
Vis Comput (2011) 27: 555–563
DOI 10.1007/s00371-011-0589-4

O R I G I NA L A RT I C L E

Modeling with blocks

Luc Leblanc · Jocelyn Houle · Pierre Poulin

Published online: 22 April 2011
© Springer-Verlag 2011

Abstract This paper presents a simple and general model-
ing primitive, called a block, based on a generalized cuboid
shape. Blocks are laid out and connected together to con-
stitute the base shape of complex objects, from which is
extracted a control mesh that can contain both smooth and
sharp edges. The volumetric nature of the blocks allows for
easy topology specification, as well as CSG operations be-
tween blocks. The surface parameterization inherited from
the block faces provides support for texturing and displace-
ment functions to apply surface details. A variety of exam-
ples illustrate the generality of our blocks in both interactive
and procedural modeling contexts.

Keywords Subdivision surface · Surface
parameterization · Polycube map · z-brush · Displacement
map · Geometry image · CSG

1 Introduction

Modeling objects must satisfy different requirements, de-
pending on the objects’ surface properties, topology con-
straints, and on the modeling process itself. Through the
years, several surface representations have been introduced,
including polygonal meshes, subdivision meshes, polyno-
mial patches, implicit surfaces, etc. Tools used to manipulate

L. Leblanc (�) · J. Houle · P. Poulin
LIGUM, Department I.R.O., Université de Montréal, Montreal,
Canada
e-mail: leblanc@iro.umontreal.ca

J. Houle
e-mail: houlejo@iro.umontreal.ca

P. Poulin
e-mail: poulin@iro.umontreal.ca

those surface representations have evolved to meet a broad
spectrum of modeling needs, from high precision design to
fast prototyping.

We introduce a modeling primitive to quickly and intu-
itively produce objects with good properties for its surface
and its topology. We are interested in a modeling primitive
that can be used in two modeling contexts:

– Interactive modeling: fast and intuitive construction of
an approximate object, that can be subsequently easily
sculpted and modified by a user.

– Procedural modeling: easy topology specification, volu-
metric definition (for CSG operations), general surface
parameterization, and good surface control.

1.1 Related work

When modeling objects with polygons, subdivision sur-
faces [1], and polynomial patches [16], the artist must be
very careful to avoid self-intersections, cracks, duplicated
vertices, incoherent interior/exterior definition, discontinu-
ous surface parameterization, etc. These problems are ac-
centuated when the resulting objects must have consistent
surface and volume properties.

Implicit surfaces [4] and F-Rep [15] offer continuous sur-
faces with valid interior/exterior properties. Unfortunately
their limit surface can be complex to extract, and a good
surface parameterization can be difficult to provide due to,
among a number of problems, changes in topology.

ZSpheres/B-Mesh [10, 17] form a very flexible modeling
primitive based on a subdivision mesh enclosing a tree of
spheres. It offers good surface and volume properties and a
consistent surface parameterization, allowing one to sculpt
surface details through displacement mapping. It is well de-
signed for organic-like objects, but less for CAD-like objects
with sharp edges.

mailto:leblanc@iro.umontreal.ca
mailto:houlejo@iro.umontreal.ca
mailto:poulin@iro.umontreal.ca

556 L. Leblanc et al.

Fig. 1 The four stages of the pipeline for modeling with blocks

Polycube maps [19, 21] have been used to efficiently rep-
resent objects of different topologies, but less as a complete
modeling primitive. Each face of a polycube encodes well a
displacement map to generate the final polygonal mesh.

1.2 Overview

Inspired by these last two representations and by implicit
surfaces in general, we have integrated a number of their key
concepts into our block modeling. Each block can be inter-
preted as a cube in a polycube map, with its associated pa-
rameterization of faces. Blocks are assembled by connecting
faces, similar to implicit surfaces and ZSpheres, but the con-
nection is controlled with a resolution for each block face.
The resulting connected blocks provide the basic shape of
an object. The parameterization of each exterior block face
is used to encode surface details, pasted on top of an adaptive
subdivision surface. The original block edges also provide a
mechanism to generate sharp and smooth edges on the final
surface.

This combination of representations leads to an intuitive,
easy to control, and general modeling tool that can generate
a wide variety of objects with consistent surface and volume
properties, and of different topologies.

The paper is organized as follows. First, we describe
in Sect. 2 our basic block primitive, connections between
blocks, adaptive meshing, the usage of constructive solid ge-
ometry (CSG) operations, and some of our experience about
modeling with blocks. Then we present and discuss features
for some typical results in Sect. 3. We finally compare our
technique with other more closely related modeling schemes
in Sect. 4, before concluding and discussing extensions in
Sects. 5 and 6.

2 Modeling with blocks

The strategy behind modeling with our blocks is to first build
a coarse shape with the correct topology, without having to
deal with the details of low-level topology operations or de-
scription. Then this coarse shape is refined with a displace-
ment function. This is beneficial to both interactive model-
ing and procedural modeling.

An object built with blocks is defined by three compo-
nents. First, a set of blocks (our main primitive) is used to
describe the main parts of the object. Then, links specify
connectivity between each block. Together, they define the
control mesh with correct topology. Finally, the simple pa-
rameterization inherited from the blocks can support an op-
tional displacement to generate the final result.

From an implementation point of view, the pipeline to
generate an object is divided into four stages: definition of
blocks, connection between blocks, creation of the control
mesh, and generation of the mesh. An illustration of this
pipeline appears in Fig. 1.

2.1 Blocks

A block is a volumetric primitive akin to a cuboid defined by
eight vertices and six faces. There are no restrictions on the
positions of the vertices, except that they should generate a
valid interior, consisting of one continuous 3D space. This
is however not enforced in our system.

Each face of a block is defined as a bilinear patch that
is divided independently of its adjacent faces into a regular
grid of sub-faces of any resolution. Faces and sub-faces are
strictly quadrilaterals; they need not be planar.

The sub-faces are the elements defining the geometry.
They can be connected together (Sect. 2.2) to form the
surface using Catmull–Clark subdivision [7], inheriting its
properties: C2 continuous everywhere except C1 for vertices
of valence �= 4.

To alter smoothness, each edge of a block face can be
tagged as sharp. Figures 2 and 3 show different definitions
for a block with sharp and smooth edges, along with their
resulting geometries. Figure 4 shows the relations between
faces, sub-faces, patches, and sub-patches.

Now that we have a better understanding of the struc-
ture for a single block, we will see in the next sections how
blocks can connect into groups of blocks.

2.2 Connections

Once blocks are fully defined (face subdivision and edge
sharpness) and positioned to establish the coarse shape of

Modeling with blocks 557

Fig. 2 Different configurations of smooth/sharp edges in a block.
Red block edges produce sharp mesh edges, blue block edges produce
smooth mesh edges

Fig. 3 Top row: increasing the number of sub-faces and moving ver-
tices in a block with sharp edges. Bottom row: same configurations with
smooth edges

Fig. 4 The four elements of the block primitive. In the specific exam-
ple of this figure: (a) One face is divided into two sub-faces. (b) One
sub-face is subdivided into four patches. (c) One patch is subdivided
into four sub-patches. The blue contours indicate regions associated
with one original face of the block, and filled red indicates regions as-
sociated with one sub-face

the desired object, connections can be computed between
their sub-faces. Those connections, between pairs of faces
or sub-faces of neighboring blocks, automatically create the

Fig. 5 Three variations of a hand where shades represent three
group IDs: (a) no connections, not even within the same group ID;
(b) all groups connect together; and (c) group IDs of fingers connect
to the hand, but not between each pair of adjacent fingers. To connect
with the fingers, the palm’s top face is subdivided into 4 × 1 sub-faces
and the left side into 3 × 1 sub-faces (the thumb connects to the middle
sub-face)

Fig. 6 Sub-faces connection.
The upper sub-faces connect
together since they are each
other’s closest sub-face, in
contrast to the lower pair

topology of the object. This process requires only a small set
of attributes assigned by the user: a group ID for every block,
a global list of group ID pairs, and a scalar distance thresh-
old. The group ID pairs define which parts of the model are
allowed to merge together (see Fig. 5). The threshold value
determines the maximum allowed connection distance; it is
scale invariant by considering the perimeters of both sub-
faces A and B:

distance < threshold × (
perimeter(A) + perimeter(B)

)
.

Automatic connections work as follows. For every sub-
face (or the whole face, if it is not subdivided) of every
block, a ray is cast from the center of the sub-face outwards
along the normal (see Fig. 6). A connection between sub-
face A (caster) and sub-face B (nearest hit) exists if and only
if:

1. Sub-faces A and B belong to different blocks.
2. The group ID of A is allowed to link with the group ID

of B (from the global pair list).
3. The distance between A and B is within the specified

threshold.
4. Sub-face B is A’s closest sub-face, and vice versa.
5. No degenerate edges are created (Fig. 7).

To detect connections, simple ray-casting is used from
the sub-face’s center position. This has the advantage of be-
ing fast, easy to implement, and nonambiguous. If this is

558 L. Leblanc et al.

Fig. 7 Example of an invalid
connection. If connection B is
executed after A has already
been connected, the three
vertices will merge and form a
degenerate edge (red)

Fig. 8 Connection between two sub-faces. The vertices numbered 1
form the starting connection pair

deemed too limiting, it can be replaced with any coverage
computing technique such as casting multiple rays or a form
of shaft-tracing.

To prevent inconsistent topology (condition 5, above),
only one connection can be established between two blocks.
As such, only the connection with the shortest distance will
be kept. A list of manual connections, independent of the ac-
tual distances, can be specified for added flexibility by spec-
ifying the two sub-faces to be joined for each connection.

After all connections have been established, vertex posi-
tions for all connected sub-faces are modified to be joined
together. To do so, we first determine a relation between
pairs of vertices from both sub-faces. Since we work on
quadrilaterals, there are four possible ways of connecting the
two sub-faces. To find the best one, we first choose an arbi-
trary pair of vertices, one vertex from each sub-face, then
we match the remaining vertices in counterclockwise order
for sub-face A and clockwise order for sub-face B . Figure 8
illustrates this process. We compute the total distance be-
tween each pair of vertices as the cost of the connection. We
test the other three configurations by changing one vertex of
the starting pair to each of the other vertices of the sub-face.
After evaluating all these connections, we select the config-
uration having the lowest cost.

The new position of joined vertices is computed as their
average. It is important to note that more than two vertices
can be joined together, notably, for vertices lying on the
edges of a block with multiple neighbors (see Fig. 9). In
that case, the resulting vertex can have any valence higher
than 2, depending on the number of connected blocks. Noth-
ing prevents us from computing a weighted average of the
positions. It is however unclear how those weights can au-
tomatically or intuitively be set up, especially in cases of
multiple connections, such as those shown in Fig. 9.

Fig. 9 Computation of a joined
vertex of valence 4. Dashed
segments represent connections
between blocks. The center
black dot is the new vertex
position computed as the
average of four vertices

2.3 Control mesh

The next step creates a control mesh to generate a subdi-
vision surface. This control mesh is created by assembling
the set of all exterior sub-faces (i.e., sub-faces that are not
connected) in a watertight mesh. Interior sub-faces are sim-
ply ignored and do not participate in the final geometry. An
edge is tagged as sharp (i.e., forming a crease) when at least
one of the original block edges forming this edge is sharp.
Priority is given to sharpness over smoothness since sharp-
ness is an added property on an edge.

The assembled exterior sub-faces form a mesh of quadri-
laterals, possibly containing T-vertices due to different res-
olutions for the grid of sub-faces. This is corrected in two
steps. First, vertices are added to quadrilaterals containing
T-vertices, transforming them into n-gons. Second, one pass
of Catmull–Clark subdivision [7] is applied to obtain a con-
trol mesh composed exclusively of quadrilaterals.

2.4 Mesh generation

The last step of the process uses subdivision surface to gen-
erate the final mesh. The control mesh made exclusively
of quadrilaterals (Fig. 1) is adaptively subdivided with re-
spect to both local curvature and applied displacement of
the model. Boolean operations are supported by inserting
edges and vertices at interpenetrating locations and deter-
mining interior and exterior regions through the evaluation
of the CSG tree. A final meshing operation yields a closed
(watertight) triangular mesh.

2.4.1 Patch subdivision

To achieve a high quality mesh with fewer subdivisions,
we approximate the subdivision surface with parametric
patches [14]. This has two main advantages over conven-
tional Catmull–Clark subdivision: at any subdivision level,
each vertex is immediately positioned on its limit surface,
and the subdivision pattern is decoupled from the evalua-
tion.

After converting each quadrilateral of the control mesh
to a parametric patch, we subdivide the patch into a set of
sub-patches in a kd-tree manner [11]. Each vertex of the

Modeling with blocks 559

Fig. 10 A patch is subdivided in u when a 3D point from a texel in a
row is farther than a certain threshold from the segment formed by the
first and last texels; similarly in v. Top: subdivision of a patch in uv.
Bottom: subdivision of a sub-patch in u only

sub-patch is placed at the location derived from its paramet-
ric patch evaluation, and moved by its displacement map or
function. The parameterization used is similar to the one by
Burley and Lacewell [5], where each patch has its unique
mapping of size related to its world size or its level of detail.

A sub-patch is subdivided according to the following
metric. If the displacement is expressed as a function (and
not as a map), we build a geometry image [8] of the desired
quality, thus converting the displacement function as a map.
We only need to keep a small number of patches in memory,
i.e., the current patch and its neighbors, in order to blend
edges and avoid cracks in the displacement function.

A sub-patch is either subdivided in u, in v, or in both uv

directions. In each case, the sub-patch is subdivided at its
middle position. A two-pass evaluation of the applied dis-
placement map is done, one in u and the other in v. When
evaluating in u, we compare each texel (a displaced 3D
point), row by row, to the 3D segment defined by the first
and last texels of the row. As soon as one texel is farther
than a specified threshold, the sub-patch is marked to be sub-
divided in u. The evaluation in v is similar, but is done col-
umn by column. Figure 10 illustrates this process. In the top
figure, the red dot indicates that a subdivision is requested in
u when traversing the rows of texels, and the blue dot in v.
The sub-patch is therefore subdivided in four sub-patches
labeled uivj in gray. In the bottom figure, for one sub-patch,
the red dot indicates that a subdivision is requested in u,

Fig. 11 A patch with an associated displacement map is subdivided
hierarchically and anisotropically into sub-patches

but no such subdivision is requested in v. This sub-patch is
therefore subdivided only in u into two sub-patches. This
metric provides a good anisotropic subdivision scheme, as
can be observed in Fig. 11.

2.4.2 CSG

Since our blocks give a volumetric definition, CSG evalua-
tion can be used to increase the expressiveness of an object.
The boolean operations are expressed in a complete CSG
tree, supporting the standard operations (union, subtraction,
intersection) where each leaf is a group of blocks. After the
adaptive subdivision of the sub-patches, linearization of all
the edges of the sub-patches is performed to simplify the in-
tersection computation (a patch can now be represented by
two triangles without creating cracks).

The process starts by finding which patches intersect
each other. For each pair of intersecting sub-patches, seg-
ments at the intersections are created and assigned to both
sub-patches (Fig. 12b for one pair). Those segments are
generated by approximating each sub-patch with a pair
of triangles, and performing a triangle-triangle intersection
(Fig. 12a). After computing all intersections, all the seg-
ments associated with one sub-patch are intersected between
themselves. An intersected segment is divided into two sub-
segments at the intersection point. The resulting segments
are then traversed to form nonoverlapping polyline loops
(Fig. 12c). For each of those loops, a ray is cast along the
normal from a point contained within the loop. This ray is
intersected with all the other patches and compared to the
CSG tree in order to determine if the surface bounded by
the loop is on the final mesh (after CSG). If a loop is on the
surface, it is tagged as such, and so are its sub-patch and its
patch. This way, when tessellating the object, entire patches
or sub-patches can be skipped if not tagged.

2.4.3 Meshing

While doing patch subdivision, vertices are inserted on all
neighboring sub-patches sharing an edge in order to avoid

560 L. Leblanc et al.

Fig. 12 The different stages of a CSG union evaluation. (a) Intersec-
tion test of the blue sub-patch against the red sub-patches. (b) Insertion
of intersecting edges and vertices. (c) Intersection of the segments on

one sub-patch, stitching into closed loops, and testing against the CSG
tree. (d) Tessellation of the union of the two blocks, without any inte-
rior geometry

cracks due to T-vertices. If CSG was not used, or if a sub-
patch contains only one loop (the sub-patch contour), a sim-
ple triangulation algorithm such as the one of Cignoni et
al. [6] can be used. In cases of a complex concave boundary
or multiple loops, we use an ear-clipping algorithm [9].

2.5 Usage and limitations

Our experience shows that the process of describing objects
with blocks is fast and fairly easy. There are no restrictions
on the possible topologies that can be reproduced, when pro-
ceeding by first building a coarse shape, and then adding
details with displacement mapping. While we have not en-
countered any problem so far, we have also not tried to build
many precise control meshes using only blocks. However,
we can speculate that some cases could prove more difficult.

For example, when dealing with a number of blocks of
different scales, it could be a limiting factor that each face
has only its own fixed grid of sub-faces. This could result in
the need to split a block into smaller blocks. Allowing the
subdivision of sub-faces into multi-level grids could help in
such cases.

Also, in some cases with lots of connections, setting cor-
rect group IDs to ensure that the resulting connections are
the desired ones, could prove a little tedious. However, this
should still be a lot easier than manually handling the issues
due to topology.

3 Results

Figures 13–20 show results modeled exclusively with blocks.
They illustrate the flexibility of the block primitive as it is
used to model architectural objects, such as buildings and
staircases, as well as more organic shapes, such as trees and
characters. Objects containing both a blend of sharp and
smooth edges, such as a chair, are also well adapted to mod-
eling with blocks.

All buildings in Figs. 18, 19 and 20 and the staircases
in Fig. 17 are modeled procedurally with our in-house sys-
tem [13]. This procedural system uses blocks as its founda-
tion to generate the geometry, and as a result, gains several

Fig. 13 The general shape of each die is modeled by one block with
a 4 × 4 subdivision for each face, and all smooth edges. Each dot is
modeled as a small block with no sub-faces, and all smooth edges.
Each dot is subtracted from the general die shape. The black segments
show the final tessellation

Fig. 14 Terrain (height field) displaced on a sharp flat face of a block,
and on a smooth rounded face. Sub-patches are drawn as black seg-
ments

interesting features: every entity has a volume (i.e., walls are
not paper-thin), and the tessellation is watertight and adap-
tive. Moreover, CSG enables easy insertion of doors and
windows to existing walls by first subtracting blocks from
the wall to create a hole, and then adding the window or
door. Connections ensure that no cracks are left out between
a window and its pierced wall. To support physical simula-
tion, we could easily extend our block description to include
material properties.

4 Comparing with other modeling schemes

Many modeling primitives and techniques exist, each hav-
ing its own set of advantages and disadvantages. Among

Modeling with blocks 561

Fig. 15 Stylized tree. The twisting trunk is modeled by ten blocks,
each branch by five to seven blocks, and the foliage by two large
blocks. All edges are smooth. The block connecting the two top
branches forming a Y -intersection has its top face subdivided in 2 × 1.
The images on the right show a close-up view on the connecting
branches where the top one shows the blocks, and the bottom one the
resulting sub-patches. The object consists of 30 blocks, 502 patches,
13,498 sub-patches, and 25,778 triangles. Sub-faces are drawn as black
segments

Fig. 16 Two views of an office chair. The bottom of each leg is mod-
eled with sharp edges, as well as one edge for each leg raising up to
become an arm. Sub-faces are drawn as black segments

Fig. 17 Procedural staircases modeled with blocks and sharp edges.
Patches are drawn as black segments

them, the implicit surfaces such as the blobtree [20] and the
ZSpheres [17] are closer to our block primitive.

4.1 Implicit surfaces

Implicit surfaces, also called metaballs or blobbies, were in-
troduced by Blinn [3] as the isosurface of a field function
defined by the sum of simple primitive functions such as the

Fig. 18 The four-story office building has mainly empty inte-
rior spaces, except for a staircase. It consists of 1,694 blocks,
34,864 patches, 62,836 sub-patches, and 105,264 triangles

Fig. 19 The hotel building has
a mid-level terrace, and
unfurnished rooms. It has
986 blocks, 22,832 patches,
23,408 sub-patches, and
36,658 triangles

Fig. 20 The bottom image is an interior view from the three-story
house in the top image. It has 1,407 blocks, 28,456 patches, 33,036
sub-patches, and 58,632 triangles. For all the buildings, all windows
and doors result from CSG operations

562 L. Leblanc et al.

Gaussian distance from a point. In the blobtree [20], the den-
sity field is described as a tree of operations, and it supports
blending, warping, and boolean operations. To better con-
trol the locality of the blending, Bernhardt et al. [2] present
a novel solution limiting its range to the intersection of the
primitives.

We can think of our block connections as a discrete form
of blobbies. Compared to them, our connections are less ver-
satile, because blobbies can connect anywhere, no matter
what the position of the basic primitives (sphere, skeletal,
etc.) is, in contrast to blocks, where a connection is made
only sub-face to sub-face. However, with blocks, we have
much more control over the final appearance of the sur-
face and can easily add sharp edges. Our subdivision sur-
face leads to better tessellation and the surface has a good
parameterization, an aspect which blobbies sorely lack.

4.2 ZSpheres

ZSpheres [17] and B-Mesh [10] (a variant of the former) de-
scribe an object as a hierarchy of spheres. A control mesh
is built on top of the spheres, keeping the same topology as
the tree. Unlike our blocks, ZSpheres do not seem to support
complex topology (genus > 0), but should be modifiable to
do so. They are only suitable for smooth, organic-like ob-
jects, and cannot easily model architectural or mechanical
objects. Also, they cannot model complex surfaces contain-
ing creases, valleys, and ridges without displacement map-
ping. Since their mapping is done automatically based on
the control mesh, they could prove difficult to use in a pro-
cedural context.

It should be noted that our block approach could emulate
ZSpheres results by using a similar tree description.

5 Conclusion

We have presented a simple block primitive to easily model
objects in both interactive and procedural contexts. Our
block primitive possesses important and desirable charac-
teristics:

– Simple topology specification with connections
– Valid volumetric definition
– Good control over the surface with editable block vertices
– Adaptive surface meshing with the subdivision surface

The block representation is fairly compact, considering
the number of final triangles that can be generated. In the
buildings of Figs. 18, 19, and 20, consisting mainly of flat
surfaces, one block generates between 37 to 62 times more
triangles. For the tree of Fig. 15 with surfaces that are more
curved, one block generates on average close to 860 times

more triangles. While this is clearly related to the subdivi-
sion metric, we have been conservative with respect to the
obtained visual quality.

We consider that our modeling system represents a good
step in the direction of defining a simple, yet powerful, mod-
eling primitive.

6 Future work

There are several interesting avenues that we propose to ex-
plore. For connections, weights could be added, faces could
be subdivided into sub-faces automatically, and another type
of connection could be permitted by filling the space be-
tween two blocks instead of merging their vertices. In the
latter case, it could be generalized to allow more than a two-
block connection. T-Splines [18] could possibly be used as a
replacement for the Catmull–Clark subdivision surface, thus
reducing the tessellation and distortions of the parameteriza-
tion in some cases.

Compared to polycube maps [19, 21], a block model with
its more flexible vertex configurations should represent an
object with fewer cubes (blocks) while more closely match-
ing the shape. It would therefore offer a better compression
of the associated displacement maps.

In this paper, we presented a tessellation algorithm for the
blocks, but since blocks are higher level primitives, they can
be converted to different formats. Converting to voxels with
an algorithm based on work by Lai and Chang [12] should
enable faster and more robust CSG operations.

Acknowledgements The authors thank the anonymous reviewers
for their constructive comments, and acknowledge financial support
from FQRNT, NSERC, and GRAND.

References

1. Andersson, L.E., Stewart, N.F.: Introduction to the Mathematics
of Subdivision Surfaces. SIAM, Philadelphia (2010)

2. Bernhardt, A., Barthe, L., Cani, M.P., Wyvill, B.: Implicit blending
revisited. Comput. Graph. Forum 29(2), 367–375 (2010)

3. Blinn, J.F.: A generalization of algebraic surface drawing. ACM
Trans. Graph. 1(3), 235–256 (1982)

4. Bloomenthal, J. (ed.): Introduction to Implicit Surfaces. Morgan
Kaufmann, San Mateo (1997)

5. Burley, B., Lacewell, D.: Ptex: per-face texture mapping for
production rendering. In: Eurographics Symposium on Render-
ing ’08, pp. 1155–1164 (2008)

6. Cignoni, P., Montani, C., Scopigno, R.: Triangulating convex
polygons having T-vertices. J. Graph. GPU Game Tools 1(2), 1–4
(1996)

7. DeRose, T., Kass, M., Truong, T.: Subdivision surfaces in charac-
ter animation. In: SIGGRAPH ’98, pp. 85–94 (1998)

8. Gu, X., Gortler, S.J., Hoppe, H.: Geometry images. In: SIG-
GRAPH ’02, pp. 355–361 (2002)

9. Held, M.: FIST: fast industrial-strength triangulation of polygons.
Algorithmica 30(4), 563–596 (2001)

Modeling with blocks 563

10. Ji, Z., Liu, L., Wang, Y.: B-mesh: a modeling system for base
meshes of 3D articulated shapes. Comput. Graph. Forum, Proc.
Pac. Graph. 29(7), 2169–2178 (2010)

11. Lai, S., Cheng, F.: Adaptive rendering of Catmull–Clark subdivi-
sion surfaces. In: CAD-CG ’05: Proc. Intl. Conf. Computer Aided
Design and Computer Graphics, pp. 125–132 (2005)

12. Lai, S., Cheng, F.: Voxelization of free-form solids using Catmull–
Clark subdivision surfaces. In: GMP’06: Lecture Notes in Com-
puter Science, pp. 595–601. Springer, Berlin (2006)

13. Leblanc, L., Houle, J., Poulin, P.: Component-based modeling of
complete buildings. In: Graphics Interface 2011 (2011)

14. Ni, T., Yeo, Y., Myles, A., Goel, V., Peters, J.: GPU smoothing of
quad meshes. In: SMI’08: IEEE Intl. Conf. on Shape Modeling
and Applications, pp. 3–9 (2008)

15. Pasko, A., Adzhiev, V., Sourin, A., Savchenko, V.: Function rep-
resentation in geometric modeling: concepts, implementation and
applications. Vis. Comput. 11, 429–446 (1995)

16. Piegl, L., Tiller, W.: The NURBS Book. Springer, Berlin (1995)
17. PIXOLOGIC: ZBrush (2011). http://www.pixologic.com/
18. Sederberg, T.W., Zheng, J., Bakenov, A., Nasri, A.: T-splines and

T-NURCCs. ACM Trans. Graph. 22, 477–484 (2003)
19. Tarini, M., Hormann, K., Cignoni, P., Montani, C.: Polycube-

maps. In: SIGGRAPH ’04, pp. 853–860 (2004)
20. Wyvill, B., Galin, E., Guy, A.: Extending the CSG tree. Warping,

blending and boolean operations in an implicit surface modeling
system. Comput. Graph. Forum 18(2), 149–158 (1999)

21. Xia, J., Garcia, I., He, Y., Xin, S.Q., Patow, G.: Editable poly-
cube map for GPU-based subdivision surfaces. In: I3D ’11: ACM
Symposium on Interactive 3D Graphics and Games, pp. 151–158
(2011)

Luc Leblanc is a Ph.D. candidate
in Computer Graphics at the Uni-
versite de Montreal. After complet-
ing his M.Sc. degree at the Univer-
site de Montreal, he worked for four
years at Autodesk in Montreal. His
research interests are in procedural
modeling, real-time rendering, illu-
mination, and animation.

Jocelyn Houle completed his M.Sc.
in Computer Graphics at the Univer-
sité de Montréal. He later worked
as a hardware engineer at ATI, spe-
cializing in texturing; he was instru-
mental in the texture pipe design of
both the Xbox 360 project and the
R600 GPUs. He is the co-founder
of Ludo Sapiens, a game technology
company.

Pierre Poulin is a full professor in
the Computer Science and Opera-
tions Research department of the
Universite de Montreal. He holds a
Ph.D. from the University of British
Columbia and an M.Sc. from the
University of Toronto, both in Com-
puter Science. He has served on pro-
gram committees of more than 40
international conferences. His re-
search interests cover a wide range
of topics, including image synthe-
sis, image-based modeling, proce-
dural modeling, natural phenomena,
scientific visualization, and com-
puter animation.

http://www.pixologic.com/

	Modeling with blocks
	Abstract
	Introduction
	Related work
	Overview

	Modeling with blocks
	Blocks
	Connections
	Control mesh
	Mesh generation
	Patch subdivision
	CSG
	Meshing

	Usage and limitations

	Results
	Comparing with other modeling schemes
	Implicit surfaces
	ZSpheres

	Conclusion
	Future work
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

