Discrete Element Textures

Chongyang Ma!+?
!Tsinghua University

(b) pebble sculpture

(a) plum stack

Li-Yi Wei?
2Microsoft Research

(¢) dish of corn kernels, carrots, beans

Xin Tong?
3Microsoft Research Asia

(d) spaghetti

Figure 1: Discrete element textures. Given a small input exemplar (left within each image), our method synthesizes a corresponding output with user specified
coarse-scale domain (right within each image). Using a data driven approach, we can achieve a variety of effects, including (a) regular distribution, (b) output
with different domain shape and boundary conditions from the input, (c) mixture of different elements, and (d) deformable and elongated shapes.

Abstract

A variety of phenomena can be characterized by repetitive small
scale elements within a large scale domain. Examples include a
stack of fresh produce, a plate of spaghetti, or a mosaic pattern.
Although certain results can be produced via manual placement or
procedural/physical simulation, these methods can be labor inten-
sive, difficult to control, or limited to specific phenomena.

We present discrete element textures, a data-driven method for syn-
thesizing repetitive elements according to a small input exemplar
and a large output domain. Our method preserves both individual
element properties and their aggregate distributions. It is also gen-
eral and applicable to a variety of phenomena, including different
dimensionalities, different element properties and distributions, and
different effects including both artistic and physically realistic ones.
We represent each element by one or multiple samples whose po-
sitions encode relevant element attributes including position, size,
shape, and orientation. We propose a sample-based neighborhood
similarity metric and an energy optimization solver to synthesize
desired outputs that observe not only input exemplars and output
domains but also optional constraints such as physics, orientation
fields, and boundary conditions. As a further benefit, our method
can also be applied for editing existing element distributions.

Keywords: discrete element, texture, analysis, synthesis, sam-
pling, editing, data driven

Links: ©DL T PDF

1 Introduction

A variety of phe-
nomena can be
characterized by
a distinctive large

— | = scale domain with
repetitive small scale elements. Some common examples include
a stack of fresh produce, a plate of spaghetti, or a mosaic pattern.
Due to the potential scale and complexity of such phenomena, it is
desirable to have a general and efficient method for users to easily
specify and synthesize these element distributions for different
application scenarios.

Manual placement, which is flexible enough to achieve many ef-
fects, can be too tedious with current modeling tools for sufficiently
large or complex distributions. An alternative is physical simula-
tion, for which the users specify certain input controls (e.g. initial

state and/or boundary conditions) and simply let the algorithm run
its course to produce results. The primary advantage of physical
simulation is fidelity to realism. However, such methods can be
hard to control, since producing the desired output might require
the user to repeatedly tweak the input parameters. Physical simula-
tion might not be suitable for man-made or artistic effects (e.g. see
[Cho et al. 2007]). Another possibility is the procedural approach
[Ebert et al. 2002]. However, procedural methods are known for
their limited generality and are only applicable to specific distri-
butions (e.g. Poisson disk [Lagae and Dutré 2005]) or phenomena
(e.g. rocks [Peytavie et al. 2009]). Furthermore, even though many
procedural methods offer control via input parameters, tuning these
to achieve the desired effects might require significant expertise.

To achieve the goal of generality, efficiency, and easy usage, we
adopt a data-driven methodology. We call our approach discrete
element textures, which analyzes an input exemplar and synthe-
sizes the corresponding discrete elements within a given output do-
main (Figure 2). Unlike prior data-driven methods that might pro-
duce undesirable individual elements (Figure 3) or aggregate dis-
tributions (Figure 4), our method preserves both. Since the user
has maximum flexibility in specifying both the input exemplar and
the output domain, our method is able to achieve a variety of ef-
fects, including different dimensions (e.g. 2D or 3D), different ele-
ment properties (including shapes, sizes, colors), complexities (e.g.
round and rigid pebbles or elongated and deformable spaghetti) and
distributions (e.g. regular/semi-regular/irregular), different num-
bers of element types (e.g. a plate of mixed vegetables), as well
as physically realistic or artistic phenomena (e.g. a physical pile of
objects or a decorative mosaic pattern). In particular, even though
our method is data driven, it can still produce physical effects (e.g.
deformable spaghetti as in Figure 1d).

We observe that overall element distributions are closely related
to individual element properties, such as position, size, shape, and
orientation. Thus, treating each element as a point sample, as com-

http://doi.acm.org/10.1145/1964921.1964957
http://portal.acm.org/ft_gateway.cfm?id=1964957&type=pdf

(a) exemplar

our method

(b) domain

(¢) output

Figure 2: Given an input exemplar (a) and output domain (b), our method
automatically synthesizes the corresponding output (c).

monly practiced in previous methods, might not work well for suf-
ficiently complex element shapes or distributions. Our key idea
is to represent each element by multiple samples so that all rele-
vant attributes including position, size, shape, and orientation can
be fully encoded by sample positions only. Upon this core repre-
sentation, we build a sample-based neighborhood similarity metric
as well as an energy formulation to express the desired combina-
tions of individual element samples and their overall distributions.
‘We minimize this energy function through an iterative optimization
solver (following [Kwatra et al. 2005]) to produce the desired out-
puts. A primary advantage of this energy optimization framework
is the flexibility in incorporating optional application specific con-
straints through additional energy terms (e.g. for orientation fields
and boundary conditions) or solver steps (e.g. for physics).

As an added benefit, our method can also be applied for editing ele-
ment distributions. Specifically, users just need to change a few el-
ements, and our method will automatically propagate such changes
to all other elements with similar texture neighborhoods, relieving
users from the potential tedious chore of manual repetitions. This
editing application is possible thanks to the framework we devel-
oped for direct synthesis.

2 Previous Work

Multi-scale computation A variety of phenomena consists of
small scale repetitions within a distinctive large scale structure.
Such phenomena could be computed with better quality or effi-
ciency by applying different methods for different scales; some
examples include fluid turbulence [Kim et al. 2008], hair strands
[Wang et al. 2009], crowds [Narain et al. 2009], or motion fields
[Ma et al. 2009]. Our approach follows this general philosophy and
focuses on discrete elements.

Example-based texturing Example-based texturing is a gen-
eral data-driven methodology for synthesizing repetitive phenom-
ena (see survey in [Wei et al. 2009]). However, the basic repre-
sentations in most existing texture synthesis methods such as pixels
[Efros and Leung 1999; Wei and Levoy 2000], vertices [Turk 2001]
or voxels [Kopf et al. 2007] cannot adequately represent individ-
ual or discrete elements with semantic meanings, such as common
objects seen in our daily lives. Without a basic representation that
has knowledge of the discrete elements it would be very difficult to
synthesize these elements adequately; even though artifacts could
be reduced via additional constraints on top of existing methods
(e.g. [Zhang et al. 2003]), there is no guarantee that the individual
elements would be preserved. Thus, the synthesized textures can
have elements that are broken or merged (Figure 3).

Geometry synthesis Our method is also related to geometry
synthesis, especially those via example-based texturing methods
such as surface meshes [Zhou et al. 2006], volumetric models [Bhat
et al. 2004; Merrell and Manocha 2008], or terrains [Zhou et al.

input exemplar pixel synthesis our method

Figure 3: Comparison with pixel-based synthesis. The pixel synthesis
result is produced by combining discrete optimization [Han et al. 2006]
with a texton mask [Zhang et al. 2003].

6o ¢ 000 @ @

0 g9e9es 0 008 00 O 0,09 % 9 0
096% 0 9% 6099969 g % 999% e'0g el

@ @ @
0 0g 999,900 0,%8 05 P0G 9
C'gﬁg‘.‘ L L) O @ ge9Y 9 og 4 00
@ 0 g0 00907 0,409 2 P 4
9798 90.0.90%%%53e, ¢ ¢% 9,002 45 o8
@ @ o 99 @9 0590
e 9.900%9,9 99006 @ @

. o 3, 9999, .go.cd'cc'o.c 90, 9,08, 0 0,
o° $50%% 99580009 92000 0290 ge0 G g0
9,009 4 ¢:¢.¢=¢ @ :'0:%{3‘: 90 o 'Uq % :o“" ¢'= ‘C,
Yo 99°%, 9902 5%%%e% ¢ 9% 09 .09 o® Jo @
0a9%0 ¥ 99009 %e00 G 0000 o9 ¢ 9% o8

0,0° %0 080, 925.9993 "59,% oot e® ¢ 490 059,
09%e9° 3 ¢ a% 9 Y0000 Y%9%% @ 99 9909 gu0 g @

— = =

— - - TN

N ———
-— — T — _—— “‘;\
-~ —~—~—— __,/:__%_ —
~— -/—-_,-—-.___

~ ™ - ——

_—— " = =
— ’% ———
T — -~ = — _/__/’__———

—— —_~ —
= — —_— N =<
— S N——— ;—\-—,__ S —

input exemplar prior method our method

Figure 4: Comparison with prior element synthesis methods. Results in
the middle column are produced by [Dischler et al. 2002] (top) and [Ijiri
et al. 2008] (bottom).

2007]. However, similar to other texture synthesis methods these
are mainly for continuous patterns and might lack necessary infor-
mation to preserve or control discrete elements, e.g. broken ele-
ments as can be seen in Figure 5b of [Zhou et al. 2006].

Element packing There exist methods that pack a set of discrete
elements into a specific domain or shape, such as geometric ele-
ments over a surface [Fleischer et al. 1995; Landreneau and Schae-
fer 2010], mosaic tiles [Hausner 2001; Kim and Pellacini 2002],
stroke patterns [Barla et al. 2006], curves [Merrell and Manocha
2010], 3D object collage [Gal et al. 2007], aggregated particles
[Jagnow et al. 2004], or rock piles [Peytavie et al. 2009]. How-
ever, the element distributions in these methods are determined via
specific procedures or a semi-manual user interface, instead of gen-
erally imitating the distributions in input exemplars as in our ap-
proach.

Texture element placement Even though the majority of
example-based texturing methods are not suitable for discrete el-
ements, potential solutions have been explored by a few pioneer-
ing works, including 1D strokes [Jodoin et al. 2002], 2D stipples
[Kim et al. 2009; Martin et al. 2010], 2D particles/elements [Dis-
chler et al. 2002; Ljiri et al. 2008; Hurtut et al. 2009], and 2D agent
motions [Lerner et al. 2007; Ju et al. 2010]. However, these meth-
ods treat each element as a single sample without a comprehensive
neighborhood metric or a general synthesis solver as in our method;
thus they might not faithfully reproduce both overall element dis-
tributions and individual element properties, especially shape, ori-
entation, or heterogeneous elements. For example, Dischler et al.
[2002] extracted 2D textons from an input exemplar and generated

(a) plum (b) banana (c) bag (d) spaghetti

Figure 5: Examples of elements and samples (shown as red points over
each element model).

the output texture by adding elements from a randomly chosen list
of co-occurrences. Since co-occurrence is less general than a full
neighborhood metric, this approach might not handle well struc-
tural patterns that are neither entirely stochastic nor entirely regu-
lar. Ijiri et al. [2008] synthesized 2D distributions by locally grow-
ing through 1-ring neighborhoods, but cannot handle elements with
complex shapes which are closely correlated with spatial distribu-
tions. Hurtut et al. [2009] synthesized 2D non-photorealistic ar-
rangements using a statistical model evaluated between and within
different categories. The model is based on pair-wise element dis-
tance and is only suitable for isotropic stochastic distributions, not
more general ones that can be structural or anisotropic. To our
knowledge, the works in [Dischler et al. 2002; Ijiri et al. 2008]
present the most advanced algorithm features and the strongest ef-
fects among existing methods, but as shown in Figure 4 our method
still produces better results.

3 Texture Representation

Here we first describe our representation for discrete elements and
texture neighborhoods. Based on these, we then describe our basic
synthesis method in Section 4, followed by constrained synthesis
with more advanced features in Section 5.

3.1 Element Samples

We represent each element by point samples as exemplified in Fig-
ure 5. Each sample records its position p and various attributes q,
including the element id identifying which element it belongs to, as
well as the sample id identifying its relative position within the el-
ement. We determine the number of samples based on the element
properties and place the samples over the element surface via ei-
ther manual specification or standard mesh simplification with fea-
ture preservation. During synthesis, we compute only the sample
ids and locations without considering any other information of the
original elements, like their geometry and appearance. After syn-
thesis, we recover the output elements by treating the output sam-
ples as control points for placing, orienting and possibly deforming
the corresponding input element to the output [Shi et al. 2007].

An important benefit of our multi-sample element representation is
that it allows us to absorb element shape and orientation informa-
tion into sample positions. In our earlier design we treat each ele-
ment as one sample, and thus usually have to incorporate shape and
orientation as extra information in q for our neighborhood metric.
This multi-sample representation facilitates a simpler and cleaner
algorithm formulation. In particular, we have found that using mul-
tiple samples per element is very effective for synthesizing objects
that are otherwise difficult to handle via existing element synthesis
methods, such as elongated shapes. Furthermore, by using multiple
samples per element, our method is able to synthesize convincing
physical effects without real physical simulation, e.g. deformable
shapes whose output variations are simply mimicked from the input
exemplar through data driven synthesis.

As a special case of our multi-sample element representation, we
have found that it is sufficient to use only one sample per element
for rigid and isotropic shapes (such as the plums, pebbles, and corn

oo Bg o

N
0:;. .%1.

input output

Figure 6: Illustration for our neighborhood metric. We matched sam-
ples based on both their relative positions P and attributes q (illustrated by
shape and color). Unmatched input samples are shown in black.

kernels). We place the sample at the element centroid, and simply
use the input element geometry, orientation and appearance for the
corresponding output element.

3.2 Neighborhood Metric

The neighborhood similarity metric is a core component for
neighborhood-based texture synthesis algorithms [Wei et al. 2009].
In our method, let n(s) denote the spatial neighborhood around a
sample s, constructed by taking the union of all samples within its
spatial extent defined by a user specified neighborhood size. We
measure the distance |n(s,) — n(s;)|* between the neighborhoods
of two samples s, and s; via the following formula:

In(so) —m(si)* = >

s’ en(so)

B(s,) — b(si)|” + alals,) —a(sh)|”

()]

where s/, runs through all samples € n(s,), s; € n(s;) is the
“matching” sample of s/, (explained below), p(s’) = p(s’) — p(s)
(i.e. the relative position of s’ with respect to s), and « is the rela-
tive weight between the p and q distance terms. See Figure 6.

Intuitively, what Equation 1 tries to achieve is (1) align the two
neighborhoods n(s,) and n(s;), (2) match up their samples in
pairs {(s},s,)}, and (3) compute the sum of squared differences
of both p and q among all the pairs. We determine the pairings by
first identifying the pair (s}, s,,) with minimum |p(s,) — p(s})],
exclude them from further consideration, and repeat the process to
find the next pair until n(s,) runs out of samples. We prevent n(s;)
from running out of samples before n(s,) by not presetting its spa-
tial extent, essentially giving n(s;) an infinite size. We have found
that the heuristic above works well in practice, and provides similar
quality to a more rigorous but much slower approach that considers
all possible pair matchings (s;, s,,) by brute force. We match only
samples with identical object id and sample id to avoid changing
topologies of element shapes.

Discussion For traditional texture synthesis that has fixed sam-
ple (e.g. pixel/voxel/vertex) positions p, the neighborhood measure
can be easily defined by either a simple sum-of-squared differences
(SSD) of the attributes q (such as colors) in a regular setting (e.g.
pixels or voxels) or by resampling irregular samples into a regular
setting before proceeding with SSD as in the former case (e.g. mesh
vertices). However, in our case, since we have to synthesize both p
and g, we need to incorporate both of them into the neighborhood
metric in Equation 1. Our metric also bears similarity to the Earth
Mover’s Distance (EMD) [Rubner et al. 2000], which measures dis-
tances between two groups of “clusters” that are analogous to our
“samples”. However, EMD is designed for partial matching be-
tween clusters whereas we focus on one-to-one mappings between
samples.

(a) Energy curve

(b) Initialization

(¢) Iteration 1

S e S
= - = T ===
~ - A~ —_— - —
= == == I == =
—~— N e
= T _— T I == =
~— — — = — ==
=~ —— e~ — e~ —
\/ - ~— \v T~ ~— — :\ ~—
e - =~ g T~ ~—
" T— — —_ T
=" T ==
(d) Iteration 2 (e) Iteration 5 (f) Iteration 20

Figure 7: Iteration process. Here we show the energy curve as well as results after different numbers of iterations using the input exemplar in Figure 4.

4 Basic Synthesis

Given an input exemplar Z and an output domain with user spec-
ified size, shape, and optional properties such as orientation field
and boundary condition, our goal is to synthesize an output O that
contains detailed elements similar to Z while observing the output
domain properties (Figure 2). We formulate this as an optimization
problem [Kwatra et al. 2005] via the following energy function:

E(O;T)= Y [n(so) —n(s:)*+0(0;1) (2

so€O

where the first term measures the similarity between the input ex-
emplar Z and the output O via our local neighborhoods metric as
defined in Equation 1. Specifically, for each output sample s, € O,
we find the corresponding input sample s; € Z with the most simi-
lar neighborhood (according to Equation 1), and sum their squared
neighborhood differences. E also contains optional application
specific energy terms represented by © such as boundary condi-
tions. Our goal is to find an output O with a low energy value.

Below we describe our basic solver assuming © is null, and leave
details about constrained synthesis to Section 5. Even though there
are multiple potential solvers for Equation 2, we follow the EM-
like methodology in [Kwatra et al. 2005] because of its high qual-
ity and generality with different options in ©. As summarized in
Pseudocode 1, our basic solver gradually improves the neighbor-
hood similarity term by iterating the two steps: search for the most
similar input neighborhood for each output sample and assign the
information from the matched neighborhoods to the output. This
will gradually decrease 2 while improving output quality, as ex-
emplified in Figure 7. The main difference between prior texture
synthesis methods and ours is that unlike the former where the po-
sition information p is given (e.g. pixels, vertices, or voxels) and
only the attribute information q needs to be determined (e.g. col-
ors), we have to solve for both p and q during synthesis.

4.1 Initialization

Patch-based synthesis is well known to be effective for image tex-
tures (see the survey in [Wei et al. 2009]). Here, we apply a sim-
ilar method for initialization. We first divide the input exemplar
into patches, and then randomly copy these patches into the out-
put domain. We set the patch size to be identical to the user se-
lected neighborhood size (Section 3.2). To avoid partial/broken ob-
jects, we always copy integral elements. In addition, when copying
patches we take into account the user controls (Section 5), such
as aligning patches with local orientations as well as preferring
input patches with similar boundary conditions to the output re-
gion. We have also experimented with other initialization methods
such as white noise (random copying elements) and incremental
add [Jodoin et al. 2002; Ijiri et al. 2008]. Even though our solver
can produce good results from these alternative initializations, they
usually exhibit slower convergence than patch copy.

function O < DiscreteElementTextureSynthesis(Z)

/I O: output distribution

/I L: input exemplar

O < Initialize(Z) // Section 4.1

iterate until convergence or enough # of iterations reached
{n(s;)} < Search(O, T) // search phase
Assign({n(s;)}, O) /I assignment phase
extra solver steps // Section 5

end

return O

function {n(s;)} < Search(O, Z) // Section 4.2
foreach element s, € O
n(s,) < output neighborhood around s,
n(s;) « find most similar neighborhood for s; € Z to n(s,)
end
return {n(s;)}

function Assign({n(s;)}, O) // Section 4.3
foreach output element s, € O
pP(so) « least squares from predicted positions
q(so) « select the vote that minimizes the energy function
end

Pseudocode 1: Discrete element texture synthesis.
4.2 Search Step

During the search step, we find, for each output sample s,, the best
matching input sample s; with the most similar neighborhood, i.e.
minimizing the energy value in Equation 1. This search can be
conducted by exhaustively examining every input sample, but this
can be computationally expensive. Instead, we adopt k-coherence
search [Tong et al. 2002] for constant time computation.

The basic idea behind k-coherence search is to build a set of other
input samples with neighborhoods similar to each input sample dur-
ing a pre-process, and use that information to restrict the search
space at run time. (See [Wei et al. 2009] for a tutorial.) The
main difference between our method and the original k-coherence
method is that we have to deal with irregularly placed samples.
However, this problem has been addressed in the context of irreg-
ular mesh vertices [Han et al. 2006], and we could adopt a similar
strategy here. Specifically, during the pre-process, we can build
a similarity set for each input sample via our brute force search
step as described above. At run-time, we build the candidate set
by collecting the similarity sets from all the neighboring samples,
with the offset part properly computed by the recorded sample pairs
(Section 3.2).

4.3 Assignment Step

p assignment Here we determine the output sample positions
{p(s0)},, co to minimize Equation 2. At the beginning of the
assignment step, we have multiple input neighborhoods {n(s})}
overlapping every output sample s,, where n(s;) is the match-
ing input neighborhood for output sample s/, as determined in the

, O
QSsi @) Qs.
; © ¢ 4
p(si) — p(si\)\&‘sv p(si) = P(SQ)\§ @50
4 i A o @(ss0)
e e d
input output

Figure 8: Iilustration for the assignment step. Each neighboring sam-
ple s., (cyan) of so (red) provides a predicted position p(so, s)) (green)
based on its matching sample s/, We determine the “desired” output posi-
tions {P(so0)} s, co 1o satisfy all such predicted positions in a least squares
fashion.

search step and s/, is sufficiently close to s, so that the spatial extent
of n(s}) covers s,. Each such n(s;) provides a prediction p(s., s,,)
for the relative position between s, and s.,:

P(S0,55) = P(si) — p(s7) 3)

where s;,s; indicates the matching input sample for s,,s., respec-
tively as described in the neighborhood metric (Equation 1). See
Figure 8. We can extract from Equation 2 the p(s,) variables for
all output samples s, € O into the following energy function:

Ep({p(so)}e,c0) = 2 2 [(P(so) = P(s0)) = Blso, s0)[°

50€0 sl en(s,)
@

Equation 4 is a quadratic function of {p(s,)} and can be mini-
mized via least squares, i.e. solving a positive definite sparse linear
system.

q assignment We assign q by a simple voting scheme. For each
output sample s,, we gather a set of votes {q(s;) }, where each s; is
matched to s, for a certain overlapping neighborhood determined
in the search step. Then we choose the one that has the minimum
sum of distances across the vote set {q(s;) }:

a(so) = argming,,) > la(s:) —a(si)*)
s;r€{si}

where s,/ runs through the set of samples {s; } matched to s, during
the search step. Essentially, what we are trying to do is to find a
q(so) that is the closest to the arithmetic average of {q(s;)}.

Discussion In the assignment steps we use blending for p (Equa-
tion 4) but selection for g (Equation 5). In some sense, the former
is analogous to the least squares solver [Kwatra et al. 2005], and
the latter to the discrete k-coherence solver [Han et al. 2006]. The
main reason is that blending works better than selection for p, but
might not be suitable for all q attributes. For example, the type
information might not be meaningfully blended. Furthermore, to
apply k-coherence acceleration (Section 4.2), we will have to copy
instead of blend the q information.

5 Constrained Synthesis

Even though our basic synthesis method can produce stationary out-
puts, for realistic effects it is usually desirable to control certain as-
pects of the output. Here, we describe several synthesis controls
that we have found useful in producing various application specific
effects. Due to our energy optimization framework, these controls
can be easily achieved as additional energy terms © in Equation 2
or extra solver steps in Pseudocode 1 without changing our core
algorithm in Section 4.

outside
o e

inside

Figure 9: lllustration for the domain shape. For an output sample s, near
the output domain boundary, we favor matched input neighborhoods with
fewer samples outside the output domain. Left: a neighborhood with some
samples outside (shown in red). Right: a neighborhood that is completely
inside.

Domain shape To ensure that the synthesis output is distributed
within the user specified domain shape, we incorporate the follow-
ing extra energy term into our basic neighborhood metric in Equa-
tion 1:

c(So,8:) = Z |1 — c(so,si,s;)\Q 6)

shen(s;)

where ¢ is a function within the range [0, 1] for which a higher
value indicates a higher probability of being inside the output do-
main, and {c(so, si,s;)} are values of function ¢ sampled at po-
sitions {p(so) + P(si) — P(s:), s; € n(s;)}. Essentially, we shift
the entire input neighborhood n(s;) to the center location p(so)
and query c at shifted sample positions. In the search step, we
find the input neighborhood n(s;) that minimizes the sum of the
usual texture (dis)similarity term |n(s,) — n(s;)|* and the addi-
tional term Ac(so, s;) with a user specified relative weight . For
so well inside the output domain, the corresponding n(s;) is likely
to be completely inside as well, causing Equation 6 to have value
of 0 and thus no effect on the search step. However for s, near the
output boundary, Equation 6 will favor those s; whose neighbor-
hood n(s;) has a compatible occupancy to n(s,), i.e. those near
similarly local boundaries (Figure 9).

As an implementation detail, we specify the function c by voxeliz-
ing the entire output region into a binary-valued “inside-outside”
texture of resolution 128> according to the constraint from a closed
mesh [Crane et al. 2007].

Local orientation The user can also optionally specify a local
orientation field of the output texture so that the output patterns
are aligned with the user choice instead of the default global co-
ordinate frame. This allows the production of more interesting re-
sults, e.g. oriented flow patterns as in [Ljiri et al. 2008]. We spec-
ify the local orientation field either manually or via simple proce-
dures. Algorithmically, incorporating local orientation can be eas-
ily achieved by using the local instead of the global frame at each
sample throughout all the steps of our algorithm, including the ini-
tialization, search, and assignment steps. In the search step for ex-
ample, with the local orientation o(s) specified at a neighborhood
center s, the relative position in Equation 1 should be computed as

p(s’) = o(s) ' (p(s") — p(s)) ©)

where the symbol o(s) ~! means to rotate the vector by the inverse
orientation of o(s). Note that the incorporation of local frames into
a texture optimization framework has been done in prior methods,
e.g. [Ma et al. 2009].

Constrained selection For certain application scenarios it might
be desirable to maintain specific constraints. In these cases, we have

(b) bananas

(f) samples

(g) carrots (h) tai-chi

) tiles

(m) hut

(i) radial pattern

(d) bowl (e) Gaussian shape

(j) 3D knot

(0) cabin

(n) cabin

Figure 10: Element synthesis results. The input exemplars are shown as smaller images, with the corresponding synthesis results shown as larger ones. Each
exemplar in (b), (g), and (k) is used to produce multiple outputs with different sizes, shapes, or orientation fields. The same output model is used to produce
different results in (n) and (o) via different exemplars in (k) and (1). For inputs with more than one sample per element, we also visualize the corresponding

sample positions as red dots over the element models.

found it effective to constrain the kinds of input elements that can
be transferred into the constrained output regions, which is a com-
monly used method in texture synthesis, such as volumetric layers
[Owada et al. 2004]. For example, to reduce the chance of elements
floating in mid-air, during the search step we only select input floor
elements for output floor elements. During the assignment step, we
maintain the vertical elevation of these floor elements to be invariant
while minimizing other energy terms as described in Section 4.3.

Interleaved physics solver To further control or constrain syn-
thesis effects we can add additional terms to our basic energy func-
tion. However, for common physical effects we have found a
simpler and more effective method via an implicit term achieved
through an interleaved solver. For example, to impose physical
constraints such as avoiding penetration and obeying gravity, one
possibility is to add additional energy terms for each one of these
constraints. But this is not only tedious but also can lead to solver
issues in quality and speed [Shi et al. 2007]. Instead, we propose to
resolve this issue by simply interleaving a few physics based sim-
ulation sub-steps within each iteration of our main solver, after the
search and assignment steps as indicated in Pseudocode 1. In our

current implementation we use the open source Bullet Physics Li-
brary [Coumans 2009] even though other solvers can also be used.
In a sense, this interleaved solver achieves implicit energy terms
and thus keeps the formulation clean while achieving better qual-
ity and convergence speed compared to solving additional explicit
energy terms.

6 Results

6.1 Element distribution

Our method can produce a variety of element distributions with dif-
ferent attributes, such as dimensionality (2D/3D), volume/surface
synthesis, regular/semi-regular/irregular distribution, number of el-
ement types, variations in element size/shape/color/texture, out-
put domain size/shape/orientation, and artistic/realistic phenomena.
Since our method is data driven, we can handle all these by simply
using different input exemplars and output domains. We wish to
emphasize that the input and output specifications are more or less
de-coupled, i.e. the same input exemplar can be used for different
output domains, and vice versa (see Figure 10 and Figure 11). This

(a) corn kernels, carrots and beans

(b) bananas

Figure 11: Element distributions with the same output domain but differ-
ent input exemplars. Here we combine the control shape in Figure 1b with
input exemplars in Figure 1c and 10b to synthesize different outputs.

is a key factor facilitating easy and flexible usage of our method.

Input exemplar properties Using input exemplars with differ-
ent properties, our method can produce a variety of different results
as shown in Figure 1 and Figure 10. We begin with the simplest
but also very common case of one type of element, e.g. Figure 1a,
10b, and 10g. But even such one-element-type distributions may
have certain properties that cannot be easily captured by procedu-
ral or physical simulation methods. For example, the user might
prefer to arrange a stack of plums in a near-regular configuration
(Figure 1a), or a collection of carrots in specific orientations (Fig-
ure 10h, 10i, and 10j). Notice that these examples cannot be easily
produced by physical simulation (e.g. dropping objects until they
come to rest) as the outputs are unlikely to reach the desired user in-
tention. One possibility is to manually place the elements, but this
could quickly become very tedious for sufficiently large outputs.
Using our method, the user only needs to manually place a small
input exemplar and our method will automatically produce the de-
sired output. The bananas (Figure 10b) present another interesting
case due to their unique long and curvy shapes. For this case, we
generated the input via physical simulation to show that our method
can produce visually realistic outputs via physically validated input.
More interesting distributions can be produced by multiple types of
elements with different sizes and shapes, e.g. a dish containing corn
kernels, diced carrots, and green beans (Figure 1c).

Output domain properties In addition to input exemplar prop-
erties like element type and distribution, the user can also specify
the output domain properties, including size, shape, and orienta-
tion field, to achieve different effects. Beyond physically plausible
shapes like a stack, a box, a pile, or a bowl as shown in Figure 1 and
10, the user can also specify a more complex or interesting shape
such as a sculpture (Figure 1b), a tai-chi pattern (Figure 10h), a knot
(Figure 10j), or a building (Figure 10m). Our method can also be
applied to both volume (e.g. Figure 1) and surface/shell (e.g. Fig-
ure 10m, 10n, and 100) synthesis. Note that these results span both
physically realistic as well as artistic effects. As noted in [Cho et al.
2007], physical simulation might produce output distributions that
look flat or boring. To produce visually more appealing effects, it
is often desirable to have the output in a physically unstable or im-
plausible configuration. Cho et al. [2007] achieved this via certain
ad-hoc approaches, e.g. stopping physical simulation in the mid-
dle prior to completion (Figure 10 in [Cho et al. 2007]) or using
repeated skimming and an up-side-down collision mesh (Figure 15
in [Cho et al. 2007]). Our method can easily produce the desired
effect in a more principled and more controllable manner by simply
using the proper output domains.

Boundary handling Proper boundary handling is important to
produce satisfactory results for certain inputs that exhibit different
distributions for elements with different distances to domain bound-

no boundary handling with boundary handling

Figure 12: Boundary condition comparisons. Shown here are the profile
views for the output in Figure Ic.

aries, e.g. floor or containers. Our experimental results indicate that
these boundary conditions can be adequately handled by our control
mechanisms described in Section 5. Without such mechanisms, the
synthesis results might exhibit poor boundary conditions, as shown
in Figure 12. We wish to emphasize that our method does not re-
quire all possible output boundary configurations to be present in
the input exemplar; as shown in Figure 1 and 10, even though the
output can contain different boundary shapes and orientations not
present in the simpler input exemplars, the combination of local
orientation and boundary handling can still produce satisfactory re-
sults.

Complex elements Our element sample representation (Sec-
tion 3.1) helps in synthesizing complex elements. Figure 13 shows
several such results, including a deformable volumetric case and a
deformable elongated case. Our algorithm works quite effectively,
despite its simplicity (by just using multiple samples per element).
Note that our method is applicable to scenarios both physically
plausible (e.g. Figure 13c) and implausible (e.g. 13d). As discussed
in [Cho et al. 2007], physically implausible configurations are often
desired in real production scenarios. Figure 13 demonstrates poten-
tial cases which cannot be produced by physical simulation (not sta-
ble) even with the assistance of frozen elements during piling [Hsu
and Keyser 2010]. We have also found such complex elements very
difficult to synthesize well with only one sample per element as in
our basic algorithm (see Figure 14) and prior data-driven element
synthesis methods which, to our knowledge, predominantly use a
single sample per element.

Interleaved physics solver By adding interleaved physics sim-
ulation steps into our solver (Section 5), we are able to produce
physically more realistic effects without increasing the complexity
of our algorithm. See Figure 15 for a comparison. However, we
have found that our basic texture solver can already achieve suffi-
cient quality most of the time, and all results shown in the paper are
produced without this physics solver unless noted otherwise.

6.2 Usage and parameters

Input preparation Unlike other texture synthesis applications
where the input exemplars can be obtained directly (e.g. download-
ing an image), for discrete element textures the user would have to
do some work to produce the input exemplars, including both the
individual elements and their overall distribution. For the results
shown in this paper, we prepare the elements via standard model-
ing tools (e.g. Maya) and distribute them either manually or by
simple simulation. For the modeling part, we have found it suffi-
cient to make just one element for each type, and the quality appears
sufficient for human perception [Ramanarayanan et al. 2008]. If ad-
ditional element prototypes are desired, we have found it sufficient
to slightly perturb the prototype element properties (e.g. geometry
or color) via procedural noise. For the distribution part, since the in-
put exemplar is usually quite small, manual placement is generally
feasible (e.g. the inputs for Figure 1a, 10g and 10k). It is also pos-
sible to use physical simulation for the input distribution for more
random or physically realistic effects, even for outputs that might
not be easy to produce via simulation (e.g. Figure 1b).

We wish to emphasize that even though our method needs user

(a) samples

(b) bags

&P

(f) samples

(g) spaghetti (h) pile

b
o

¥
{;\v&
\3

—
—=

|

(i) fork (j) chopsticks

Figure 13: Complex element synthesis results. Here are two deformable shapes, volumetric bags and elongated spaghetti, with a variety of output domains.

single sample per element multiple samples per element

Figure 14: Comparison between single- and multi-sample element syn-
thesis. Using a single sample per element might not be enough to handle
objects with very complex shapes; notice the larger amount of penetration
and less conforming boundary conditions as shown on the left. Using mul-
tiple samples per element produces better effects as shown on the right.

preparation of geometry elements, it is still much easier to use than
current modeling tools especially for large, complex, or unusual
(e.g. non-physically-based) output distributions. As an informal
user study, our professional artists estimate that it can take them
hours to generate each single output in our paper themselves, ver-
sus minutes via our approach.

Parameters Similar to prior texture synthesis methods, one of the
most important parameters is the neighborhood size. In our results
we have found it sufficient to use a neighborhood size containing
roughly 1- to 3-ring neighbors (~ 3™ to 7™ neighborhood in n-D
pixel synthesis) depending on whether the pattern is more stochas-
tic or structured. Other important parameters include o (for Equa-
tion 1) and A (for Equation 6), for which we set to be of the same
order of magnitude as the average distance between elements. For
example, if the average element distance is 0.01 we just set o and
A € [0.005 0.05]. For multi-sample elements, we usually consider
sample id during neighborhood matching, except for the spaghetti
case for which we found it unnecessary to distinguish individual
sample ids. Regarding speed, a single iteration of our solver takes
about 5 seconds for 1000 output elements on a PC with an Intel

without interleaved physics solver

with interleaved physics solver

Figure 15: Effects of interleaved physics solver. Our interleaved physics
solver can reduce physics artifacts, such as interpenetrations (as shown in
the green frames) or floating elements (as shown in the blue frames). For
clarity we also show the zoom-in rendering of each green frame at the lower
right corner of the corresponding image.

Xeon X5355 2.66GHz CPU and 4GB RAM. All the results are pro-
duced with 10 iterations of our optimization solver. When the inter-
leaved physics solver is used, we run it with 5 sub-steps following
the search and assignment steps in each iteration. See Table 1 and
Figure 17 for more detailed settings and statistics for our results.

6.3 Distribution editing

As an added benefit, our method can also be applied for editing dis-
crete element textures, for not only individual element properties q
but also their distributions p. All these can be achieved by the very
same algorithms that we have built for synthesizing discrete ele-
ment textures, especially the neighborhood metric. Texture editing
has been shown to be useful for a variety of application scenarios
(see e.g. [Brooks and Dodgson 2002; Matusik et al. 2005; Cheng
et al. 2010]). Our method follows this line of thinking, but can
achieve certain effects that may benefit from explicit knowledge of
the discrete elements.

Figure 16 demonstrates a potential example. Given an input pat-
tern consisting of discrete elements, we aim to use our method to

(a) photo (b) input

(c)user edits 1 element (d) propagated change

(e) edit p

(f) change element

(g) editq

Figure 16: Discrete element texture editing. Inspired by a real-world example (a), we aim to enhance the pattern quality from the input (b). Since the original
pattern is a bit boring with only little dots, the user first changes one element position, then our method automatically propagates that change to all other
elements with similar neighborhoods. The user then goes on to edit other element properties, including both positions p and attributes q such as color, size,

and shape.

sample additional | physics | neighbor | run time

demo . . .
per element attributes solver size (min)

plums 1 none no 0.3 1
pebbles 1 type id no 0.2 2
dish 1 type id no 0.2 2
bananas 5 sample id no 0.15 2~3
carrots 4 sample id no 0.1 3~ 4
house 1 none no 0.2 1~2
bags 26 sample id yes 0.25 5
spaghetti 20 ~ 100 none yes 0.1 5~ 10

Table 1: Parameter settings for our results. The neighborhood size is
measured relative to the bounding box of the input exemplar with normal-
ized size of 1.

——

2
s

piy

(b) tai-chi

(a) plate

(¢) fork

Figure 17: Output orientation fields. We visualize the flow directions via
black arrows and the output domain boundaries via red lines. The vector
fields in (a), (b), (c) and (d) are used for the results in Figure 1d, Figure 10h
(top view), Figure 13i and Figure 13] (side view) respectively. The shape and
vector field for Figure 10j are obtained according to the parametric Trefoil
knot. The output domain shapes and orientation fields (if used) should be
self evident for all other results.

(d) chopsticks

edit the element properties q and distributions p to produce more
versatile effects. The user may simply select a typical element and
perform some edits, and then our method will automatically propa-
gate relevant edits to all other elements with similar neighborhoods
to the edited element. Note that without our automatic propagation,
it would be quite tedious for the user to manually repeat the same
edits to all relevant elements.

7 Limitations and Future Work

The speed of our current implementation is suitable only for batch
synthesis but not real-time computation. We would like to further
improve its efficiency so that our method can provide immediate
feedbacks for interactive authoring, even for large outputs.

Our approach synthesizes an element distribution only but not the
individual elements, for which we rely on user inputs. It will be
interesting to devise methods that can more automatically obtain the
individual elements, e.g. 2D textons [Ahuja and Todorovic 2007],
or 3D geometry [Pauly et al. 2008]. Another related direction is to
design a user-interface tool that facilitates semi-manual creation of
elements from a 2D image or 3D geometry inputs. Finally we are
interested in figuring out the minimum possible input to produce the

desired output. This can potentially be achieved via summarization
or inverse synthesis [Simakov et al. 2008; Wei et al. 2008].

We also rely on user input for the overall output shape. On one hand
this provides the flexibility for the users to choose whatever shapes
they like, but on the other hand it may be a nuisance if the users do
not feel like doing so. For the latter case it would be interesting to
apply more automatic methods to determine the output shape [Hsu
and Keyser 2010].

We have only tried our method on static but not dynamic element
distributions. Based on optimization, we believe that our basic
framework can be applied for frame coherent animation effects as
in [Kwatra et al. 2005; Lerner et al. 2007; Ju et al. 2010]. The really
interesting issue here is on what kinds of input exemplars to spec-
ify; dynamic inputs would be easier for our method to work with,
but static inputs might be more convenient and practical to obtain.

Acknowledgements We would like to thank Shuitian Yan, Lu-
oying Liu and La Tu for building all the polygon models used in
our paper, Stephen Lin for proofreading, Matt Callcut for video
dubbing, Yue Dong for help rendering animating sequences, Hong-
wei Li for help visualizing vector fields, as well as Weiwei Xu,
Xin Sun, and anonymous reviewers for their valuable suggestions.
The photo in Figure 16a is from http://www.flickr.com/
photos/larasanjung/3114532989/ courtesy of Laras An-
jung Gallery.

References

AHUIJA, N., AND TODOROVIC, S. 2007. Extracting texels in 2.1D
natural textures. /ICCV 0, 1-8.

BARLA, P., BRESLAV, S., THOLLOT, J., SILLION, F., AND
MARKOSIAN, L. 2006. Stroke pattern analysis and synthesis.
In EUROGRAPH 06, vol. 25, 663-671.

BHAT, P., INGRAM, S., AND TURK, G. 2004. Geometric texture
synthesis by example. In SGP 04, 41-44.

BROOKS, S., AND DODGSON, N. 2002. Self-similarity based
texture editing. In SSIGGRAPH 02, 653-656.

CHENG, M.-M., ZHANG, F.-L., MITRA, N. J., HUANG, X., AND
Hu, S.-M. 2010. Repfinder: finding approximately repeated
scene elements for image editing. In SIGGRAPH ’10, 83:1-8.

CHO, J. H., XENAKIS, A., GRONSKY, S., AND SHAH, A. 2007.
Course 6: Anyone can cook: inside ratatouille’s kitchen. In SIG-
GRAPH 2007 Courses.

COUMANS, E., 2009. Bullet physics engine. http://www.
bulletphysics.com/.

CRANE, K., LLAMAS, I., AND TARIQ, S. 2007. Real-Time Simu-
lation and Rendering of 3D Fluids. In GPU Gems 3, H. Nguyen,
Ed. Addison-Wesley Professional, ch. 30, 633-675.

http://www.flickr.com/photos/larasanjung/3114532989/
http://www.flickr.com/photos/larasanjung/3114532989/
http://www.bulletphysics.com/
http://www.bulletphysics.com/

DISCHLER, J., MARITAUD, K., LEVY, B., AND GHAZANFAR-
POUR, D. 2002. Texture particles. In EUROGRAPH ’02, vol. 21,
401-410.

EBERT, D. S., MUSGRAVE, K. F., PEACHEY, D., PERLIN, K.,
AND WORLEY, S. 2002. Texturing & Modeling: A Procedural
Approach. Morgan Kaufmann.

EFROS, A. A., AND LEUNG, T. K. 1999. Texture synthesis by
non-parametric sampling. In /CCV ’99, 1033-1038.

FLEISCHER, K. W., LAIbDLAW, D. H., CURRIN, B. L., AND
BARR, A. H. 1995. Cellular texture generation. In SIGGRAPH
’95,239-248.

GAL, R., SORKINE, O., POPA, T., SHEFFER, A., AND COHEN-
OR, D. 2007. 3D collage: expressive non-realistic modeling. In
NPAR °07, 7-14.

HAN, J., ZHOU, K., WEI, L.-Y., GONG, M., BAO, H., ZHANG,
X., AND GUO, B. 2006. Fast example-based surface texture
synthesis via discrete optimization. Vis. Comput. 22,9, 918-925.

HAUSNER, A. 2001. Simulating decorative mosaics. In SIG-
GRAPH 01, 573-580.

Hsu, S.-W., AND KEYSER, J. 2010. Piles of objects. In SIG-
GRAPH Asia 10, 155:1-6.

HURTUT, T., LANDES, P.-E., THOLLOT, J., GOUSSEAU, Y.,
DROUILLHET, R., AND COEURJOLLY, J.-F. 2009. Appearance-

guided synthesis of element arrangements by example. In NPAR
’09, 51-60.

Inri, T., MECH, R., IGARASHI, T., AND MILLER, G. 2008. An
example-based procedural system for element arrangement. In
EUROGRAPH 08, vol. 27, 429-436.

JAGNOW, R., DORSEY, J., AND RUSHMEIER, H. 2004. Stereolog-
ical techniques for solid textures. In SIGGRAPH '04, 329-335.

JODOIN, P.-M., EPSTEIN, E., GRANGER-PICHE, M., AND Os-
TROMOUKHOV, V. 2002. Hatching by example: a statistical
approach. In NPAR °02, 29-36.

Ju, E., CHO1, M. G., PARK, M., LEE, J., LEE, K. H., AND
TAKAHASHI, S. 2010. Morphable crowds. In SIGGRAPH Asia
’10, 140:1-10.

KiMm, J., AND PELLACINI, F. 2002. Jigsaw image mosaics. In
SIGGRAPH 02, 657-664.

KiM, T., THUREY, N., JAMES, D., AND GROSS, M. 2008.
Wavelet turbulence for fluid simulation. In SIGGRAPH ’08,
50:1-6.

KM, S., MACIEJEWSKI, R., ISENBERG, T., ANDREWS, W. M.,
CHEN, W., SOUSA, M. C., AND EBERT, D. S. 2009. Stippling
by example. In NPAR’09, 41-50.

KorrF, J., Fu, C.-W., COHEN-OR, D., DEUSSEN, O., LISCHIN-
SKI, D., AND WONG, T.-T. 2007. Solid texture synthesis from
2D exemplars. In SIGGRAPH '07, 2:1-9.

KWATRA, V., EssA, 1., BOBICK, A., AND KWATRA, N. 2005.
Texture optimization for example-based synthesis. In SIG-
GRAPH 05, 795-802.

LAGAE, A., AND DUTRE, P. 2005. A procedural object distribu-
tion function. ACM Trans. Graph. 24, 4, 1442—-1461.

LANDRENEAU, E., AND SCHAEFER, S. 2010. Scales and scale-
like structures. In SGP ’10, 1653-1660.

LERNER, A., CHRYSANTHOU, Y., AND LISCHINSKI, D. 2007.
Crowds by example. In EUROGRAPH ’07, vol. 26, 655-664.

Ma, C., WEI, L.-Y., Guo, B., AND ZHOU, K. 2009. Motion
field texture synthesis. In SIGGRAPH Asia 2009, 110:1-8.

MARTIN, D., ARROYO, G., LUZON, M. V., AND ISENBERG,
T. 2010. Example-based stippling using a scale-dependent
grayscale process. In NPAR ’10, 51-61.

MATUSIK, W., ZWICKER, M., AND DURAND, F. 2005. Tex-
ture design using a simplicial complex of morphable textures. In
SIGGRAPH °05, 7187-794.

MERRELL, P., AND MANOCHA, D. 2008. Continuous model syn-
thesis. In SIGGRAPH Asia 08, 158:1-7.

MERRELL, P., AND MANOCHA, D. 2010. Example-based curve
generation. Computers & Graphics 34, 304-311.

NARAIN, R., GoLAS, A., CURTIS, S., AND LIN, M. 2009. Ag-
gregate dynamics for dense crowd simulation. In SIGGRAPH
Asia °09, 122:1-8.

OWADA, S., NIELSEN, F., OKABE, M., AND IGARASHI, T. 2004.
Volumetric illustration: designing 3d models with internal tex-
tures. In SIGGRAPH 04, 322-328.

PAULY, M., MITRA, N. J., WALLNER, J., POTTMANN, H., AND
GUuIBAS, L. J. 2008. Discovering structural regularity in 3d
geometry. In SIGGRAPH 08, 43:1-11.

PEYTAVIE, A., GALIN, E., MERILLOU, S., AND GROSIJEAN, J.
2009. Procedural generation of rock piles using aperiodic tiling.
In Pacific Graphics 09, 1801-1809.

RAMANARAYANAN, G., BALA, K., AND FERWERDA, J. A. 2008.
Perception of complex aggregates. In SIGGRAPH ’08, 60:1-10.

RUBNER, Y., ToMASI, C., AND GUIBAS, L. 2000. The earth
mover’s distance as a metric for image retrieval. International
Journal of Computer Vision 40, 2, 99-121.

SHI, X., ZHOU, K., TONG, Y., DESBRUN, M., BAO, H., AND
Guo, B. 2007. Mesh puppetry: cascading optimization of mesh
deformation with inverse kinematics. In SIGGRAPH 07, 81:1—
10.

SIMAKOV, D., CASPI, Y., SHECHTMAN, E., AND IRANI, M.
2008. Summarizing visual data using bidirectional similarity.
In CVPR ’08, 1-8.

ToNG, X., ZHANG, J., Liu, L., WANG, X., Guo, B., AND
SHUM, H.-Y. 2002. Synthesis of bidirectional texture functions
on arbitrary surfaces. In SSIGGRAPH 02, 665-672.

TURK, G. 2001. Texture synthesis on surfaces. In SSGGRAPH ’01,
347-354.

WANG, L., Yu, Y., ZHoU, K., AND GUO, B. 2009. Example-
based hair geometry synthesis. In SIGGRAPH 09, 56:1-9.

WEI, L.-Y., AND LEVOYy, M. 2000. Fast texture synthesis us-
ing tree-structured vector quantization. In SIGGRAPH °00, 479—
488.

WEL L.-Y., HAN, J., ZHOU, K., BAO, H., GUO, B., AND SHUM,
H.-Y. 2008. Inverse texture synthesis. In SSIGGRAPH 08, 1-9.

WEL, L.-Y., LEFEBVRE, S., KWATRA, V., AND TURK, G. 2009.
State of the art in example-based texture synthesis. In Euro-
graphics *09 State of the Art Report, 93—-117.

ZHANG, J., ZHou, K., VELHO, L., GUo, B., AND SHUM, H.-
Y. 2003. Synthesis of progressively-variant textures on arbitrary
surfaces. In SIGGRAPH 03, 295-302.

ZHou, K., HUANG, X., WANG, X., TONG, Y., DESBRUN, M.,
Guo, B., AND SHUM, H.-Y. 2006. Mesh quilting for geometric
texture synthesis. In SIGGRAPH ’06, 690-697.

ZHOoU, H., SUN, J., TURK, G., AND REHG, J. M. 2007. Terrain
synthesis from digital elevation models. IEEE Transactions on
Visualization and Computer Graphics 13, 4, 834-848.

