
dependent elements: the two reflective parts. If either of these internally reflective sides are
imprecisely oriented, or omitted, the design will not function correctly. Not only that, but the
first reflection must direct the light in a direction almost opposite to the final, desired direction:
so a design without the second reflective part is actually worse than a design with no reflective
parts at all (Bentley and Wakefield, 1997a).

Evolution ‘prefers’ to begin with a single functional element that performs the function to
some extent, however small, then slowly and incrementally build up the complexity of the

2nd Reflection

> .
Input 3/ 1st Reflection

YY Output

Figure 1.36 A Penta prism uses two interdependent internal reflections.

64 Evolutionary Design by Computers

design, adding new elemeritghey improve the fithess of the desfawkins, 1989). How-

ever, if care is not taken in the design of the representation and operators, evolution may com-
mit itself too early to simple approximations of the desired design. In the example of the Penta
prism, evolution normally began by evolving a simple right-angle prism (using a single reflec-
tion), which directed the light in the correct direction, but oriented the wrong way up, fig. 1.37.
Having committed itself to this simple, but unsatisfactory type of solution, evolution was then
unable to proceed to the more complex Penta-prism design. Perhaps because of limitations
of the representation, the only way that evolution could be forced to abandon this unsatisfac-
tory local optimum was by penalising all such designs with a fithess constraint (Bentley and
Wakefield, 1997a).

Such examples of evolutionary design illustrate that design problems requiring solutions
with many interdependent elements can have large numbers of local optima — some of which
do not resemble the functionally correct designs at all. Penalising all such unsatisfactory
designs is not always a practical solution, so for design problems of this type, very careful con-
sideration should be given to the creation of a representation and genetic operators that will
always permit evolutionary paths from local optima to global optima.

1.5.8 Evolving Structure and Detall

As described in previous sections, some types of evolutionary design allow evolution to
explore thestructure(e.g. number of parameters/rules/primitive shapes) of designs in addition
to thedetail (e.g. parameter values) of designs. In most representations, varying the structure
of designs has considerably more impact on the fitness of these designs, compared to varying
the detail. Because of this, evolution typically converges on suitable design structures long
before converging on design details. (This effect is also evident in the convergence of most sig-
nificant bits before least significant bits in a binary coded genotype.) Although this is not
always a disadvantage (e.g. the skeletal structure of all mammals seems to permit sufficient
diversity, as does the cellular structure of plants), in some instances evolution may pre-
maturely converge onto an inappropriate structure. If this happens, the evolution of detail
around this structure may be insufficient to allow the production of an acceptable design.
There are two potential solutions to this problem. First, an improved representation cap-
able of allowing changes in structure without disastrous fitness changes would allow structure
and detail to converge simultaneously. This could be accomplished if the evolution of detalil

AN

Input Reflection

h

Incorrectly
Oriented
vy Output

Figure 1.37 A right-angle prism is an easily found solution which does a similar job to the Penta
prism, but there is no easy evolutionary path from a right-angle prism to a Penta prism.

An Introduction to Evolutionary Design by Computers 65

could directly affect the degree to which changes in structure affected fitnesses. For example,
in nature, a superfluous bone will be gradually reduced in size by evolution (a change in design
detail), whilst at the same time improving other aspects of the organism because of that
change. This reduction continues until at some point the bone becomes sufficiently small and
redundant that evolution can remove the entire bone (structure mutation), without decreasing
the fitness of the organism.

The second way to prevent premature convergence of structure is to reduce selection pres-
sure once in a while, and permit less-fit designs to propagate. Dawkins (1989) suggests that
certain landmark mutations in structure such as the development of segmentation may have
initially resulted in solutions with worse fithnesses. It seems likely that some of the more
gross mutations are more likely to survive during ‘good times’ where food is plentiful, pred-
ators are scarce, and hence selection pressure low (Dawkins, 1989). By reducing selection
pressure in our evolutionary design systems in a similar way, we may well permit changes in
structure to occur at later stages of evolution.

1.5.9 Summary

The final major section of this chapter has explained eight significant issues which prospective
evolutionary designers should consider: enumerating the search space, designing embryo-
genies, epistasis, incorporating knowledge, handling multiple objectives, handling constraints,
interdependent elements in designs, and the evolution of structure and detail. Not every evolu-
tionary design system is affected by all of these issues, but most will be affected by some.
More solutions to these and other problems are discussed in the other chapters of this book.

1.6 Summary of Chapter
This introductory chapter has attempted to explain the fundamental issues surrounding evolu-
tionary design by computers. The technical jargon and equations have deliberately been min-
imised in the chapter in an attempt to provide a gentle introduction and an infeéia
evolutionary design. Beginning with a justification of why evolution is used to generate
designs, the chapter then explored the techniques and ideas of evolutionary computation,
reviewed the different types of evolutionary design, and discussed the problems faced by
creators of evolutionary design systems.

The stress throughout has been the promotiamadérstandingThis chapter does not pro-
vide a set of instructions for, or results of, performing evolutionary design. It provides instead
a series of explanations of how evolutionary design can be performed, in the hope that you, the
reader, will create your own original evolutionary design system. And remember: this is still a
new and rapidly growing field. There are no hard and fast rules which must always be
followed. As the following chapters of this book show: the results of evolutionary design are
limited only by our imagination — and the unlimited imagination of evolution.

66 Evolutionary Design by Computers

1.7 Organisation of the Book

The book has five major sections, intended to cover the major aspects of evolutionary design
by computers.

The first sectionEvolution and Design describes and explores the relationships between
the design process and evolution. The four chapters discuss whether our own method of design
bears any resemblance to evolution, whether insight and creativity can be achieved by evolu-
tion, and how evolution should be used in the design process.

The second sectioi&yvolutionary Optimisation of Designs provides examples of design
optimisation using genetic algorithms. The three chapters describe detailed investigations
of how satellite booms, load cells, flywheels and reliable networks can be optimised using
evolution.

The artistic side of evolutionary design is shown by the third sediealutionary Art . The
three chapters in this section give very graphic illustrations of the artistic capabilities and
creativity of evolutionary design.

The fourth section of the booEyolutionary Artificial Life Forms , explores the exciting
use of evolutionary design to generate astonishing virtual creatures, and investigates the use of
biologically inspired embryogenies and other techniques to evolve forms.

The fifth and final sectiorCreative Evolutionary Design examines the creative poten-
tial of evolution to generate novel and useful designs. The chapters in this section show the
remarkable diversity of original designs that are now being evolved, and give clues to the
future of evolutionary design.

The books ends with a glossary of commonly used terms.

Acknowledgements

Thanks to Tina Yu, who provided help, time, and some of the text for the GP, ES and EP
summaries. Thanks to Suran Goonatilake and Phil Treleaven for their advice, and to David
Fogel, Laura Decker and Tina Yu for proof-reading sections of this monstrosity of a chapter.
Thanks to Jonathan Wakefield, Sanjeev Kumar and all the members of UCL's Design Group
for providing stimulating discussions and helpful criticism. Thanks also to Ying Li for the idea
of including ‘recommended reading’ sections, and to Jim Viner for the title of section 1.4.4.
Portions of the middle section of this chapter have appeared as the chapter ‘Aspects of Evolu-
tionary Design by Computers’ iAdvances in Soft Computing — Engineering Design and
Manufacturing Springer-Verlag, London, 1998, reprinted with permission.

References

Adeli, H. (ed.) (1994)Advances in Design Optimizatio@hapman and Hall, London.

Adeli, H. and Cheng, N. (1994). Concurrent Genetic Algorithms for Optimization of Large Stru&t8f(es.
Journal of Aerospace Engineeriig3, 276—296.

Alternberg, L. (1995). Genome Growth and the Evolution of the Genotype-Phenotype Maplution and
Biocomputation: Computational Models of Evoluti@pringer-Verlag, pp. 205-259.

Angeline, P. and Kinnear Jr., K. E. (eds) (199G)vances in Genetic Programming\IT Press, Cambridge,
MA.

An Introduction to Evolutionary Design by Computers 67

Axelrod, R. (1987). The Evolution of Strategies in the Iterated Prisoner’s Dilemma. In Davis, LG@tk)ic
Algorithms and Simulated Annealirigitman, London, pp. 32-41.

Back, T. (1996)Evolutionary Algorithms in Theory and Practid@xford University Press, New York.

Banzhaf, W. (1994). Genotype-Phenotype-Mapping and Neutral Variation — A Case Study in Genetic Pro-
gramming. In Davidor, Y., Schwefel, H.-P. and Mnner, R. (eBajallel Problem Solving From Natur8.
Springer-Verlag, pp. 322-332.

Banzhaf, W., Nordin, P., Keller, R. E. and Francone, F. D. (1988hetic Programming — an Introduction
Morgan Kaufmann Publishers, San Francisco.

Baron, P., Fisher, R., Mill, F., Sherlock, A. and Tuson, A. (1997). A Voxel-based Representation for the
Evolutionary Shape Optimisation of a Simplified Beam: A Case-Study of a Problem-Centred Approach to
Genetic Operator Desigrznd On-line World Conference on Soft Computing in Engineering Design and
Manufacturing (WSC2)

Bentley, P. J. (1997). The Revolution of Evolution for Real-World ApplicatiBnserging Technologies '97:
Theory and Application of Evolutionary Computatidbth December, University College London.

Bentley, P. J. (1998a). Aspects of Evolutionary Design by ComputePsodeedings of the 3rd On-line World
Conference on Soft Computing in Engineering Design and Manufacturing (WSC3)

Bentley, P. J. (ed.) (1998W3roc. of the Workshop on Evolutionary Design, 5th International Conference on
Artificial Intelligence in Design '98Instituto Superior Técnico, Lisbon, Portugal, 20—23 July 1998.

Bentley, P. J. and Wakefield, J. P. (1996a). Generic Representation of Solid Geometry for Genetic Search.
Microcomputers in Civil Engineeringl:3, Blackwell Publishers, 153—-161.

Bentley, P. J. and Wakefield, J. P. (1996b). The Evolution of Solid Object Designs using Genetic Algorithms.
In Rayward-Smith, V. (ed.)Modern Heuristic Search Methgd€h. 12, John Wiley and Sons Inc., pp.
199-215.

Bentley, P. J. and Wakefield, J. P. (1996c). Hierarchical Crossover in Genetic AlgoritiPnscéedings of
the 1st On-line Workshop on Soft Computing (WSIB4goya University, Japan, pp. 37—-42.

Bentley, P. J. and Wakefield, J. P. (1997a). Conceptual Evolutionary Design by Genetic Algorithms.
Engineering Design and Automation Jour8a2, John Wiley and Sons, Inc, 119-131.

Bentley, P. J. and Wakefield, J. P. (1997b). Generic Evolutionary Design. In Chawdhry, P. K., Roy, R. and
Pant, R. K. (eds)Soft Computing in Engineering Design and ManufactyrBringer Verlag, London, Part
6, pp. 289-298.

Bentley, P. J. and Wakefield, J. P. (1997c). Finding Acceptable Solutions in the Pareto-Optimal Range using
Multiobjective Genetic Algorithms. In Chawdhry, P. K., Roy, R. and Pant, R. K. (8d4$),Computing in
Engineering Design and Manufacturin§pringer Verlag, London, Part 5, pp. 231-240.

Boden, M. A. (1992)The Creative Mind: Myths and MechanisrBasic Books.

Bonabeau, E., Theraulaz, G., Arpin, E. and Sardet, E. (1994). The Building Behaviour of Lattice Swarms. In
Brooks, R. and Maes, P. (ed#)tificial Live 1V, Proc. of the A int. Workshop on the Synthesis and Simula-
tion of Living Systems, MIT Press, Cambridge, MA, pp. 307-312.

Born, J. (1978).Evolutionstrategien zur Numerischen Losung von Adaptationsafgdbiesertation A,
Humboldt-Universitat, Berlin.

Canal, E., Krasnogor, N., Marcos, D. H., Pelta, D. and Risi, W. A. (1998). Encoding and Crossover Mismatch
in a Molecular Design Problem. In Bentley, P. J. (delipceedings of the AID '98 Workshop on Evolution-
ary Design July 19, 1998, Lisbon, Portugal.

Chambers, L (1995Practical Handbook of Genetic AlgorithiS8RC Press, Boca Raton.

68 Evolutionary Design by Computers

Chawdhry, P. K., Roy, R. and Pant, R. K. (eds) (19%09ft Computing in Engineering Design and
Manufacturing Springer-Verlag, London.

Chellapilla, K. (1997). Evolutionary Programming with Tree Mutations: Evolving Computer Programs
without Crossover, In Koza, J., Kalyanmoy, D., Marco, D., Fogel, D., Garzon, M., Hitoshi, I. and Rick,
R. (eds),Genetic Programming 1997: Proceedings of the Second Annual Confeloman Kaufmann,
San Francisco, CA.

Cliff, C., Husbands, P., Meyer, J. and Wilson, S. W. (eds) (199djn Animals to Animats 3. Proceedings of
the Third International Conference on Simulation of Adaptive BehaWdidr Press, Cambridge, MA.

Coates, P. (1997). Using Genetic Programming and L-Systems to explore 3D design worlds. In Junge, R.
(ed.),CAADFutures '97 Kluwer Academic Publishers, Munich.

Dasgupta, D. and McGregor, D. R. (1992). Nonstationary Function Optimization using the Structured Genetic
Algorithm. In Parallel Problem Solving from Nature Elsevier Science Pub., Brussels, pp. 145-154.

Davis, L. (1991).The Handbook of Genetic Algorithmén Nostrand Reinhold, New York.
Dawkins, R. (1976)The Selfish Gen®xford University Press.
Dawkins, R. (1982)The Extended Phenotyp@xford University Press.

Dawkins, R. (1983). Universal Darwinism. In Bendall, D. (eByglution from Molecules to Me@ambridge
University Press.

Dawkins, R. (1986)The Blind Watchmaketongman Scientific and Technical, Harlow.

Dawkins, R. (1989). The Evolution of Evolvability. In Langton, C. G. (efdificial Life. The Proceedings
of an Interdisciplinary Workshop on the Synthesis and Simulation of Living Syst#mél, September,
1987, Los Alamos, New Mexico. Addison-Wesley Pub. Corp, pp. 201-220.

Dawkins, R. (1996)Climbing Mount ImprobablePenguin Books, Harmondsworth.

De Jong, K. A. (1975)An Analysis of the Behaviour of a Class of Genetic Adaptive Sydberaral
dissertation, University of Michigan, Dissertation Abstracts International.

Deb, K. (1991)Binary and Floating Point Function Optimization using Messy Genetic Algorithinsis
Genetic Algorithms Laboratory (IIliGAL), report no. 91004.

Deb, K. and Goldberg, D. E. (199IGA in C: A Messy Genetic Algorithm in@inois Genetic Algorithms
Laboratory (IlliGAL), report no. 91008.

Deb, K. and Goldberg, D. E. (1993). Analyzing Deception in Trap Functionsoundations of Genetic
Algorithms 2 Morgan Kaufmann Pub.

Deb, K., Horn J. and Goldberg, D. E. (1993). Multimodal Deceptive FunctiGomplex Systems:2,
131-153.

Eby, D., Averill, R., Gelfand, B., Punch, W., Mathews, O. and Goodman, E. (1997). An Injection Island GA
for Flywheel Design Optimization. 15" European Congress on Intelligent Techniques and Soft Computing
EUFIT '97, vol. 1, Verlag Mainz, Aachen, pp. 687—691.

Fleming, P., Zalzala, A., Bull, D., Fonseca, C. and Patton, R. (18986keedings of the Genetic Algorithms
in Engineering Systems: Innovations and Applications (GALESIA S&jt. 1995, Sheffield. IEE, London.

Fogel, D. B. (1991)System Identification through Simulated Evolution: A Machine Learning Approach to
Modeling Ginn Press, Needham Heights.

Fogel, D. (1992a). Evolving Artificial Intelligence. PhD thesis, University of California, San Diego, CA.

Fogel, D. (1992b). An Analysis of Evolutionary ProgrammiAgnc. of the 1st Annual Conf on Evolutionary
Programming San Diego. Evolutionary Programming Society, San Diego, CA, pp. 43-51.

An Introduction to Evolutionary Design by Computers 69

Fogel, D. B. (1994). Asymptotic Convergence Properties of Genetic Algorithms and Evolutionary Program-
ming: Analysis and Experiment3. of Cybernetics and Systef; Taylor and Francis Pub., 389-407.

Fogel, D. B. (1995)Evolutionary Computation: Towards a New Philosophy of Machine IntelligeB&E
Press.

Fogel, D. B. (1997). The Advantages of Evolutionary ComputaBiocomputing and Emergent Computation
(BCEC97)

Fogel, G. B. and Fogel, D. B. (1995). Continuous Evolutionary Programming: Analysis and Experiments.
J. of Cybernetics and Syste@®; Taylor and Francis Pub., 79-90.

Fogel, L. J. (1963)Biotechnology: Concepts and Applicatiofsentice Hall, Englewood Cliffs, NJ.

Fogel, L. J., Owens, A. J. and Walsh, M. J. (19&@)ificial Intelligence through Simulated Evolutioiley,
New York.

Fogel, L., Angeline, P. and Fogel, D. (1995) An Evolutionary Programming Approach to Self-adaptation on
Finite State Machines.In J.R. McDonnell, R.G. Reynolds and D.B. Fogel frdsgedings of the Fourth
International Conference on Evolutionary ProgrammiNMjT Press, Cambridge, MA.

Fonseca, C. M. and Fleming, P. J. (1995a). An Overview of Evolutionary Algorithms in Multiobjective
Optimization.Evolutionary Computatio:1, 1-16.

Fonseca, C. M. and Fleming, P. J. (1995b). Multiobjective Genetic Algorithms Made Easy: Selection,
Sharing and Mating Restrictiofaenetic Algorithms in Engineering Systems: Innovations and Applications
Sheffield. IEE, London, 45-52.

Forrest, S., Perelson, A. S., Allen, L. and Cherukuri, R. (1995). A Change-Detection Algorithm Inspired by
the Immune System. SubmittedIEEE Transactions on Software Engineering

Foy, M. D. et al. (1992). Signal Timing Determination using Genetic Algoritfimsportation Research
Record #1365/National Academy Press, Washington, DC, 108-113.

Frazer, J. (1995An Evolutionary ArchitecturéArchitectural Association, London.

French, M. J. (1994)nvention and Evolution: Design in Nature and Engineerizigd Edition. Cambridge
University Press.

French, M. and Ramirez, A. C. (1996). Towards a Comparative Study of Quarter-turn Pneumatic Valve Actu-
ators.Journal of Engineering Manufacturpart B, 543-552.

Funes, P. and Pollack, J. (199Computer Evolution of Buildable ObjecBrandeis University Computer
Science Technical Report CS-97-191.

Furuta, H., Maeda, K. and Watanabe, W. (1995). Application of Genetic Algorithm to Aesthetic Design of
Bridge Structures. IMicrocomputers in Civil Engineering0:6, Blackwell Publishers, MA, 415-421.

Gehlhaar, D. K. and Fogel, D. B. (1996). Tuning Evolutionary Programming for Conformationally Flexible
Molecular Docking. In L. Fogel, P. Angeline and T. Back (edshceedings of the Fifth International
Conference on Evolutionary ProgrammjnigIT Press, Cambridge, MA.

Gen, M. and Cheng, R. (199Genetic Algorithms and Engineering Desigohn Wiley and Sons.

Gero, J. S. (1996). Computers and Creative Design, In Tan, M. and Teh, RT(ed§lobal Design Studio
National University of Singapore, pp. 11-19.

Gero, J. S. and Kazakov, V. (1996). An Exploration-based Evolutionary Model of Generative Design Process.
Microcomputers In Civil Engineeringyl, 209-216.

Gero, J. S. and Maher, M. L. (eds) (199B8)odeling Creativity and Knowledge-Based Creative Design
Lawrence Erlbaum, Hillsdale, NJ.

70 Evolutionary Design by Computers

Gero, J. S. and Sudweeks, F. (eds) (1984jficial Intelligence in Design '94Kluwer, Dordrecht.
Gero, J. S. and Sudweeks, F. (eds) (1986jficial Intelligence in Design '96Kluwer, Dordrecht.
Gero, J. S. and Sudweeks, F. (eds) (19A88jficial Intelligence in Design '98Kluwer, Dordrecht.
Goldberg, D. E. (1989)Genetic Algorithms in Search, Optimization and Machine Learnualglison-Wesley.

Goldberg, D. E. (1991). Genetic Algorithms as a Computational Theory of Conceptual Dedtgoc.lof
Applications of Atrtificial Intelligence in Engineerirtg pp. 3-16.

Goldberg, D. E. et al. (1992). Accounting for Noise in the Sizing of Populatiofsulmdations of Genetic
Algorithms2, Morgan Kaufmann Pub., pp. 127-140.

Goldberg, D. E. (1994). Genetic and Evolutionary Algorithms Come of 8geamunication of the ACM
37:3,113-119.

Goldberg, D. (1998)The Design of Innovation: Lessons from Genetic Algoritl{mress)

Greffenstette, J. J. (1991). Strategy Acquisition with Genetic Algorithms. Ch.Tiirlandbook of Genetic
Algorithms Van Nostrand Reinhold, New York, pp. 186-201.

Harris, R. A. (1994). An Alternative Description to the Action of Crossovd?rdceedings of Adaptive Com-
puting in Engineering Design and Control — !94niversity of Plymouth, Plymouth. pp. 151-156.

Harvey, |. (1997). Cognition is Not Computation: Evolution is Not Optimisation. In Gerstner, W., Germond,
A., Hasler, M. and Nicoud, J.-D. (eddrtificial Neural Networks — ICANN9®Proc. of 7th International
Conference on Atrtificial Neural Networks, 7-10 October 1997, Lausanne, Switzerland, Springer-Verlag,
LNCS 1327, pp. 685-690.

Harvey, |., Husbands, P. and Cliff, D. (1993). Issues in Evolutionary Robotics, In J.-A. Meyer, H. Roitblat and
S. Wilson (eds)From Animals to Animats 2: Proc. of the Second Intl. Conf. on Simulation of Adaptive
Behavior, (SAB92MIT Press/Bradford Books, Cambridge, MA, pp. 364-373.

Harvey, |. and Thompson, A. (1997). Through the Labyrinth Evolution Finds a Way: A Slicon Ridge. In
Higuchi, T. and Iwata, M. (edsProceedings of the™lint. Conf. on Evolveable Systems: From Biology to
Hardware (ICES96)Springer Verlag, LNCS 1259, pp. 406—-422.

Holland, J. H. (1973). Genetic Algorithms and the Optimal Allocations of Tril&M Journal of Computing
2:2, 88-105.

Holland, J. H. (1975)Adaptation in Natural and Artificial Systemgniversity of Michigan Press, Ann Arbor.
Holland, J. H. (1992). Genetic AlgorithmScientific American66—72.

Horn, J. (1993). Finite Markov Chain Analysis of Genetic Algorithms with Nichindg?roteedings of the
Fifth International Conference on Genetic Algorithivorgan Kaufmann Pub., pp. 110-17.

Horn, J. and Nafpliotis, N. (1993)Multiobjective Optimisation Using the Niched Pareto Genetic Algorithm
lllinois Genetic Algorithms Laboratory (IIliGAL), report no. 93005.

Horn, J., Goldberg, D. E. and Deb, K. (199%nplicit Niching in a Learning Classifier System: Nature’s Way
lllinois Genetic Algorithms Laboratory (IIliGAL), report no. 94001.

Husbands, P., Jermy, G., Mcllhagga, M. and Ives, R. (1996). Two Applications of Genetic Algorithms to
Component Design. In Fogarty, T. (edSglected Papers from AISB Workshop on Evolutionary Computing
Springer-Verlag, Lecture Notes in Computer Science, pp. 50-61.

Kanal, L. and Cumar, V. (eds) (198&earch in Artificial IntelligenceSpringer-Verlag.

Kargupta, H. (1993)Information Transmission in Genetic Algorithm and Shannon’s Second Theorem
lllinois Genetic Algorithms Laboratory (IIliGAL), report no. 93003.

An Introduction to Evolutionary Design by Computers 71

Keane, A. (1994) Experiences with Optimizers in Structural Design. In I. C. PdProeeedings of the Con-
ference on Adaptive Computing in Engineering Design and ControlJB#ersity of Plymouth, Plymouth,
pp. 14-27.

Kinnear, Jr., K. E. (ed.) (1994Advances In Genetic ProgrammingIT Press, Cambridge, MA.

Koza, J. (1992)Genetic Programming: On the Programming of Computers by Means of Natural Selection
MIT Press, Cambridge, MA.

Koza, J. (1994%enetic Programming Il: Automatic Discovery of Reusable Progrdi$ Press, Cambridge,
MA.

Koza, J., Bennett, lll, F. H., Andre, D. and Keane, M. A. (199 netic Programming IlIMorgan Kaufmann,
San Francisco.

Langdon, B. (1998). Genetic Programming and Data StructGessetic Programming + Data Structures =
Automatic ProgrammingKluwer, Boston.

Langdon, B. and Poli, R. (1997). Fitness Causes BRyat.On-line World Conference on Soft Computing in
Engineering Design and Manufacturing (WSC2)

Langton, C. (ed.) (1995Artificial Life: an Overview MIT Press, Cambridge, MA.

Levine, D. (1994). A Parallel Genetic Algorithm for the Set Partitioning Problem. D. Phil. dissertation,
Argonne National Laboratory, lllinois, USA.

Lohn, J. and Reggia, J. (1995). Discovery of Self-Replicating Structures Using a Genetic Algb@i#am.
IEEE Int. Conf. on Evolutionary Computation (ICEC '9%)l. 1, Perth, Western Australia, pp. 678—683.

Lund, H., Pagliarini, L. and Miglino, O. (1995). Artistic Design with GA and Nvoc. of the 1 Nordic
Workshop on Genetic Algorithms and Their Applications (LINWG#yersity of Vaasa, Finland, pp. 97-105.

Michalewicz, Z. (1995). A Survey of Constraint Handling Techniques in Evolutionary Computation Methods.
Proc. of the # Annual Conf. on Evolutionary ProgrammingIT Press, Cambridge, MA, pp. 135-155.

Michalewicz, Z. (1996)Genetic Algorithms + Data Structures = Evolution PrograrBed extended edn,
Springer, Berlin.

Michalewicz, Z., Dasgupta, D., Le Riche, R. G. and Schoenauer, M. (1996). Evolutionary Algorithms for
Constrained Engineering Problem@pmputers and Industrial Engineering Journ&0:2, September,
851-870.

Mitchell, M. (1996).An Introduction to Genetic AlgorithmMIT Press, Cambridge, MA.

O'Reilly, U.-M. and Oppacher, F. (1995). The Troubling Aspects of a Building Block Hypothesis for Genetic
Programming. In Witley, L. D. and Vose, M. D. (eds)undations of Genetic Algorithmlorgan Kaufman,
San Fransisco, CA, pp. 72-88.

Parmee, I. (1996a) Towards an Optimal Engineering Design Process using Appropriate Adaptive Search
StrategiesJournal of Engineering Desigi7:4, Carfax Pub.

Parmee, I. (1996b) The Development of a Dual-Agent Strategy For Efficient Search Across Whole System
Engineering Design Hierarchie4” Int. Conf. on Parallel Problem Solving From NatuRerlin, Germany,
September 22-27.

Parmee, I. C. and Denham, M. J. (1994). The Integration of Adaptive Search Techniques with Current
Engineering Design Practice. Proc. of Adaptive Computing in Engineering Design and Contro| '94
University of Plymouth, Plymouth, pp. 1-13.

Paton, R. (1994). Enhancing Evolutionary Computation using Analogues of Biological Mechanisms. In
Evolutionary Computing, AISB Workshdgpringer-Verlag, pp. 51-64.

72 Evolutionary Design by Computers

Paun, G. (ed.) (1995Artificial Life: Grammatical ModelsBlack Sea University Press, Romania.

Pham, D. T. and Yang, Y. (1993). A Genetic Algorithm Based Preliminary Design Syktemal of Auto-
mobile Engineers207:D2, 127-133.

Poli, R. and Langdon, B. (1997a). Genetic Programming with One-point Crossover. In Chawdhry, P. K., Roy,
R. and Pant, R. K. (eds}econd On-line World Conference on Soft Computing in Engineering Design and
Manufacturing Springer-Verlag, London.

Poli, R. and Langdon, B. (1997b). A New Schema Theorem for Genetic Programming with One-point
Crossover and Point Mutation. In Koza, J., Goldberg, D., Fogel, D. and Riolo, R. L.Gest&tic Program-

ming 1997: Proceedings of the Second Annual Conference on Genetic PrograMorgan Kaufmann, San
Francisco, CA, pp. 278-285.

Radcliffe, N. J. and Surry, P. D. (1994a). Formal Memetic AlgorithEdinburgh Parallel Computing Centre

Radcliffe, N. J. and Surry, P. D. (1994b). Co-operation through Hierarchical Competition in Genetic Data
Mining. (Submitted toParallel Problem Solving From Nature

Rayward-Smith, V., Osman, |. H., Reeves, C. R., Smith, G. D. (19963lern Heuristic Search Methads
John Wiley and Sons, London.

Rechenberg, I. (1973Evolutionstrategie: Optimierung Technisher Systeme nach Prinzipien der Biologis-
chen EvolutionFrommann-Holzboog Verlag, Stuttgart.

Rechenberg, I. (1994 volutionstrategie '94volume 1 ofWerkstatt Bionik und Evolutionstechniftommann-
Holzboog, Stuttgart.

Rosenman, M. (1997). The Generation of Form Using an Evolutionary Approach. In Dasgupta, D. and
Michalewicz, Z. (eds)Evolutionary Algorithms in Engineering Applicatior&pringer-Verlag, pp. 69-86.

Roston, G. (1997). Hazards in Genetic Design Methodologies. In Dasgupta, D. and Michalewicz, Z. (eds),
Evolutionary Algorithms in Engineering Applicatioi&pringer-Verlag, pp. 135-154.

Roy, R., Furuhashi, T. and Chawdry, P. K. (eds) (1988l ances in Soft Computing — Engineering Design
and ManufacturingSpringer-Verlag, London.

Rudolph, G. (1996). Convergence of Evolutionary Algorithms in General Search Spaoeedings of the
Third IEEE Conference on Evolutionary ComputatiBiscataway, NJ. IEEE Press, pp. 50-54.

Rudolph, G. (1997). Convergence Rates of Evolutionary Algorithms for a Class of Convex Objective Func-
tions, Control and Cybernetic26(3), 375-390.

Rudolph, G. (1998). Local Convergence Rates of Simple Evolutionary Algorithms with Cauchy Mutations,
IEEE Transactions on Evolutionary Computatib@).

Schaffer, J. D. (1985). Multiple Objective Optimization with Vector Evaluated Genetic Algorithemetic
Algorithms and Their Applications: Proceedings of the First International Conference on Genetic Algorithms
pp. 93-100.

Schaffer, J. D. and Eshelman, L. (1995). Combinatorial Optimization by Genetic Algorithms: The Value of
Genotype/Phenotype Distinction. Rtoc. of Applied Decision Technologies (ADT "9&pril 1995, London,
pp. 29-40.

Schnier, T. and Gero, J. S. (1996). Learning Genetic Representatrions as an Alternative to Hand-coded Shape
Grammars. In Gero, J. and Sudweeks, F. (etifjicial Intelligence in Design '96Kluwer, Dordrecht, pp.
39-57.

Schoenauer, M. (1996). Shape Representations and Evolution Scieowesof the 8 Annual Conf. on
Evolutionary ProgrammingMIT Press, Cambridge, MA, pp. 121-129.

Schwefel, H.-P. (1965)Kybernetische Evolution als Strategie der experimentellen Forschung in der
StromungstechnilDiplomarbeit, Technische Universitat, Berlin.

An Introduction to Evolutionary Design by Computers 73

Schwefel, H.-P. (1981 Numerical Optimization of Computer ModéWiley, Chichester.
Schwefel, H.-P. (1995FEvolution and Optimum Seekingiley, New York.
Sims, K. (1991). Atrtificial Evolution for Computer Graphi€@omputer Graphic25, 4, 319-328.

Sims, K. (1994a). Evolving Virtual Creatures. Gomputer GraphicsAnnual Conference Series (SIG-
GRAPH '94 Proceedings), July 1994, 15-22.

Sims, K. (1994b). Evolving 3D Morphology and Behaviour by Competition. In Brooks, R. and Maes, P. (eds),
Artificial Life IV ProceedingsMIT Press, Cambridge, MA, pp. 28-39.

Sipper, M. (1997). A Phylogenetic, Ontogenetic, and Epigenetic View of Bio-Inspired Hardware Systems.
IEEE Transactions On Evolutionary Computatidrl.

Smith, R. E. and Goldberg, D. E. (1992). Diploidy and Dominance in Artificial Genetic S&uuiplex
System$, 251-285.

Srinivas, N. and Deb, K. (1995). Multiobjective Optimization Using Nondominated Sorting in Genetic
Algorithms. Evolutionary Computatior2:3, 221-248.

Syswerda, G. (1989). Uniform Crossover in Genetic Algorithms. In Schaffer, D.Reok),of the Third Int.
Conf. on Genetic Algorithm#lorgan Kaufmann Pub,

Tabuada, P., Alves, P., Gomes, J. and Rosa, E. A. (1998). 3D Atrtificial Art by Genetic Algorithms. In
Bentley, P. J. (ed.Rroc. of the Workshop on Evolutionary Desifith International Conference on Artificial
Intelligence in Design '98, Instituto Superior Técnico, Lisbon, Portugal, 20-23 July 1998.

Todd, S. and Latham, W. (1998volutionary Art and Computerdcademic Press,

Thompson, A. (1995). Evolving Fault Tolerant System&émetic Algorithms in Engineering Systems: Inno-
vations and ApplicationdEE Conf. Pub. No. 414, pp. 524-529.

Ventrella, J. (1994). Explorations in the Emergence of Morphology and Locomotion Behaviour in Animated
Characters. In Brooks, R. and Maes, P. (eddjficial Life 1V, Proc. of the 4th Int. Workshop on the Syn-
thesis and Simulation of Living Systems, MIT Press, Cambridge, MA, pp. 436—-441.

Whitley, D. and Starkweather, T. (1990). GENITOR II: A Distributed Genetic Algoritloarnal of Experi-
mental and Theoretic Atrtificial Intelligen@3, 189-214.

Yamada, T. and Nakano, R. (1995). A Genetic Algorithm with Multi-step Crossover for Job-shop Scheduling
Problems. IrGenetic Algorithms in Engineering Systems: Innovations and ApplicatelEsConf. Pub. No.
414, pp. 146-151.

Yao, X. and Liu, Y. (1996). Fast Evolutionary Programming, In Fogel, L., Angeline, P. and Back, T. (eds)
Proceedings of the Fifth International Conference on Evolutionary Programmlig Press, Cambridge,
MA.

Yao, X. Lin, G. and Liu, Y. (1997). An Analysis of Evolutionary Algorithms Based on Neighbourhood and
Step Sizes. In Angeline, P., Reynolds, R., McDonnell, J. and Eberhart, R Rext®edings of the Sixth Inter-
national Conference on Evolutionary Programmiggringer, pp. 298-307.

Yu, T. and Bentley, P. (1998). Methods to Evolve Legal Phenotygik. Int. Conf. on Parallel Problem
Solving From NatureAmsterdam, Sept 27—30. Springer.

Yu, T. and Clack, C. (1998a). Recursion, Lambda Abstractions and Genetic Progra@emetic Program-
ming 1998: Proceedings of the Third Annual Conferei@rgan Kaufmann, San Francisco.

Yu, T. and Clack, C. (1998b). PolyGP: A Polymorphic Genetic Programming System in HaskeGéeaiic
Programming 1998: Proceedings of the Third Annual Confereklm@gan Kaufmann, San Francisco.

