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Figure 1: Modeling results using FIBERMESH. The user interactively defines the control curves, combining sketching and direct manipula-
tion, and the system continuously presents fair interpolative surfaces defined by these curves (blue = smooth curve, red = sharp curve).

Abstract

This paper presents a system for designing freeform surfaces with
a collection of 3D curves. The user first creates a rough 3D model
by using a sketching interface. Unlike previous sketching systems,
the user-drawn strokes stay on the model surface and serve as han-
dles for controlling the geometry. The user can add, remove, and
deform these control curves easily, as if working with a 2D line
drawing. The curves can have arbitrary topology; they need not
be connected to each other. For a given set of curves, the system
automatically constructs a smooth surface embedding by applying
functional optimization. Our system provides real-time algorithms
for both control curve deformation and the subsequent surface opti-
mization. We show that one can create sophisticated models using
this system, which have not yet been seen in previous sketching or
functional optimization systems.

Keywords: Sketch Based Interfaces and Modeling, Differential
Representations, Sketching, Deformations, Fair Surface Design

1 Introduction

Current tools for free-form design, and the resulting design process,
can be roughly categorized into two groups. The group of profes-
sional modeling packages makes use of parametric patches or sub-
division surfaces [Maya 2007; 3ds Max 2007], where the user has
to lay out the coarsest level patches in an initial modeling stage, and
then modify control points to generate details. Because it is difficult
for inexperienced users to generate the control structure for an in-
tended shape from scratch, a group of research tools [Igarashi et al.
1999; Igarashi and Hughes 2003; Schmidt et al. 2005; Karpenko
and Hughes 2006; Kara and Shimada 2007] as well as in-game
character editors [Maxis 2007; Gingold 2007] are built around in-
tuitive modeling metaphors such as sketching, trying to hide the
mathematical subtleties of surface description from the user. How-
ever, some of these tools lack a high-level control structure, making
it difficult to iteratively refine the design, or re-use existing designs.

We try to bridge the gap by using curves, a universally accepted
modeling metaphor, as an interface for designing a surface. No-
tice that curves appear in both tools mentioned above: they appear
as parameter lines, or seams where locally parameterized patches
meet; they are sketched to generate or modify shape, or they are ex-
tracted from the current shape and used as handles. Also note that
traditional design is mostly based on drawing characteristic curves.
Yet, design is a process. We cannot expect a user to draw the control
(or characteristic) curves of a shape into free space. Our first fun-
damental idea is to let the user define control curves by drawing
them onto the shape in its current design stage. These curves can
be used as handles for deformation right after their definition, as in
other tools, or at any other time in the design process. Of course,
the effect of control curves can be modified (i.e. smooth vs. sharp
edge), they can be removed from the current design, and there are
no restrictions on their placement and topological structure. Specif-
ically, they may be connected to or intersect other curves, or not;
this is more general than recent developments for parameterized
surfaces [Sederberg et al. 2003; Schaefer et al. 2005]).
The second fundamental principle is that the shape is defined by
the control curves at any stage of the design process. While we
found it important to serve the process of construction, and this is
also what defines the topology of the surface, the result should be
independent of when a control curve was modified. We achieve this
by defining the surface to minimize certain functions of its differ-
entials [Moreton and Séquin 1992; Welch and Witkin 1994], while
constraining it by the control curves.
It is crucial that both the modification of curves as well as the com-
putation of surface geometry allow for an interactive and smoothly
responding system. For this we build on the recent advances in dis-
crete Laplacian [Sorkine et al. 2004; Yu et al. 2004; Botsch and
Kobbelt 2004] and other higher order or non-linear functionals for
surface processing [Huang et al. 2006; Botsch et al. 2006; Wardet-
zky et al. 2007].
Uniquely combining interface metaphors (Section 2) with geometry
processing techniques (Section 3), our contributions are
• A fair surface definition based on curve constraints, and an

accompanying functional optimization algorithm, which runs
at interactive rates.

• A detail preserving, real-time 3D curve editing and peeling
interface, and a curve deformation algorithm based on discrete
co-rotational methods.

• The generation and smooth embedding of initial surface com-
ponents by sketching a planar control curve on a canvas.

• An interface that enables the design of 3D models with 3D
control curves. The user’s 2D sketching operations turn into
3D curves, and they serve as handles for subsequent editing.
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Welch and Witkin [1994] propose an interactive modeling system
where the user can cut up surfaces and paste them together, while
the system continuously generates a fair interpolative surface. They
demonstrate the capability of the approach by showing topologi-
cally non-trivial shapes such as branching surfaces and a Klein bot-
tle. Our work extends this approach, allowing the user to design
more practical models such as 3D characters (Fig. 1), by introduc-
ing a high-level user interface for curve control.

Discrete differential surface representations are an active research
area [Sorkine 2006]. One of the key driving forces is the use of
highly efficient sparse linear solvers [Toledo 2003; Davis 2004].
They can efficiently solve matrix systems of tens of thousands of
entries, which makes it possible to process interesting 3D meshes
in real-time. Most efforts have been dedicated to the editing of ex-
isting 3D models. Our work is an attempt to apply these techniques
and tools to surface creation from scratch.

2 User Interface

From the user’s point of view, our system can be seen as an ex-
tension to a freeform modeling system based on silhouette sketch-
ing, such as Teddy [Igarashi et al. 1999]. The user interactively
draws the silhouette of the desired geometry and the system auto-
matically constructs a (rotund) surface via functional optimization,
such that its silhouette matches the user’s sketch. However, unlike
previous systems, the user’s original stroke stays on the model sur-
face and serves as a handle for further geometry control. The user
can push and pull these curves interactively and the surface geom-
etry changes accordingly. In addition, the user can freely add and
remove control curves on the surface. These extensions enable the
design of far more elaborate shapes than those possible with sketch-
ing alone. Fig. 2 shows an overview of the process.

sketch created pull sketch

curve added rotated pull result

Figure 2: An example modeling sequence.

In a sense, our modeling process is similar to traditional model-
ing methods, such as parametric patches and subdivision surfaces:
the user also defines nets of curves and the system automatically
generates a smooth surface based on these. An advantage of our in-
terface is that the user does not need to worry about the topology of
the curves. Traditional methods require the user to cover the entire
surface with triangle or quad regions. Our method is much more
flexible: curves need not be connected to other curves and much
fewer curves can represent simple geometry. It is also important
that, instead of providing individual points as an interface, our in-
terface treats curves as continuous entities. We believe this can help
smooth the ”skill transfer” from 2D drawing to 3D modeling.

Various interactive modeling methods have been proposed in re-
search contexts, including direct 3D editing [Perry and Frisken
2001], spatial deformation operations [Singh and Fiume 1998; An-
gelidis et al. 2006; von Funck et al. 2006] and surface based de-
formation tools [Zorin et al. 1997; Kobbelt et al. 1998; Nealen

Figure 3: Sketching operations (from top to bottom): creation, cut,
extrusion and tunnel.

et al. 2005]. These modeling methods provide reduced degrees-of-
freedom handles (curves and control meshes) for surface control.
The user can focus on the high-level control and the system auto-
matically maintains aesthetic consistency. Our approach is unique
in that we use curves also as the definition of the surface, not only
as temporal handles for deformation.

Our current modeling interface consists of five tools (modes):
sketching tool, deformation tool, rubbing tool, erasing tool, and
type change tool. The user switches between these tools via menu
selection or a keyboard shortcut.

2.1 Sketching Tool

Our system provides five kinds of sketching operations: creation,
cut, extrusion, tunnel (Fig. 3), and add-control-curve (Fig. 4). When
the user draws a closed stroke on a blank canvas, the system auto-
matically inflates the closed area and presents an initial 3D model.
The user draws a stroke crossing the model to cut it. Drawing a
closed stroke on the object surface followed by a silhouette stroke
creates an extrusion. If the user draws another closed loop on the
opposite side of the surface, the system generates a tunnel. These
operations are borrowed from the original Teddy system, but the
difference is that the user’s original strokes stay on the model sur-
face as control curves. These control curves literally define the
surface shape (as positional constraints in the surface optimiza-
tion), and the user can modify the shape by deforming these control
curves. New control curves can be added by drawing an open stroke
on the object surface, drawing a closed stroke followed by clicking,
and by drawing a cutting stroke followed by clicking (Fig. 4). The
last method is very useful during the early stages of model creation,
since it allows the user to quickly generate a convenient handle to
adjust the amount of inflation (or fatness).

The control curves are divided into two types: smooth curves (blue)
and sharp curves (red). A smooth curve constrains the surface to be
smooth across it, while a sharp curve only places positional con-
straints with C0 continuity. These types are automatically assigned
to the newly added curves according to the sketching operation the
user applied. The creation operation generates a smooth curve that
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Figure 4: Adding control curves: open stroke (top), closed stroke
(middle) and cutting stroke (bottom). The user needs to click after
drawing a stroke to make it a control curve in case of closed stroke
and cutting stroke.

Figure 5: Pulling a curve. The deformed curve segment is deter-
mined by how much of it the user peels off.

corresponds to the silhouette. A cutting operation generates a sharp
curve. An extrusion generates one sharp curve along the base, and
one smooth curve along the silhouette. When the user paints a new
curve on the surface, it is initially defined as a smooth curve. The
type of these curves can be freely changed afterwards using the type
change tool.

2.2 Deformation Tool

The deformation tool lets the user grab a curve at any point and pull
it to the desired location. The curve deforms accordingly, preserv-
ing local details as much as possible (see Fig. 5 and Section 3.1).
Editing operations are always applied to the control curves, not di-
rectly to the surface. If the user wants more control, new control
curves must be added on the surface. Explicit addition of control
curves exposes the surface structure in a clear way, and the curves
serve as a convenient handle for further editing.

We use a peeling interface for the determination of the deformed
curve segment (region of interest, ROI) [Igarashi et al. 2005]. The
size of the curve segment to be deformed is proportional to the
amount of pulling. The more the user pulls, the larger the deformed
curve segment becomes. This frees the user from manually specify-
ing the ROI before starting deformation and enables dynamical ad-
justment of the ROI during deformation. This peeling effect prop-
agates to the other curves connected to the deformed curve, which
allows the user to deform a larger area of the surface.

Figure 6: Rubbing (smoothing) a curve.

Figure 7: Erasing a control curve (left: before erasing, middle:
immediately after erasing, right: after surface optimization).

Figure 8: Changing the curve type (left: before the change, middle:
immediately after the change, right: after surface optimization).

2.3 Rubbing Tool

The rubbing tool is used for smoothing a curve. As the user drags
the mouse back and forth (rubs) near the target curve, the curve
gradually becomes smooth. The more the user rubs, the smoother
the curve becomes (Fig. 6). This tool is very important because the
curves resulting from sketching can contain noise, and localized
deformation can also introduce jaggy parts. It might be possible to
automatically apply denoising after each user interaction, but it is
not clear to which extent smoothing should be applied. Our rubbing
tool provides an intuitive and convenient interface for specifying the
target area to apply smoothing to, as well as the amount of smooth-
ing. Our current implementation moves each vertex being rubbed
one by one so that it locally improves inner and outer fairness.

2.4 Erasing Tool and Type Change Tool

The erasing tool works as a standard curve segment eraser: the user
drags the cursor along a control curve to erase it. This is equiv-
alent to removing constraints that define the surface. The system
optimizes the surface when the user finishes an erasing operation
(releases the mouse button, Fig. 7). The type change tool is for
changing the type of a control curve. Like the erasing tool, the user
drags the cursor along a curve to change the property. If the curve
is a sharp curve, it converts it to a smooth curve (or curve segment),
and vice versa. As with the erasing tool, the system updates the
surface geometry according to the property change and presents the
result after the user finishes the operation (releases the mouse but-
ton, Fig. 8).

3 Algorithm

To implement the described interface we propose an algorithm
which consists of two main steps: curve deformation and surface
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optimization. The additional steps, mesh construction and remesh-
ing (Section 3.3), only occur at the end of the modeling operations
creation, extrusion, cut, and deformation.

Instead of solving for both curve positions and fair surface simul-
taneously, we have found that decoupling the curve deformation
from the surface optimization step is fast, intuitive, produces aes-
thetically pleasing results, and supports our fundamental principle
of defining shape by control curves. The user first deforms (pulls)
the curve(s) using the deformation tool (Section 3.1), after which
the new curve positions are fed to the surface optimization step as
positional constraints (Section 3.2). During curve pulling, these two
operations are performed sequentially to achieve interactive updates
of both the curves and the surface they define.

3.1 Curve Deformation

The user interface for curve deformation is a usual direct manipu-
lation method: the user grabs and drags a point on a curve, and the
curve deforms smoothly within the peeled ROI. The current imple-
mentation always moves the grabbed point parallel to the screen.

The algorithm we use is a variant of detail-preserving deformation
methods using differential coordinates [Sorkine 2006], combined
with co-rotational methods [Felippa 2007]. Geometry is repre-
sented using differential coordinates, and the final result is obtained
by solving a sequence of linear least-squares problems, which sat-
isfy the positional constraints given by the user. The main challenge
in this framework is the computation of appropriate rotations for
the differential coordinates. One approach is to explicitly compute
rotations beforehand, typically by smoothly interpolating the pre-
scribed orientation constraints defined by the user [Yu et al. 2004;
Lipman et al. 2005; Zhou et al. 2005; Zayer et al. 2005]. These
methods are not applicable in our setting because the user should
only need to drag a vertex without specifying rotations. Another
approach is to implicitly compute rotations as a linear combination
of target vertex positions [Sorkine et al. 2004; Fu et al. 2007]. Our
technique is similar to these methods, but we explicitly represent
rotation matrices as separate free variables. This is due to the fact
that neighboring vertices along a curve are nearly collinear and in-
appropriate for deriving rotations from them.

Conceptually, what we want to solve is the following error mini-
mization problem

arg min
v,R

{ ∑
i

‖L(vi)−Riδi‖2 +
∑
i∈C1

‖vi − v′i‖2+

∑
i,j∈E

‖Ri −Rj‖2F +
∑
i∈C2

‖Ri −R′
i‖2F

}
,

(1)

where L(·) is the differential operator, vi represents the vertex co-
ordinates, Ri represents rotations associated with these vertices in
the deformed curve, ‖ · ‖F is the Frobenius norm, E is the set of
curve edges, C1 and C2 are the sets of constrained vertices, and
primed values are given constraints. The first term minimizes the
difference between the resulting differential coordinates and the ro-
tated original differential coordinates δi. The second term repre-
sents positional constraints (we use three constrains: two at the
boundary of the ROI and one at the handle). The third term en-
sures that the rotations are smoothly varying along the curve [Allen
et al. 2003; Sumner and Popović 2004; Fu et al. 2007], and the last
term represents rotational constraints (we use two constraints at the
boundary of the ROI). These four terms also need to be appropri-
ately weighted to obtain visually pleasing results. We have omitted
these weights in the above equation for simplicity.

Figure 9: Rotated local coordinate frames (red) after curve defor-
mation by pulling a single vertex.

A problem with this approach is that R is not linear. Unconstrained
transformation includes shearing, stretching, and scaling, which is
undesirable for our application. Similar to [Sorkine et al. 2004],
we therefore use a linearized rotation matrix to represent small ro-
tations. In order to accommodate large rotations, we iteratively
compute the gross rotation by concatenating small delta rotations
obtained by solving a linear system at each step.

In summary, what we solve in each step is the following minimiza-
tion problem

arg min
v,r

{ ∑
i

‖L(vi)− riRiδi‖2 +
∑
i∈C1

‖vi − v′i‖2+

∑
i,j∈E

‖riRi − rjRj‖2F +
∑
i∈C2

‖riRi −R′
i‖2F

}
,

(2)

where Ri is the gross rotation obtained from the previous iteration
step and fixed in each minimization step. ri is a linearized incre-
mental rotation represented as a skew symmetric matrix with three
unknowns

ri =

 1 −riz riy

riz 1 −rix

−riy rix 1

 .

As a whole, this minimization problem amounts to the solution of
a sparse linear system and it returns optimal vertex positions and
delta rotations ri. We update target gross rotations as Ri ← riRi,
and also orthonormalize them using polar decomposition [Fu et al.
2007]. Figure 9 shows the resulting gross rotations obtained using
this algorithm.

One remaining issue is the choice of differential coordinates L. We
have tested two options: first order differentials (L0) and second
order differentials (L1)

L0 = vi − vi−1, L1 = vi −
1

|Ni|
∑

j∈Ni

vj .

L1 seems to be the popular choice for surface deformation. How-
ever in our case, we found that L1 is not appropriate for the es-
timation of rotations because it almost always degenerates (i.e. is
close to zero) in a smooth curve. On the other hand, L0 always has
certain length in an appropriately sampled curve and serves as a re-
liable guide for estimating rotations. One problem with L0 based
geometry computation is that it causes C1 discontinuities on the
boundaries of the ROI. Therefore, we first use L0 for the iterative
process of rotation estimation, and then switch to L1 for comput-
ing the final vertex positions using the estimated rotations. This
combination is a bit complicated, but gives the best results in our
experiments.

Physically inspired methods, such as PriMo [Botsch et al. 2006],
have become very popular in the context of surface modeling. For
comparison and experimentation purposes we have implemented a
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Original PriMo Our algorithm PriMo Our algorithm

Figure 10: Comparison of our curve deformation to a physically
based approach inspired by PriMo.

variant of PriMo tailored to 3D curves, i.e. each curve segment
defines a (3D) prism. While PriMo is an excellent choice for the
simulation of physically plausible deformation, we found it to be
unsuitable for our curve editing tool. When the curve is compressed
it shows undesirable buckling, while when stretched it loses local
detail. Both phenomena result from length preservation, inherent to
all physically inspired curve deformation algorithms. In contrast,
our uniform discretization of the Laplacian (L1) tolerates some
scaling (see Fig 10).

3.2 Surface Optimization

It is important to provide real-time visual feedback to the user dur-
ing control curve deformation. This constraint necessitates the use
of a fast surface optimization algorithm. An intuitive choice ap-
pears to be discrete surfaces defined as the solution of sparse linear
systems [Sorkine 2006; Botsch and Sorkine 2007]. If we kept the
system matrix constant during interaction, updating the positions
would only require back-substitution, which is very fast. Unfortu-
nately, in our setting we have encountered a shortcoming inherent
to these algorithms, which is due to the absence of normal con-
straints along the curves. Specifically, if the positional constraints
lie in a subspace, the solution will also be constrained to lie in
this subspace. In our tool, the initially sketched curve is planar, so
the resulting mesh geometry is also planar, see Fig. 11. We prove
this property for the constructions of [Botsch and Kobbelt 2004]
and [Sorkine and Cohen-Or 2004] in [Nealen and Sorkine 2007].
Even in the presence of non-planar positional constraints, surfaces
from [Sorkine and Cohen-Or 2004] or the linearized thin plate sur-
faces of [Botsch and Kobbelt 2004] seem to concentrate curvature
near the curves, see Fig. 12 (left column).

The problem could be solved by asking the user to specify normal
constraints for the curves. In most mesh editing tools, normal con-
straints are implemented by fixing n-rings of adjacent vertices. We
have not considered this as an option, since it is our strict design
goal to keep the interface simple. Instead, we have chosen to im-
plement a solution, which generates a fair surface that interpolates
the control curves by means of nonlinear functional optimization.
There are a variety of possible objective functions to choose from.
Welch and Witkin [1994] minimize the integral of squared principle
curvatures

Ep =

∫
S

(κ2
1 + κ2

2) dA, (3)

also known as thin-plate energy, while Bobenko and
Schröder [2005] minimize the closely related Willmore en-
ergy

Ew =

∫
S

(κ1 − κ2)
2 dA, (4)

Figure 11: The results of least-squares meshes (left) and our non-
linear solution (right) for a planar curve.

Figure 12: Least squares mesh (= linearized thin plate surface
∆2x = 0, left) and the results of our nonlinear solution (right).

implemented as a flow. They use this flow for smoothing and hole
filling. Moreton and Séquin [1992] minimize variation of curvature

Ec =

∫
S

(
dκn

dê1

)2

+

(
dκn

dê2

)2

dA, (5)

which is the integral of (squared) partial derivatives of normal cur-
vature κn w.r.t. the directions ê1, ê2 of principal curvatures.

Each objective function has its own strengths and weaknesses,
which also heavily depend on how it is implemented. Based on
these previous results and our own experiences, we chose to com-
pute a surface, which results from a sequence of optimization prob-
lems. This is inspired by a surface construction method presented
by Schneider and Kobbelt [2001]. The PDE governing fairness
in their work is defined as ∆BH = 0, where ∆B is the discrete
Laplace-Beltrami operator, and H = (κ1 + κ2)/2 is the mean cur-
vature. Their basic idea is to factorize this fourth order problem
into two second order problems and solve them sequentially. First
they compute target mean curvatures (scalars) that smoothly inter-
polate the curvatures specified at the boundary, and then move the
vertices, one vertex at a time, to satisfy the target curvatures.

However, the second stage of their technique is not fast enough
to provide interactive updates of the geometry when the user pulls
the curve. In addition, we are lacking curvature information at the
boundaries. Our idea for a faster computation, is to cast both second
order problems as sparse linear systems that use a constant system
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matrix. This allows factoring the matrices once and then perform-
ing only back-substitution during the iterations.

In particular, in the first second-order system we replace the ge-
ometry dependent Laplace-Beltrami operator by the uniformly dis-
cretized Laplace operator and solve the following least-squares
minimization problem

arg min
c

{∑
i

‖L(ci)‖2 +
∑

i

‖ci − c′i‖2
}

, (6)

where L(·) denotes the discrete graph Laplacian, to obtain a set
of smoothly varying Laplacian magnitudes (LMs) {ci}, which ap-
proximate scalar mean curvature values. The first term requires that
the neighboring LMs vary smoothly and the second term requires
the LMs at all vertices to be near the current LM c′i. In the first it-
eration we set target LMs only for the constrained curves using the
scalar mean curvatures along these curves. Unlike [Schneider and
Kobbelt 2001], where the curvature is fixed at the boundary, these
initial target LMs are likely to change in subsequent iterations.

To obtain a geometry that satisfies these target LMs we use the
uniformly discretized Laplacian as an estimator of the integrated
mean curvature normal [Wardetzky et al. 2007]. The integrated tar-
get Laplacian δi = Ai · ci · ni per vertex is given as the product
of an area estimate Ai for vertex i, the target LM ci and an esti-
mate of the normal ni from the current face normals. Then new
positions could then be computed by solving the following global
least-squares system

arg min
v

{∑
i

‖L(vi)− δi‖2 +
∑
i∈C

‖vi − v′i‖2
}

, (7)

where the first term requires that the vertex Laplacians are close to
the integrated target Laplacians, and the second term places posi-
tional constraints on all vertices in the control curve set C.

However, our assumption that the uniformly discretized Laplacian
is a reasonable estimate for the integrated mean curvature normal
does not hold when the edges around a vertex are not of equal
length. Rather than using a geometry dependent discretization,
which would require recomputation of the system matrix in each
iteration, we try to achieve equal edge lengths by prescribing target
edge vectors. For this, we first compute desired scalar edge lengths,
similar to the computation of desired target LMs, by solving

arg min
e

{∑
i

‖L(ei)‖2 +
∑

i

‖ei − e′i‖2
}

, (8)

for a smooth set {ei} of target average edge lengths, from the cur-
rent set of the average lengths e′i of edges incident on vertex i.
Again, we start the iterations by using only the edge lengths along
the given boundary curve. Note that the matrix for this linear sys-
tem is identical to the system for computing target LMs, so that we
can re-use the factored matrix.

From these target average edge lengths, we derive target edge vec-
tors for a subset B of the edges in the mesh

ηij = (ei + ej)/2 · (vi − vj)/‖vi − vj‖. (9)

Using this set of target edge vectors, we modify the linear system
in Eqn. 7 to derive the updated vertex positions as follows:

arg min
v

{ ∑
i

‖L(vi)− δi‖2 +
∑
i∈C

‖vi − v′i‖2 +

∑
(i,j)∈B

‖vi − vj − ηij‖2
}

.

(10)

We have found that it is sufficient to only constrain edges incident
to the constrained curves, because setting the uniformly discretized
Laplacian equal to vectors in normal direction automatically im-
proves inner fairness at all free vertices [Nealen et al. 2006].

The two-step process, consisting of solving for target LMs and edge
lengths and then updating the positions, is repeated until conver-
gence. In practice, we ob-
served that the compu-
tation converges rather
quickly, in approximately
5 to 10 iterations. The
system needs to repeatedly
solve a few sparse linear
systems, but the expensive
matrix factorizations are
required only once at
the beginning (because
left-hand side matrices
remain unchanged during
iteration). The system
only needs to run back-
substitutions during the
iterations, which is very
fast. See the figure on the
right for an overview of
one iteration.
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While the algorithm described above is stable and robust, it is not
entirely independent of tessellation, since we use the uniformly
weighted graph Laplacian as an approximation of the integrated
mean curvature normal to avoid matrix factorization in every iter-
ation. To overcome this, we could compute a minimal energy sur-
face as Schneider and Kobbelt [2001] propose. As an experiment
with a non-linear solution that is independent of surface tessella-
tion, we have implemented the inexact Newton method for Will-
more flow described in [Wardetzky et al. 2007]. We have found
that our algorithm tends to generate very similar results if the dis-
cretization is near-regular and that, as expected, there are situations
where unequal edge lengths along the fixed boundaries would bene-
fit from the discretization-independent solution. However, not only
are these techniques significantly slower to an extent that makes
them unsuitable for most interactive editing situations, we have also
encountered that the solution can become unstable when using in-
sufficient boundary constraints, i.e. curves without normals (this is
expected and mentioned in [Wardetzky et al. 2007]).

3.3 Meshing and re-meshing implementations

The system generates a new mesh after the creation, cut, and ex-
trusion operations. In the case of cut, the system flattens the inter-
section (it is always developable) and generates a 2D mesh inside
of it. In the cases of creation and extrusion, the system generates
a 2D mesh on the image plane within the region surrounded by the
input stroke. The system first resamples the input stroke and then
smoothes it by moving each vertex to the mid point of adjacent
vertices. It is possible to skip this process, but the resulting mesh
is nicer for our purpose because it ends up generating more trian-
gles in high curvature areas. The resampled stroke is intersected
with a regular triangular grid mesh, and each point of the resam-
pled stroke is connected to the nearest grid vertex. Both front and
back sides are created from the same 2D mesh and stitched together
at the common boundary (Fig. 13). Note that this merely defines
the mesh connectivity, not the actual geometry, which is computed
subsequently as described in the previous section.
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Figure 13: Initial mesh generation. The sketch curve (left) is re-
sampled, smoothed (2nd from left) and intersected with a regular
triangular grid (3rd from left), resulting in the mesh topology used
for surface optimization (right).

As the geometry is changed by the user, it may become neces-
sary to remesh the surface. One possible approach is to interleave
mesh topology updates and vertex position updates as in [Welch and
Witkin 1994]. Unfortunately, our surface optimization algorithm
heavily relies on pre-factorization of the Laplacian matrix, which
is defined by mesh topology. If the mesh topology changes during
optimization, the factorization must be computed again, which is a
significant overhead. Therefore, we apply remeshing only when a
large change occurs, and use a constant topology mesh during (con-
tinuous) deformation and surface optimization to provide real-time
feedback. Specifically, we apply remeshing after each sketch-based
modeling operation, and when the user releases the mouse button
after a deformation (pulling) operation. We use a modified version
of explicit remeshing [Surazhsky and Gotsman 2003] in our system.

4 Results

Fig. 14 shows shapes which are difficult to model with implicit
representations [Turk and O’Brien 2002; Karpenko et al. 2002;
Schmidt et al. 2005]. CSG operations allow the user to represent
closed sharp curves along a boundary [Schmidt et al. 2005], but it
is problematic to specify an open sharp curve starting in the middle
of a smooth surface. It is also difficult to represent point sharp (e.g.,
the tip of a cone) using the standard implicit representation. Both
can be modeled with our system (Fig. 14). Markosian et al. [1999]
show that it is possible to include some creases on the surface by
tracing the implicit surface with an explicit mesh, but the basic ge-
ometry is defined by a user-defined polygonal skeleton, not by sur-
face curves.

Figs. 15 and 16 show some more complex results obtained with
our modeling tool. While the models shown in Fig. 1 each took a
trained user approximately 5-10 minutes to create, those depicted in
Figs. 15 and 16 took between 10 minutes (arm) and 1 hour (torso).
See the accompanying video for more details on the construction
process.

Figure 14: Open sharp curve (left) and point-sharp curve (right).

Figure 15: Some results obtained using FIBERMESH.

Figure 16: Some fishy results obtained with the FIBERMESH tool.

Figure 17: Results obtained from first-time novice users. Model
creation took 10, 10 and 20 minutes, respectively.

We have conducted an informal user study to test FIBERMESH.
We trained first-time novice users for approximately 10-15 minutes,
and then let them create some models (Fig. 17). We also asked a
professional 2D animation artist to evaluate our system (Fig. 18).
To quote the artist: ”One great thing about this system is that one
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Figure 18: Creations from a professional 2D animation artist. Modeling took 10, 20 and 20 minutes, respectively.

can start doodling without having a specific goal in mind, as if doo-
dling on paper. One can just create something by drawing a stroke,
and then gradually deform it guided by serendipity, which is very
important for creative work. Traditional modeling systems (para-
metric patches and subdivision surfaces) require a specific goal and
careful planning before starting to work on the model, which can
hinder the creative process.”

Furthermore, we have learned that (a) FIBERMESH indeed supports
the skill transfer from traditional 2D sketching to 3D modeling,
(b) while the system does require some practice, the amount is rea-
sonable and acceptable and (c) creating separate models first and
then merging, as well as animation tools would be very useful.

Our current implementation is written in Java running on the Win-
dows platform. Mesh processing routines are written in Java, but
sparse matrix solvers are written in native code (linked via JNI).
We are testing the system on an Intel Pentium M 1GHz machine,
where it runs in interactive rates. Factorization takes less than a
second, and interactive curve deformation (including surface opti-
mization) works in 10-15 fps in most of our examples (600-2000
vertices). We currently process the entire mesh as a single system
throughout the deformation, which causes some slowdown when
the model becomes complicated. Note though, that it is straightfor-
ward to handle larger meshes by editing only a subset of the mesh,
while fixing the rest.

5 Future Work

Our current implementation uses a curve only as a series of posi-
tional constraints. However, we can expect that curves have more
information. For example, when an artist defines a shape with
curves, it is often the case that these curves indicate the principal
curvature direction of the surface. It is also natural to expect that
the character lines form curvature extrema. It might be possible to
obtain better (more intuitive and aesthetically pleasing) surfaces by
taking these issues into account during optimization. One interest-
ing direction to explore would be to create a quad mesh that fol-
lows the direction of the curves. Quad meshes naturally represent
principal curvature directions and would make it possible to han-
dle minimum and maximum principal curvatures separately. Quad
meshes are also desirable when the user wants to export the result-
ing model from our system and continue editing it in a standard
modeling package.

Multi-resolution (hierarchical) structure would be necessary to con-
struct more complicated models than those shown in this paper. Our
current implementation can successfully handle individual body
parts such as torso, finger, and face, but the construction of an entire
body consisting of these parts would require some mechanism to
handle the part hierarchy. One interesting approach would be to al-
low the user to add a ”detailed mesh” on top of a ”base mesh” as in

multi-resolution approaches. Traditional multi-resolution meshes
require fixed mesh topology, but our optimization framework might
be able to introduce a topologically more flexible structure.

In a similar vein, we exclusively focused on surface-based control
(curves on the surface) in this work. However, in practical modeling
purposes, a skeleton based approach might be better in some cases,
such as a modeling of simple tube-like arms and legs. Welch and
Witkin [1994] actually combined surface-based control and skele-
ton based control. It might be interesting to explore further into this
direction, especially in the context of character animation.
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