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Abstract

We describe elements used in a system to manipulate a polygon-based surface object using a data glove (made by Fifth Dimension Inc.). A

direct-manipulation method is used that allows for placing new displacements on previous ones. Good results are obtained for manipulation

at any incidence angle to the surface by using a new linear transformation on the selected vertices, in order to properly calculate their

displacement magnitudes. The design of the manipulation system emphasizes intuitiveness and speed.

A method for smoothing selected portions of the object is also presented. The smoothing tool does not change regions of the surface where

vertex coordinates may be expressed as a second-order implicit function i.e. the method has quadratic precision. It operates by ®nding a least-

squares ®t, followed by a relaxation phase where vertices are moved near the surface approximation. The smoother operates on a set of

disjoint points in space, no knowledge of connectivity is required by the surface smoother. q 2001 Elsevier Science Ltd. All rights reserved.

1. Motivation and background

The act of creating 3D objects interactively suggests an

intuitive hand-based interface and a modeling environment

that is robust, predictable, and fast. There is no commer-

cially produced sculpting package that is easy enough for a

novice to use immediately. These other packages require

constant menu selection and mode changing. Often the

interaction involves only keyboard/mouse input. A charac-

teristic of directly manipulating a faceted object is that it

often becomes jagged. Gouraud shading masks this feature

in a rendering, by forming an interpolant across the triangle

mesh. We provide a smoothing method to reduce these

geometric discontinuities with quadratic precision.

1.1. Overview

We have developed a simple intuitive computer graphics

sculpting system that incorporates glove input. This user

interface provides direct control of the part of the object

to be manipulated; it visually cues the user to the exact

points on the object that will respond to the glove motion.

The system is designed for crafting objects of an artistic or

free-form nature. Our system is conducive to 3D back-of-

the-napkin design. With little training, users were able to

produce rough forms, in a broad spectrum of styles, in a

matter of minutes.

For many years computer-assisted 3D modeling has been

used in some ®elds, such as shipbuilding, car-design, and

entertainment. With the low cost and ubiquity of computer

hardware, plus the cultural acceptance of computers, 3D

modeling should be made available to many more indivi-

duals.

One use of such a modeling system would be for studying

3D eye±hand coordination in child development. Recent

studies distribute real clay balls to children to mold; these

are later analysed for development trends. A virtual world

would provide ef®ciency, provide numerical classi®cation,

and allow quantitative comparisons such as by placing one

piece inside another and doing Boolean operations on them.

Another example comes from the medical community.

Medical experts often need assistance from application

experts when it comes to modeling. It would be ef®cient if

a physician could work independently to design, or artisti-

cally craft, familiar geometry. A vascular surgeon could use

empirical knowledge to add plaque to a carotid artery, start-

ing with either a typical baseline artery or using scanning

equipment to acquire the carotid of a speci®c individual.

The manipulated form could then be built with a rapid

prototyping machine for tactile use in a classroom, or for

real and virtual ¯ow studies to gain further general knowl-

edge or to determine whether there exists a need for surgery.

Validation studies should be used for tuning the simulation

to account for simulation de®ciencies such as faceted wall

geometry. The important contribution here is in allowing

experts with real-world experience to be directly in control

of the sculpting process.

Computer-Aided Design 33 (2001) 389±402

COMPUTER-AIDED
DESIGN

0010-4485/01/$ - see front matter q 2001 Elsevier Science Ltd. All rights reserved.

PII: S0010-4485(00)00130-5

www.elsevier.com/locate/cad

* Corresponding author. Tel.: 11-719-495-1247.

E-mail address: rockwood@enuxsa.eas.asu.edu (A. Rockwood).



Artists are naturally accustomed to using their hands to

touch their work during 3D design; they develop hand

related artistic techniques and physical skills. Our system's

use of eye±hand coordinated motion to control the design

process accommodates these artistic talents. This leads to a

greater acceptance of the technology, increasing the desire

for artists to become involved in computer aided projects

such as sculpting a dragon's head, or quickly ®lling a scene

with many 3D forms for the movie industry.

1.2. Previous work

Alciatore and Wohlers [1] describe free-form stretching

of a mesh as a manipulation paradigm. They use a cubic

distribution for spreading out the discrete input displace-

ment vector. They outline a contact detection method

based on vertex connectivity. The method identi®es a

primary vertex closest to the tail of the discrete displace-

ment vector. This primary vertex is always displaced. Other

vertices to be displaced are found by expanding outwardly

from this primary vertex using vertex connectivity informa-

tion. These are candidate vertices that are then tested for

proximity to the displacement vector using an Euclidean

distance calculation.

Bryson [3] uses a spatially-weighted transformation to

directly manipulate vertices in space. He introduces several

paradigms for direct manipulation. We provide an extension

to the pushing paradigm. Our contribution allows creating

forms having an in®nite number of bumps placed one on top

of another, and so is not limited to only placing isolated

bump displacements onto the surface. We accomplish this

by mapping each vertex so it may be handled as if the

surface were ¯at. Fowler and Bartels [9] also provide a

framework to deform smooth bumps. Borrel and Rappoport

[2] produced similar work that is presented in a more rigor-

ous mathematical abstraction. Some other free-form direct

manipulation techniques have been presented by Hsu et al.

[10], also by Yamashita and Fukui [15].

1.3. An example session from our system

Fig. 1(a) shows the rendering of a triangular mesh object.

This virtual object exists in the virtual space in front of the

user. The user wears a data glove whose virtual space posi-

tion is shown as a wireframe cube along with the object on

the computer monitor. By opening and closing ®ngers in the

glove, the user controls how large a proportion of the object

near the virtual glove is affected by subsequent hand move-

ments. The user may then distend the surface by moving the

data glove in front of him [Fig. 1(b)]. When the glove is
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Fig. 1. (a) The default initial object, (b) the object is pulled, (c) a smaller amount is grabbed and pulled, (d) the object is pushed. The hand's position is shown

as a cube, the portion of material grabbed (the vertices affected), are highlighted in black.



opened wide, the chunk is released. The user may then grab

a smaller chunk of material and pull that [Fig. 1(c)]. Alter-

natively we may push instead of pull [Fig. 1(d)]. The

amount of material grabbed may be changed dynamically

during the push, or pull. Self-intersections are allowed and

controlled by the user.

2. Basic technique

Our focus is on maintaining an intuitive interface and a

fast frame update rate. We use a polygonal model and an

inference-based interface that is fast, but inappropriate for

engineering parts that have to meet speci®c requirements of

shape, dimensions, strength, etc. We desire to put together

an enjoyable modeling package that allows abstraction, and

intuitive expression through natural metaphors. The system

has unique interactive characteristics; existing language

must be used to communicate its feel, and so we say it is

similar to sculpting a clay-like material. Sometimes this is

inadequate, e.g. the material changes its volume when

sculpted. One must balance novelty with consideration for

a user's prior experiences so that the system will be intui-

tive.

2.1. Construction of initial surface

The start of our design session uses an initial object

consisting of a polyhedral mesh formed by sampling a

closed spline-surface object. The object mesh represents a

piece-wise linear reconstruction of the continuous spline-

based input object. The default spline surface object in

Fig. 1(a) is made up of a set of cubic Bernstein±Bezier

triangular patches (192 patches for this particular object)

that form a rough ellipsoid. A static phase samples the spline

surface to form an interpolating triangular mesh. Each trian-

gular spline patch is decomposed into a set of triangular

facets using a recursive algorithm to form triangles that

interpolate the patch uniformly in parameter space. Each

level of recursion forms a set of triangles that is nested in

the parameter space corresponding to the preceding level.

We will only manipulate vertices of the most detailed level.

We maintain the data structure for the more-coarse triangles

to allow low-resolution renderings of the ®nal product (Fig.

13) and for extensibility. The spline characteristics of the

input object are discarded at this point.

Each triangular Bernstein±Bezier patch of degree n (bn)

is tessellated into 4k triangles, where k equals the maximum

static resolution space desired. We form this tessellation by

recursive subdivision, adding triangles of each level of

tessellation to the data structure. The zero resolution space

representation for bn interpolates the spline at its three

corner points bn,0,0, b0,n.0, and b0,0,n. We then subdivide this

triangle by instanciating three new vertices as edge bisectors

in the domain. They average the super-triangle's adjacent

edge vertices in parameter space. These three new vertices

and the three vertices of the super-triangle form four new

triangles that are nested in the parameter space of the super-

triangle. This recursive subdivision in parameter space

forms a tree structure of nested interpolating triangle facets

for each input spline patch. Vertices of subdivision, unlike

triangles, do not always belong to only one nesting space

due to vertex sharing at nesting space boundaries.

No subdivision surface of in®nite resolution such as that

described by Catmull [4], Doo [5], or Dyn [7] is created. We

subdivide as part of forming a nested hierarchy, not for

forming a procedural surface. Nesting allows great extensi-

bility. It may be employed in schemes to speed rendering,

contact detection, and dynamic splitting of triangles. The

static nested hierarchy possesses a 1:4 split as shown in

Fig. 2. We form a forest with trees of equal static height

built up through subdivision. The static nesting is homoge-

neous for the entire objectÐevery region of the object has a

common maximum static nesting depth. External consis-

tency [8] is ensured through the subdivision geometry.

2.2. Updating the surface tessellationÐdynamic splitting

As the vertices are manipulated, the triangle facets tend

to grow in size giving poor quality triangles. In order to

increase detail during manipulation, and to be able to

produce unlimited reshaping of any surface region, new

vertices are inserted via dynamic splitting. We split triangles

along an edge midpoint. The edge-sharing neighbor is split

as well, using a 1:2 split as shown in Fig. 3. This dynamic

splitting method prevents holes, is local, and is fast. It

allows for local regions of very high detail and therefore

is non-homogeneous. In the static phase (setup), all splitting

is done in a triangular spline's domain. In the dynamic phase

(manipulation), all splitting is done in Euclidean Coordinate

space.

One must govern dynamic splitting conservatively. Split-

ting too much leaves too many vertices in an area of low

®delity. This over-re®nement also causes inherent surface

noise. We want to split only where there is a good likelihood

that the sub-triangles will be manipulated out of the

common plane that they share. We do this using the follow-

ing method: if a vertex is moved, it sets a ¯ag indicating the
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Fig. 2. The 1:4 split in parameter space of the static tessellation.



nesting space corresponding with the vertex has been

manipulated. A master frame-cycle clock is kept, and each

displaced vertex has its private time-stamp set to the current

frame time. All nesting spaces whose manipulated ¯ag is set

are screened for its leaf-node triangles having one or more

of its three vertices moved within a certain number of

frame-cycles. This improves the likelihood that newly

split triangles will be manipulated out of their common

plane since some of the triangles' vertices are in the process

of being displaced. These triangles are further subdivided if

its longest edge is greater than a tolerance size. The triangle

is either left untouched or is subdivided. If the triangle is

subdivided, it is split into two new nested triangles by

instanciating a new vertex. This vertex is placed at the

midpoint of the longest edge. The other triangle, that shares

the longest edge, must be found. It too must be subdivided in

the data structure using the same new vertex. The edge

sharing neighbor triangle must be in the same space or a

neighbor nesting space of the triangle being split. During a

dynamic split, four new triangles and one new vertex are

instanciated.

Since dynamic splitting is intertwined with deformation,

when determining what tolerance to use when considering if

a triangle's longest edge is too long, consideration is given

to the current scale of the deformation. Deformation scale is

modeled as being proportionate to the amount of material

grabbed and so we use an edge length tolerance proportional

to the standard deviation of the current frame's Gaussian

distribution used to distribute the discrete displacement

vector of the user's glove.

2.3. Glove input

Using the system involves wearing an instrumented glove

that allows the user to grab the virtual surface. The surface

can be pulled or pushed, inward or outward, perpendicular

to or in an oblique direction to the surface tangent. Closing

or opening the hand de®nes a larger or smaller region of the

surface to manipulate. In each frame, a Fifth Dimension Inc.

glove's average ®nger bend de®nes a spherical amount of

the object grabbed, called the sphere-of-in¯uence, which in

turn determines what part of the object will be affected. A

Polhemus 3D tracker on the glove provides a position

change, called the displacement vector; the vector's tail is

at the previous frame's hand position and its tip is at the

current frame's hand position. The plane perpendicular to

the displacement vector and containing its tail is called the

displacement plane.

The data glove provides ®ve ®nger input signals. The

tracker provides three coordinate signals. These eight

signals are each preconditioned with a ®rst-order lag as

described by Dorman [6]. The ®rst-order lag provides a

unity blend of the current measured value and previous

frame's calculated value. This ®lters out spurious compo-

nents, as well as smoothing the user's motion. Ultimately,

we want hand position at the end of the previous and current

frames, we use these values to calculate a displacement

vector for the current frame, and we calculate a measure

of ªhand closureº for the current frame's sphere-of-

in¯uence's radius.

2.4. Selecting vertices to be moved

In¯uence detection is the act of determining which

vertices of the object are to be affected by the deformation.

Distance calculation is key to in¯uence detection. An

exhaustive testing method with two levels of fast distance

calculation is used. The second level (level two) of distance

calculation is also used in calculating a weighting factor for

those vertices that are in¯uenced.

The ®rst level of contact detection (level one) ®nds all

vertices that are within a hand centered cube with side

equal to the sphere-of-in¯uence's diameter. This is

implemented by using a less-than-or equal to condition

on the distance from a vertex to the glove point and the

sphere-of-in¯uence's radius. For glove point g and
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Fig. 3. The dynamic 1:2 splitting of a triangle pair in Euclidean space.



vertex v we calculate

dist�v; g� � maximum�abs�vx 2 gx�; abs�vy 2 gy�; abs�vz 2 gz��
�1�

abs(x) is the absolute value function for the scalar value

x, and maximum() provides the maximum value of its

scalar arguments. This value must be less-than-or-equal

to the current sphere-of-in¯uence's radius for level two

testing to occur. Level one testing ®nds all vertices that

are within the smallest axis aligned cube that encloses

the sphere-of-in¯uence. Vertices within this cube are a

workable subset of the object's vertices. This subset

contains all the vertices that are within the sphere-of-

in¯uence.

Level two testing calculates the exact Euclidean distance

squared from the vertex to the glove point, for each vertex

within the subset found in level one testing. The distance

squared must be less than the frames current sphere-of-in¯u-

ence's radius squared for the vertex to be moved. Since our

system is fast, the displacement vector is small and no

problem has been observed for two nearby vertices, one

inside, the other just outside the sphere-of-in¯uence.

2.5. Weighted displacement of selected vertices

A weighting distribution governs how the lumped displa-

cement vector is applied to the vertices. So for each vertex

grabbed a weighting factor is calculated. This factor ranges

from zero to one and is a function of the glove point posi-

tion, vertex position, and the displacement vector. A vertex

at the center of the glove is given a weight of one; this

decreases to zero for vertices outside the sphere-of-in¯uen-

ce's perimeter. Each vertex is displaced in the same direc-

tion for that frame. We use a Gaussian shaped weighting of

the discrete displacement. The displacement vector's angle

of incidence, as well as the surface's deviation from planar,

causes this simple manipulation to require the addition of a

transformation before proper weighting may be given to

individual vertices.

2.6. Mapping vertices to the weighting function space

The following de®nitions are introduced to describe the

Gaussian weighting function used to calculate the displace-

ment vector for each of the selected vertices:

v a vertex in R3 with coordinates vx, vy, and vz

ab the vector from point a to point b
vect1´vect2 the dot product between vector vect1 and

vector vect2

We use a linear transformation to map each vertex into the

domain of the weighting function. This changes the manip-

ulation of a non-planar surface, with a displacement that is

not in the surface normal's direction, into the simple case

where the surface is planar and the displacement vector is

along the plane's normal (see Fig. 4).

In Fig. 5, three different mappings to the Gaussian's

abscissa are presented. Method 1 is described by Alciatore

[1], and by Bryson [3]; they use Euclidean straight-line

distance from a selected point on the surface closest to the

glove to the point in question, as the abscissa value. In

method 2, a linear Euclidean distance from the glove

point to a vertex is the abscissa used. We use method 3, in

which the length of a vector from the glove point to a vertex

is reduced by projecting the vector onto the displacement

plane. Method 3 is signi®cantly more predictable than either

method 1 or method 2 and allows for the pleasing and intui-

tive manipulation presented. Fig. 6 shows how the glove

displacement vector affects the selected vertices.

2.7. Initializing the look-up table

We use an array of 64 Gaussian function tables of increas-

ing standard deviation. Each function table has 1024 entries

corresponding to abscissa values from zero up to four stan-

dard deviations. The Gaussian domains are cutoff sharply at

four standard deviations. A value of four provides a function

value acceptably close to the Gaussian's asymptotic value of

zero. This provides good spatial-blending of displaced

vertices with adjacent stationary vertices. The 64 standard

deviation values were chosen empirically during a system
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Fig. 4. Five surface manipulation cases (a) planar surface, normal displacement, (b) planar surface, skew displacement, (c) smooth surface, normal displace-

ment, (d) smooth surface, skew displacement, (e) piece-wise linear reconstructed surface, skewed displacement not based at a vertex.



tuning session to be a linear distribution ranging from 0.009

to 196. Along with each table we store its corresponding

standard deviation, standard deviation squared, four stan-

dard deviations, and four standard deviations squared.

2.8. Calculating parameter values for the frame

The ®ve ®ltered ®nger bend values are averaged and

linearly mapped to the set of standard deviations that we

use in the tables in order to provide the frame's current

Gaussian standard deviation. The sphere-of-in¯uence's

radius is set to four standard deviations, equivalent to the

®nite symmetric domain of the current frame's Gaussian

function.

An average ®nger bend tolerably close to zero implies a

fully open hand and release of the objectÐa weight of zero

for all vertices. We check for this and do not calculate any

vertex displacements or perform dynamic splitting. The

maximum ®nger bend value that the glove delivers implies

grabbing as much of the object as is possible i.e. using the

system's maximum standard deviation. This provides a

good intuitive metaphor of grabbing a piece of the object's

material and releasing it by closing and opening the hand's

®ngers respectively.

2.9. Visual display of glove and selected vertices

In the absence of tactile cues, visual cues are a reasonable

substitute to the designer. They increase the predictability

and thereby the control of the deformation. Fig. 1 shows the

visual cues used during manipulation. The glove point's

position in space is shown only as a non-intrusive cube

object. All ®nger-bend feedback is conveyed by the set of

grabbed vertices' glyphs in relation to the glove point and
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Fig. 5. Three ways of calculating the weight function for the displacement of a vertex at p.



the object. These glyphs are small visual cues placed one at

each selected vertex. This gives the impression of a high-

lighted section of the object that is currently held in the hand.

2.10. Ways to speed-up the calculations

Our system must be fast in order to be used by common

single-processor personal computers. For speed we use a

polygonal surface model, a fast two-phase contact detection

scheme, avoidance of trigonometric functions, tabulated

data for costly functions using direct integer array indexing

to access the table data, and an ef®cient rendering manage-

ment scheme.

A polygon has its vertices' positions explicitly stored.

Using explicit vertex position bene®ts deformation speed

since a vertex position may be updated by simply adding

a displacement vector. A spline methodology often requires

a minimization of a system of equations. A system using
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Fig. 6. The effect of the displacement vector ®eld on the polygon surfaceÐthe vector ®eld caused by the glove displacement vector gg 0 shapes the object in the

upper left. The glove's sphere-of-in¯uence is shown in the lower right in orange. The middle section shown in teal is the portion of the original surface that is

displaced during the frame.



constraints that require constantly ®nding eigenvalues is

implicitly slower than one that uses simple vector addition.

The Gaussian table size is large enough so that interpola-

tion of values is unnecessary. The tables contain Gaussian

values of the square root of the input values; they can thus

be accessed directly with the square of the abscissa. We

calculate the index to access the table data using the integer

value of [1024 dist2(gp 2 gp´gg 0)]. We use the same table

data for weighting vertices in our smoothing method.

We use a static number of nesting spaces (input spline

patches) to allow for an array of pointers into linked lists of

triangles. The surface manipulation each frame is encapsu-

lated in a known subset of nesting spaces. We render each

nesting space in its own OpenGL display list, thereby limit-

ing the display lists that need to be created each frame. The

12 line segments of the glyph that indicate a selected vertex

and the glove point, besides satisfying our concerns of not

obscuring the scene and still being highly visible, are also

quickly rendered in OpenGL.

3. Smoothing the object

A characteristic of directly manipulating a faceted object

is that it often becomes jagged. The faceted nature of a

polyhedral object is more noticeable, especially when physi-

cally handled, for an object with a rough surface (discontin-

uous surface tangent) compared to a smooth feeling object.

This has been observed with physical renditions of objects

made by our system. One may wish to minimize the

ªfaceted feelº of the object, so we provide a smoothing

method to reduce these geometric discontinuities with

second-order precision.

Our approach to smoothing involves these three stages:

1. the user selects a region of the object which is to be

smoothed;

2. an approximating quadric implicit surface is found;

3. the vertices are relaxed towards that surface.

The method described by Pratt [13] is used to ®nd an

approximating surface. It is a non-iterative method that

solves an overdetermined linear system, to ®nd function

coef®cients. This method was chosen over a least squares

approach using Euclidean distance because it has only static

space requirements for any number of points and easily

handles incremental addition and deletion of points.

3.1. Smoothing overview

The vertex relaxation process involves displacing vertices

by following the gradient of a scalar ®eld. The polynomial

function f de®nes a scalar ®eld in R3Ða ®eld function. The

®eld function has associated isosurfaces de®ned by the set

{p [ R3 : f �p� � c} where c [ R. The equation f� 0

represents the implicit surface of the weighted least squares

approximation of the surface to be smoothed. The second

order polynomial surface

f �x; y; z� � a1 1 a2x 1 a3y 1 a4z 1 a5xy 1 a6yz 1 a7xz

1 a8x2 1 a9y2 1 a10z2

� 0 �2�

requires speci®cation of 10 coef®cients A � {ai [ R :

i � 1; 2; ¼; 10}.

3.2. Selecting a region to smooth

The user selects a region using the same interface as that

used to manipulate vertices. A set is formed containing all

vertices within the user de®ned sphere-of-in¯uence. This

group is used as an unconnected set of points to calculate

a surface that best approximates this set. We use best ®t with

algebraic distance and the quadratic normalization basis

(x2 1 y2 1 z2) used by Pratt [13]. This is close to the least

possible sum of vector distances of all points pi to the

quadric surface that approximates the selected points.
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Fig. 7. The algorithm for ®nding the overdetermined implicit surface.



3.3. Procedure for ®nding the quadric in the overdetermined

case

The procedure we use (Fig. 7) is a direct method (non-

iterative) based on the work by Pratt [13], and by

Lawson [11]. The point p may be expressed in terms

of a set of basis functions. We use the polynomial

with basis b1, b2, ¼, b10 where b1� 1, b2� x, b3� y,

b4� z, b5� 2xy, b6� 2xz, b7� 2zy, b8 � x2 2 y2,

b9 � y2 2 z2, b10 � x2 1 y2 1 z2. For proper conditioning

of the linear system used to ®nd {ai}, we assume there

are more than 10 points to be approximated. Matrix C is

of dimensions m £ 10 where m is the number of points to

approximate. Matrix U is found as the product of C
transpose (C t) and C and is of dimensions 10 £ 10.

The Cholesky decomposition ®nds the positive de®nite

upper triangular matrix V U � VtV. Positive de®nite

means that all diagonal elements are non-negative and

all eigenvalues are positive [14]. Using V we solve

the linear system for the set {ai} by the equation

given in step 5 where cofactorSign�i� � �21�i 1 1 : i �
1; 2; ¼; 10 and det(cofactori) is the determinate of the

cofactor sub-matrix corresponding to row and column i

of V. We must normalize the set of coef®cients by scal-

ing using the last coef®cient as shown in step 6.

3.4. Vertex relaxation

After the 10 coef®cients have been found, the vertices

must be moved towards the discovered surface. The impor-

tant task is to decide where on the implicit surface we place

these points. These points appear unconnected but they hold

a correspondence with vertices of a mesh. We desire that the

relaxation method minimally affect the underlying topol-

ogy. For example it would be poor to cause any self-inter-

sections in the polyhedral surface. We do not simply ®nd a

point on the surface that is closest to a vertex; this will not

work. The relaxation method moves a vertex along a

streamline from an initial position to a ®nal one that is

near or on the ®tted surface. We may picture the 10 coef®-

cients of our surface ®t as forming a ®eld in space, often, but

not always, with positive ®eld values on one side of the

surface, negative values on the opposite side. We let each

vertex ¯ow through this spatial-®eld to a point on the

quadric surface. We take steps in the negative gradient

direction using the magnitude fcurrent=u7f utuning factor. Vari-

able fcurrent is the current potential value of the point during

the iterative relaxation process and u7f u is the scalar gradient

value at the point's current ®eld position. We use a magni-

tude that is proportionate to fcurrent since we want large steps

when the vertex is far from f� 0 and small steps when the

vertex is near f� 0. We also want small steps when the

vertex is at a point where f varies rapidly (large gradient),

and large steps when the vertex is at a point where fvaries

slowly (small gradient), and so we use a magnitude that is

inversely proportionate to u7f u. The tuning factor balances

these two contributions to step size; we use a value of 0.5,

which usually produces an acceptable convergence time of

under 30 iterations.

3.5. Procedure for placing vertices near the approximating

surface

We assume the user has already selected a section of the

surface to be smoothed, as implied in Section 3.2; this is

step 1 in Fig. 8. The factor weightedTol in step 4 is the

tolerance used to determine if pi is close enough to the

smooth surface. It is at least as large as minTol and may

be as large as maxTolIncrease 1 minTol. We use a

weighted distribution to form the approximating surface

based on a vertex's proximity to the glove. We use a Gaus-

sian weighting distribution to cause points near the glove

point g to move very close to f� 0; points further away from

g to tend to remain near their original position. We do this

by reducing the tolerance for vertices near the glove. We

move vertices against 7f using the weighting factor w that,
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Fig. 8. Our algorithm for relaxing vertices.



for the reasons discussed in Section 3.4, is based on the

empirical factor tuningFac, the algebraic distance of the

vertex from the smooth surface, and the magnitude of the

function gradient at the vertex.

Fig. 9 depicts the vector ®eld that is the gradient to the

solution polynomial function f. A general method of relax-

ing vertices would be to place each vertex at the ®rst reached

intersection point of the gradient line and f� 0, for the

gradient line that intersects the vertex. The gradient line L

intersects vertex x, L intersects f� 0 closest at x 0, and so to

relax x place it at x 0.

3.6. Surface change during smoothing

During smoothing the surface either expands or shrinks

as a result of relaxing vertices onto the approximating

surface. Any one particular surface likely either shrinks

or expands, but the method is not predisposed either

way. This is due to our calculating the approximating

surface so that the original vertex positions are on either

side of the ®nal surface. Other polygonal object smooth-

ing methods, such as subdivision described by Peters

[12], either always expands or always shrinks the surface

according to the speci®cs of the method. Also, our

method differs from this and other subdivision algo-

rithms, such as those by Dyn [7] and by Doo [5] in

that our method moves existing vertices and does not

rely on adding new vertices to smooth the geometry.

3.7. Maintaining the surface mesh during relaxation

Vertex relaxation displaces vertices towards the quadric

f� 0 according to the vector ®eld L.

L � 7f � �sf =sx;sf =sy;sf =sz� �3�

curl�L� � �a6 2 a6; a7 2 a7; a5 2 a5� �4�

� �0; 0; 0� �5�
Since the curl(L)� (0,0,0) the ®eld has no vortex regions

that may trap a vertex preventing convergence towards the

quadric and the ¯ow ®eld does not twist and so does not

adversely disturb the mesh connectivity due to twisting of

facet edges. Using higher than a second order surface would

likely introduce undesirable twisting of facet edges.

3.8. Smoothing method de®ciencies

Two de®ciencies with the smoothing method have been

identi®ed, one concerns the quality of the quadric ®t and the

other has to do with the connectivity of the input set of

points. The smoothing method requires that the input set

of points be well approximated by a quadric surface. No

monitoring of the quality of the implicit surface in approx-

imating the input set of points is made. It is incumbent upon

the user to judge when a quadric surface will be an accep-

table approximation. This is done interactively by properly

selecting input points.

It would be possible for the system to calculate a quality

of ®t metric. This metric might simply be the average alge-

braic distance of a point to the approximating surface. If this

metric is too large, then, the system could respond by not

performing the relaxation phase. Two disconnected pieces

of the surface selected for smoothing may or may not have a

good quality of ®t metric. Ultimately user discretion is

needed during the design process.

The system does not detect nor correct the second de®-

ciency. Remember that the smoothing method operates on a

disjoint set of points. The points do however represent a

connected mesh of vertices. There is no guarantee that the

polygon edges formed from these vertices do not cross or
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Fig. 9. Vertex x is relaxed onto approximating surface f� 0 by placing x at the ®rst reached intersection point of f� 0 and gradient line L.



overlap. Fig. 10 outlines two possible scenarios. Fig. 10(a)

shows a point cloud, in R2. Fig. 10(b) shows an approximat-

ing quadric curve to the point set. Fig. 10(c) shows one

possible connectivity of the point set. This connectivity

will be associated with good smoothing results. Fig. 10(d)

shows the linear curve segment after vertex relaxation. In

Fig. 10(e) a different connectivity of the same point set is

shown. This however, is associated with poor smoothing

results. Relaxation would produce the same ®nal vertex

positions as the previous connectivity. These poor results

are due to part of the curve being folded over during

the relaxation phase. We have not tried to implement the

detection and correction of this phenomenon. The curve in

Fig. 10(e) is actually a poor candidate for quadric approx-

imation, although the average algebraic distance relaxed is

small. The case of two vertices lying on the same streamline

is the boundary case of this second de®ciency.

4. Results

All these objects depicted started from the default ellip-

soid object; we have also tested and used the system with

initial objects that are topologically different from the

sphere, such as a torus. Fig. 11 shows two photographs of

a plastic stereo-lithography ªbirdº created using our system.

In Fig. 12, six objects are presented, the objects in the center

row show smoothing. Fig. 13 shows a rabbit, chicken, and a

fanged dog. Dynamic splitting during deformation produces

striations on the surface. These striations follow contours

that tend to accent the object's form. They are due to trian-

gles stretching and becoming slender in the direction of the

pull (or push), and then splitting. The system's smoothing

tool minimizes striations of the original surface.

We would like to incorporate a second glove and

3D tracker for the user's second hand to use for object
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Fig. 11. Two photographs of a plastic stereo-lithography bird-object created using the system.

Fig. 10. (a) A point cloud in R2, (b) a least squares ®t is formed, (c) one possible connectivity associated with good smoothing results, (d) a piece-wise linear

reconstruction of relaxed points is formed using the previous connectivity, (e) a different possible connectivity associated with poor smoothing results; the

piece-wise linear reconstruction will be self-intersecting.



translation and rotation. This would add the metaphor of

holding the object in one hand while using the other

hand to sculpt. To grab hold of the object, the second

hand would simply close its ®ngers, then the object

would track the hand's translation and rotation. Opening

the hand would release the object, which then remains

®xed in space. The only burden placed on the program

every frame would be to poll the glove and use the ®ve
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Fig. 12. Six sculptures produced by the system.



®nger bend angles in a comparison to determine if the

hand is closed. We currently handle mouse events to

translate and rotate the object using different button

for translation and rotation.
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