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Abstract

An algorithm for creating smooth spline surfaces over irregular
meshes is presented. The algorithm is a generalization of quadratic
B-splines; that is, if a mesh is (locally) regular, the resulting sur-
face is equivalent to a B-spline. Otherwise, the resulting surface
has a degree 3 or 4 parametric polynomial representation. A con-
struction is given for representing the surface as a collection of
tangent plane continuous triangular Bézier patches. The algorithm
is simple, efficient, and generates aesthetically pleasing shapes.

CR Categories and Subject Descriptors: I.3.5 [Computer
Graphics]: Computational Geometry and Object Modeling - Curve,
Surface, Solid, and Object representations; J.6 [Computer-Aided
Engineering]: Computer-Aided Design (CAD); G.1.2 [Approxi-
mation]: Spline Approximation.

Additional Key Words and Phrases: Computer-aided geo-
metric design, B-spline surfaces, Triangular patches, Geometric
continuity, Irregular meshes, Aribitrary topology.

1 Introduction

The B-spline paradigm for modeling smooth surfaces is limited
by the requirement that the control point mesh must be organized
as a regular rectangular structure. Ignoring this requirement by
collapsing control mesh edges leads to surfaces with ambiguous
surface normals and degenerated parameterizations. A more gen-
eral method is to construct a surface from a mesh of points without
degeneracy. By constructing this surface using piecewise polyno-
mials, familiar algebraic tools can be brought to bear for analysis.
This is the approach taken in this paper.

A new type of spline surface is presented for modeling surfaces
of arbitrary topological type by smoothly approximating an irreg-
ular control mesh. The advantage of this technique over existing
schemes is simplicity, efficiency, and piecewise polynomial form.
The spline surface is simply constructed by computing a triangular
Bézier representation of a network of surface patches. Being of
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fairly low polynomial degree (at most 4), these patches are effi-
cient to compute and evaluate. The spline surface is smooth, since
the patches fit together with tangent plane continuity. Another ad-
vanage of this scheme is a close relationship to quadratic B-spline
surfaces. In regular regions of the mesh, the surface is equivalent
to a B-spline represented by bi-quadratic Bézier patches. This
property can represent a considerable savings in time and space,
since in practice control meshes often have few irregularities.

The spline algorithm takes an irregular control mesh as input.
A new refined mesh is created with more faces, vertices, and edges
than the original. The new mesh has a simpler structure since ev-
ery vertex has exactly four edges incident upon it. Next, an inter-
mediate form called a “quad-net” is constructed corresponding to
each vertex of the refined mesh. The quad-nets characterize local
4-sided regions of the surface in a uniform way. Finally, a group
of four quartic triangular patches are constructed for each quad-
net as output. The union of these patches constitutes a smooth
spline surface.

This paper is organized as follows: previous work is surveyed
in § 2. Relevant background material, including Bézier forms and
B-splines are covered in § 3. The spline algorithm is presented as
a sequence of pipeline stages in § 4. A detailed development of the
smoothness constraints used to construct the surface is presented
in § 5. Concluding remarks are found in § 6. Special techniques
for dealing with meshes with boundaries (i.e., meshes that are not
closed) are given in Appendix A.

2 Previous Work

The earliest attempts to overcome the topological limitations of
B-spline surfaces were based on the refinement principle[1, 4].
The idea is to refine, or subdivide, an irregular mesh by creating
a new mesh, with more faces and vertices, that approximates the
old. By repeating this process, a smooth surface is formed in the
limit. Subdivision algorithms are conceptually quite simple and
generally generate nice shapes. However, subdivision surfaces do
not admit an analytic form, complicating their use in many prac-
tical applications. Despite this, algorithms based on subdivision
surfaces continue to appear[7].

Gregory patches have been used to interpolate the vertices of
an irregular mesh[2]. These patches have singularities at corners
and are not polynomial. Other non-polynomial surface patches
used to define B-spline-like surfaces over irregular meshes in-
clude the 3 and 5-sided patches defined in[17], and n-sided S-
patches[9, 12]. S-patch based schemes can be inefficient (in both
time and space) for n > 5 or 6. A generalization of quartic tri-
angular B-splines to strictly triangular meshes using degree six
polynomial patches appears in [11]. Other schemes use tensor



        

product polynomials, but require the connectivity of the control
mesh to be restricted[6, 18].

More recent approaches to the problem assume that irregular
vertices (a vertex with other than 4 edges incident upon it) are
isolated. That is, every irregular vertex is surrounded by one or
more layers of quadrilaterals and regular vertices. G-splines[8,
16] take this approach. Severals schemes by Peters[13, 14, 15]
isolate irregularities by applying one or more refinement steps to
an irregular mesh. The approach taken in this paper is similar.
The distinguishing features are that only one refinement step is
required, and the mesh does not have to be preprocessed to have
excusively 3 or 4-sided faces. The trade-off for this simplification
is fewer patches of higher degree. The patches computed here are
at most polynomial degree 4, as opposed to degree 3 in [10, 13,
14].

3 Background

This section gives a brief review of Bézier curves and surfaces,
and B-spline surfaces. Consult [5] for additional details.

3.1 Bézier forms

A degree d Bézier curve is defined

B(t) =

d∑
i=0

biB
d
i (t),

where t ∈ [0, 1], the points bi form the Bézier control polygon,
and

Bd
i (t) =

(
d

i

)
(1 − t)d−iti,

are degree d Berstein polynomials. As a convenient notation, a
Bézier curve will be identified by its control polygon represented
by the vector [b0,b1, . . . ,bd].

A degree r by s tensor product Bézier patch is defined

B(u, v) =

r∑
i=0

s∑
j=0

bijB
r
i (u)Bs

j (v),

where u, v ∈ [0, 1], and the bij are a rectangular array of points
forming the Bézier control net.

A degree d Bézier triangle is defined

B(u, v) =
∑

i+j+k=d

bijkB
d
ijk(u, v),

where u, v, (1−u−v) ∈ [0, 1], ij, and k are non-negative integers
that sum to d, the bijk form a triangular Bézier control net, and

Bd
ijk(u, v) =

(
d

ijk

)
(1 − u− v)iujvk,

are the degree d bi-variate Bernstein polynomials where
(

d
ijk

)
is

the trinomial coefficient d!
i!j!k! .

Bézier surfaces are a convenient representation for individual
polynomial patches. Algorithms for rendering, raytracing, and
surface intersection often utilize the Bézier form. When con-
structing smooth composite surfaces consisting of several patches,
satisfying the necessary smoothness constraints among Bézier sur-
faces can be quite complex. In this setting, it is preferable to use
B-spline surfaces.

3.2 B-splines

A tensor product B-spline surface is defined

S(u, v) =
∑
i

∑
j

dijN
r
i (u)Ns

j (v),

where the dij form a rectangular control mesh and the Nd
k are

order d (degree d− 1) B-spline basis functions. Each basis func-
tion is defined over a partition of the real axis called a knot vector
(see [5] for details).

Two particular properties of B-splines are of interest here.
First, by introducing a new knot between each pair of existing
knots, the control mesh is refined, or subdivided, without chang-
ing the shape of the surface. Second, B-splines are piecewise
polynomial, therefore it is possible to represent a B-spline surface
as a collection of individual polynomial patches. The spline sur-
face presented in this paper is closely related to quadratic B-spline
surfaces with uniform knots.

A quadratic B-spline can be represented as a composite of bi-
quadratic tensor product Bézier patches. A single such patch is
constructed corresponding to each vertex dij of the control mesh
as illustrated in Figure 1. The corner points b00, b20, b02, and
b22 are found as the centroids of the four faces surrounding dij .
The points b10, b01, b21, and b12 are found as midpoints of the
four edges incident on dij , and the point b11 is equivalent to dij .

The refinement algorithm for quadratic B-splines involves com-
puting a new vertex corresponding to each {vertex, face} pair of
the original mesh. The new vertices are found as weighted av-
erages of the points belonging to each face of the original mesh.
For the quadratic B-spline case, these weights (going around a
face) are { 9

16 ,
3

16 ,
1

16 ,
3

16}. The newly created vertices are then
connected to form the faces of the refined control mesh.

b10b

b20b

b01b

b21b

b02b
b12b

b22b

b00b

b11b

dijd

Figure 1: The bi-quadratic Bézier patch corresponding to the B-
spline control mesh point dij .

A B-spline surface is smooth because adjacent patches share
positions and first derivatives at all points along common bound-
aries. This notion of matching derivatives along patch boundaries
is sufficient because the domain of each patch lies in a single
uv plane. Therefore, a B-spline surface is a deformation of this
domain plane. For this reason, B-spline surfaces can only model
shapes that are topologically planar†.

†B-spline surfaces may also be defined over cylinders and tori, as these domains
can tile the plane.



        

Under a less restrictive definition, a surface is considered
smooth if at all points it has a continuous, well-defined tangent
plane. This notion is known as first order geometric continuity[3]
and denoted G1. In the next section, a spline surface is created
by constructing a collection of patches over independent domains
such that the union of this collection is G1

4 Constructing the Spline

Constructing the spline surface begins with a user-defined control
mesh denoted M0. A control mesh is a collection of vertices,
edges, and (not necessarily planar) faces that can intuitively be
thought of as a polygonal surface that may, or may not, be closed.‡

The term valance is used to denote the number of edges incident
on a vertex.

The spline surface is constructed in the following stages:

Input: irregular control mesh

1. refine mesh

2. construct quad-nets

3. construct patches

Output: collection of triangular patches

The mesh M0 is passed to a refinement procedure that creates a
new mesh M1. The purpose of the refinement procedure is to
isolate irregularities. After the refinement step, the mesh M1 is
used to construct a set of quad-nets. The quad-nets characterize
the surface locally, and provide a uniform structure for the third
and final step. From each quad-net, a collection of four quartic
triangular Bézier patches is constructed and output. The details
of each step are described in the next three sections, followed by
some examples.

4.1 Mesh Refinment

The first step takes a user-defined control mesh M0 and creates
a new refined mesh M1. The vertices of M1 are constructed to
corresponded to each {vertex, face} pair of M0. Let F be a face
of M0 consisting of vertices {P0, P1, . . . , Pn−1} with centroid O
(the average of the Pi’s). The point P ′

i of M1 corresponding to
{Pi, F} is found by

P ′
i = 1

4O + 1
8Pi−1 + 1

2Pi + 1
8Pi+1,

where all subscripts are taken modulo n.
The faces of M1 are constructed corresponding to a vertex,

face, or edge of M0. Each k-valant vertex of M0 will generate
a k-sided face belonging to M1. Similarly, each n-sided face of
M0 will generate an n-sided face belonging to M1. Finally, each
edge of M0 will generate a 4-sided face belonging to M1. This
construction is illustrated in Figure 2. Note that all the vertices
of M1 are 4-valant, and every non-4-sided face is surrounded by
4-sided faces. Special consideration for vertices and edges that
belong to the boundary of M0 can be found in Appendix A.

Remark : The refinement rule given here is equivalent to
quadratic B-spline refinement for regular meshes. A more general
construction of the refined mesh points due to Peters[13] associates
a pair of scalar values u and v with each point P ′

i such that

P ′
i = (1 − u)(1 − v)O + (1−u)v

2 Pi−1 + u+v
2 Pi + u(1−v)

2 Pi+1.

The parameters u and v are similar to knots of a B-spline in that
they may be used to locally adjust the shape of the surface.

‡More technically, a control mesh is a tessellated, oriented 2-manifold (possibly
with boundary).

Figure 2: Mesh refinement: The vertices of the refined mesh M1

(thin lines) correspond to {vertex,face} pairs of the original mesh
M0 (bold lines).

4.2 Quad-Nets

In the second step, 16 points and a pair of integers collectively
referred to as a quad-net are constructed corresponding to each
vertex of M1. Though quad-nets are in many ways like the con-
trol nets of Bézier patches, their purpose here is only as an inter-
mediate stage between the refined mesh and the final triangular
Bézier surface patches. A quad-net and its labeling scheme are
illustrated in Figure 3.

V

V

A00A

A10A

A20A
A30A

A01A
A11A

A21A

A31A
A02A

A12A

A22A

A32A

A03A

A13A

A23A

A33A

Figure 3: The quad-net corresponding to the vertex V of M1.

A quad-net locally characterizes a piece of the spline sur-
face bounded by the four cubic Bézier curves [A00, A10, A20, A30],
[A30, A31, A32, A33], [A33, A23, A13, A03], and [A30, A02, A01, A00].
The corners A00, A30, A03 and A33 lie at the centroids of the four
faces surrounding a vertex V . The interior points A11, A12, A21,



        

and A22 help specify the tangent plane along each of the four
boundary curves.

In order to ensure that the spline surface is G1, some con-
straints must be satisfied between the points of a pair of adjacent
quad-nets. These constraints are as follows:

(1 − c)A00 + cA01 = 1
2A10 + 1

2 Â10, (1)
1
2A01 + 1

2A02 = 1
2A12 + 1

2 Â12, (2)

A03 = 1
2A13 + 1

2 Â13, (3)

where Â10, Â12 and Â13 are points of an adjacent quad-net, and
c is a scalar to be determined. Similar constraints apply for the
other three boundary curves in a symmetric manner. Justification
for Constraints (1), (2), and (3) is provided in § 5.

Constraint (1) must hold between all pairs of adjacent quad-
nets that share the point A00. This implies that all quad-net points
surrounding A00 must be co-planar. The following theorem is the
key to constructing quad-net points that satisfy this requirement:

Theorem 4.1 Let P0, . . . , Pn−1 ∈ �3 be a set of points in general
position. The set of points Q0, . . . , Qn−1 found by

Qi = 1
n

n−1∑
j=0

Pj(1 + β(cos 2π(j−i)
n

+ tan π
n

sin 2π(j−i)
n

)), (4)

satisfy

(1 − cos 2π
n

)O + cos 2π
n
Qi = 1

2Qi−1 + 1
2Qi+1, (5)

where

O = 1
n

n−1∑
j=0

Pj ,

and are therefore co-planar.

Proof : See Appendix B. �

The factor β in Equation (4) is a free parameter that may be
set arbitrarily. Theorem 4.1 applies to the construction at hand by
setting

β = 3
2 (1 + cos 2π

n
),

and interpreting the points P0, . . . , Pn−1 as the vertices of a face
belonging to mesh M1, the point O as A00, and the points Q0,
. . ., Qn−1 as the quad-net points surrounding A00. Under this
interpretation it is immediately clear from (5) that Constraint (1)
is satisfied with c = cos 2π

n
. Constructing the points A30, A03,

and A33 and the surrounding quad-net points is similar. The ob-
servation that every n-sided face of M1 (n �= 4) is surrounded
by 4-sided faces, indicates that faces containing A30 and A03 are
always 4-sided. Constraint (3) is satisfied since cos 2π

n
= 0 when

n = 4.
Applying Theorem 4.1 to each of the four faces surrounding

a vertex of M1 will produce all of the quad-net points except for
the four interior points A11, A12, A21, and A22. The construction
for the point A12 is as follows: let V be the vertex about which
the quad-net is constructed, and let V̂ be an edge sharing neighbor
of V (see Figure 3). Compute

A12 = 1
2A01 + 1

2A02 + 1
6 (V − V̂ ), (6)

and by symmetry

Â12 = 1
2A01 + 1

2A02 + 1
6 (V̂ − V ). (7)

Averaging Equations (6) and (7) shows that Constraint (2) is sat-
isfied. The construction of the other three interior quad-net points
is symmetric.

The sixteen quad-nets points do not by themselves give enough
information to construct surface patches that meet neighboring
patches smoothly. The pair of integers n0 and n1 that correspond
to the number of sides belonging to the faces that contain points
A00 and A33 respectively are also needed. These two integers
characterize the relationship between a quad-net and its neighbors
when cos 2π

n0
or cos 2π

n1
are substituted for c in Constraint (1).

The quad-nets are now passed to the next step where patches are
constructed.

4.3 Constructing Patches

In the third and final step, parametric surface patches are con-
structed that interpolate the information encoded by the quad-nets
constructed in step 2. A single bi-cubic patch is not sufficient to
interpolate this data in general, since the mixed partial or twist
terms at the corners of a quad-net may not be consistent (i.e.,

∂2

∂u ∂v
�= ∂2

∂v ∂u
, where u and v correspond to boundary curve

parameters).
This difficulty can be eliminated by using four triangular patches

that form an ‘X’ with respect to the four quad-net boundary curves.
Cubic triangular patches suffice to interpolate the quad-net bound-
ary curves, but do not have enough degrees of freedom to satisfy
smoothness constraints across quad-nets boundaries. By using
quartic patches, additional degrees of freedom are introduced that
can be used to ensure smooth joins between adjacent triangular
patches. The labeling scheme used for the Bézier control nets of
the four quartic patches is as follows:

b00b b10b b20b b30b b40b

b01b b11b b21b b31b b41b

b02b b12b b22b b32b b42b

b03b b13b b23b b33b b43b

b04b b14b b24b b34b b44b

a00a a10a a20a a30a

a01a a11a a21a a31a

a02a a12a a22a a32a

a03a a13a a23a a33a

Formulas for the Bézier control points of one of the triangu-
lar patches are now given. Similar formulas for the other three
patches can be found by symmetry. Interpolating the cubic bound-
ary curves of a quad-net is achieved by degree raising, resulting
in

b00 = A00,

b01 = 1
4A00 + 3

4A01,

b02 = 1
2A01 + 1

2A02,

b03 = 3
4A02 + 1

4A03,

b04 = A03.

Tangent plane continuity is maintained across quad-net boundaries
by setting

a00 = 1
2 b10 + 1

2 b01,

a01 = c
8A00 + 3−3c

8 A01 + c
4A02 + 1

8A10 + 1
2A12,

a02 = 3−c
8 A02 + c

8A03 + 1
2A12 + 1

8A13,

a03 = 1
2 b03 + 1

2 b14,

where c = cos 2π
n0

(note that c = cos 2π
n1

when constructing a31,
a32, a13, and a23). These formulas are derived in § 5.



      

The points b12, b21, b23, and b32 do not affect tangent plane
behavior across quad-net boundaries, and may be choosen arbi-
trarily. Some care should be taken in determining the position
of these points so that the resulting surface is free of unwanted
undulations or other artifacts. A reasonable construction is:

b12 = 7
8A12+

1
8 (A21−A11−A22)+

3
16 (A10+A13)− 1

16 (A00+A03).

The remaining Bézier control points are computed by

b11 = 1
2a10 + 1

2a01,

a11 = 1
2 b21 + 1

2 b12,

b22 = 1
2a12 + 1

2a21.

These constructions ensure that the triples {b01, a00, b10}, {a01,
b11, a10}, {b12, a11, b21}, and {a12, b22, a21} are colinear and share
affine ratios. Therefore, the four triangular patches are C1 along
the boundaries internal to a quad-net.

The collection of quartic Bézier triangles constructed in this
step are output as the final step in the spline algorithm. Figures 5
and 6 show several control meshes and the corresponding spline
surfaces generated by the algorithm.

4.4 Special Cases

The construction just presented generates a smooth spline surface
over any control mesh that is topologically a 2-manifold. How-
ever, there are certain optimizations that can be implemented to
generate patches of lower degree. These special cases arise when
n0 and n1 equal 3 or 4. In each case, the boundary curves of
a quad-net are quadratic rather than cubic. If n0 = n1 = 4, a
single bi-quadratic Bézier patch can be used in place of the four
quartic triangles. Otherwise, the four quartic Bézier triangles can
be replaced by cubics.

V

A00A

A10A

A20A
A01A

A11A

A21A

A02A

A12A A22A

Figure 4: The special case quad-net corresponding to the vertex
V .

To take advantage of these optimizations, the special case
quad-net shown in Figure 4 corresponding to the V of M1 is
used. The points A00, A20, A02, and A22, are the centroids of the
four faces surrounding V . The points A10, A01, A12, and A21, are
the midpoints of the four edges incident on V , and the point A11 is

equivalent to V . This special case quad-net must also know about
the integers n0 and n1 (equal to the number of sides belonging to
the faces surrounding A00 and A22 respectively).

The four cubic Bézier triangular patches constructed from the
special case quad-net are labeled as:

b00b b10b b20b b30b

b01b b11b b21b b31b

b02b b12b b22b b32b

b03b b13b b23b b33b

a00a a10a a20a

a01a a11a a21a

a02a a12a a22a

Formulas for the Bézier control net of one of these patches
are given. The other three control nets are found by symmetry.
The boundary curve is found by

b00 = A00,

b01 = 1
3A00 + 2

3A01,

b02 = 2
3A01 + 1

3A02,

b03 = A02.

Tangent plane continuity is maintained across quad-net boundaries
by setting

a00 = 1
2 b10 + 1

2 b01,

a01 = 1
6A00 + 2−c

6 A01 + 1+c
6 A02 + 1

3A11,

a02 = 1
2 b02 + 1

2 b13,

where c = cos 2π
n0

. A smooth join across the internal boundaries
is ensured by setting:

b11 = 1
2a10 + 1

2a01,

a11 = 1
2 b21 + 1

2 b12.

If n0 = n1 = 4, then the special case quad-net is output as
the control net of a bi-quadratic tensor product Bézier patch.

5 Smoothness Conditions

The purpose of this section is to derive the constraints imposed
on the quad-net construction (§ 4.2), and the formulas for Bézier
control points that affect tangent plane behavior along quad-net
boundaries (§ 4.3 and 4.4). This section is included for complete-
ness; it is not crucial to understanding the results of this paper.

The purpose of the quad-nets is to characterize the curves and
tangent planes along the boundaries of a quadrilateral piece of
the spline surface. One such boundary curve is represented by
the cubic Bézier curve [A00, A01, A02, A03] constructed in § 4.2.
Adjacent quad-nets sharing these points will clearly lead to a con-
tinuous (but not necessarily smooth) surface. To see how adjacent
quad-nets give rise to surfaces that are tangent plane continous,
it must be demonstrated how a quad-net encodes a tangent plane
along a boundary.

The tangent plane at a point on a surface can be represented
as the span of a pair of vectors. Along a quad-net boundary, one
of these vectors is the derivative of the boundary curve written in
Bézier form as

R = 3[A01 −A00, A02 −A01, A03 −A02].



        

The other vector points inward along the boundary and is defined

S = 3[A10 − (1 − c)A00 − cA01, 2A12 −A01 −A02, A13 −A03],

where c = cos 2π
n0

. The tangent plane encoded by the quad-net
along the boundary is the span of R and S. Similar expressions
hold for the other three edges of a quad-net.

To see that a pair of adjacent quad-nets encode the same tan-
gent plane along a common boundary, consider the pair of quad-
nets that share the boundary [A00, A01, A02, A03]. Let A10, A12,
and A13 be the ‘first row’ of points belonging to the first quad-net
adjacent to the common boundary, and let Â10, Â12, and Â13 be
the first row of the second quad-net. Clearly, both quad-nets will
share the tangent vector R since they share a common boundary
curve. By definition

Ŝ = 3[Â10 − (1 − c)A00 − cA01, 2Â12 −A01 −A02, Â13 −A03],

is the inward pointing tangent vector of the second quad-net. Ad-
jacent quad-nets will encode the same tangent plane along the
common boundary if R, S, and Ŝ are linearly dependent. This fol-
lows by construction, since it is easily verified that Constraints (1-
3) are equivalent to the condition

S = −Ŝ.

Therefore, the quad-nets constructed in § 4.2 encode identical
tangent planes along common boundaries.

Next, it is shown that the triangular patches constructed in
§ 4.3 interpolate the tangent planes encoded along quad-net bound-
aries. Let P be the quartic triangular patch constructed to inter-
polate a quad-net boundary curve. The tangent plane of P along
this boundary is the span of the partial derivatives

Pu = 4[b01 − b00, b02 − b01, b03 − b02, b04 − b03],

and

P v = 4[a00 − b00, a01 − b01, a02 − b02, a03 − b03]. (8)

The tangent plane of P will interpolate the quad-net tangent
plane if R, S, Pu, and P v are linearly dependent. By construction

Pu = R, and

P v = φR + ψS, (9)

where
φ = [ 1+c

2 , 1
2 ] and ψ = [ 1

2 ],

are scalar valued functions in Bézier form. Therefore P will
interpolate the tangent plane along the boundary of the quad-net.
Expanding the right hand side of (9) and equating this result to
the right hand side of (8) gives the formulas used to construct
points a00, a01, a02, and a03.

5.1 Smoothness in Special Cases

The special case outlined in § 4.4 is similar except the tangent
plane encoded by the special case quad-net is the span of the
vectors

R = 2[A01 −A00, A02 −A01],

and

S = 2[A10 − (1 − c)A00 − cA01, A11 −A01, A12 −A02].

Expanding the right hand side of (9) with these definitions of R
and S, and equating this result to

P v = 3[a00 − b00, a01 − b01, a02 − b02],

gives the formulas used to construct points a00, a01, and a02.
It must also be demonstrated that a special case quad-net of

§ 4.4 encodes the same boundary curve and tangent plane as a
normal quad-net. Let A be a normal quad-net and Ã be a special
case quad-net defined over the same vertex. By construction

A00 = Ã00, and A03 = Ã02.

The weights from Theorem 4.1 for the cases n = 3 and n = 4 are
{ 4

9 ,
4
9 ,

1
9} and { 5

12 ,
5
12 ,

1
12 ,

1
12} respectively. Since these weights

are used to construct A10, A01, A02, and A13, it is straightforward
to show that in either case

A10 = 1
3 Ã00 + 2

3 Ã10, A01 = 1
3 Ã00 + 2

3 Ã01,

A02 = 1
3 Ã02 + 2

3 Ã01, A13 = 1
3 Ã02 + 2

3 Ã12,

and
A12 = 1

6 Ã00 + 1
3 Ã01 + 1

6 Ã02 + 1
3 Ã11.

Substituting these equations (for A00, . . . , A12) into the definition
of the tangent vector S for the normal case yields the definition of
S for the special case. Therefore, both types of quad-nets encode
the same tangent planes and may be used interchangably when n0

and n1 are equal to 3 or 4.

6 Conclusions

An algorithm has been presented for constructing a tangent plane
smooth spline surface that approximates an irregular control mesh.
The spline surface is in general a composite of quartic triangular
Bézier patches. In certain special cases, cubic triangular patches
may be used in place of the quartics. Over regular regions of
the mesh, a bi-quadratic Bézier patch may be used in place of
four quartic triangular patches. In fact, the four quartic triangular
patches constructed over a regular region represents exactly the
same polynomial map as the single bi-quadratic Bézier patch. Al-
though this has not been proved, its plausability is evident since
the total degree of a bi-quadratic surface is 4.

The spline algorithm as presented was factored into 3 steps.
Each of these steps was a geometric construction that involved
taking weighted averages (affine combinations) of points. There-
fore, the spline surface is affine invariant (i.e., independent of
any affine transformation applied to the control mesh). It is not
clear that the concatenation of the geometric constructions leads
to convex combinations in all cases (although the special case
constructions of § 4.4 are convex).

Over regular regions of a mesh, the refinement step (§ 4.1)
is not needed and will result in more patches being constructed
than are actually required. It should be possible to avoid this
unnecessary ‘splitting’ of patches as an optimization.

Appendix

A Treatment of Boundaries

A method of dealing with mesh boundaries in a reasonable way
is now presented. The problem is that quad-nets are not defined
over boundary vertices of M1. As a result, the boundary of the
spline surface does not approximate the boundary of the M0 very
well. A solution is to modify step 1 (§ 4.1) so that new faces are
added to M1 that correspond to vertices and edges belonging to
the boundary of M0. The following construction has the prop-
erty that the boundary of the resulting spline surface will be the
quadratic B-spline curve corresponding to the boundary vertices
of M0. There are two cases to consider, faces of M1 correspond-
ing to boundary edges of M0, and faces of M1 corresponding to
boundary vertices of M0.



Figure 5: A pair of irregular control meshes and resulting spline surfaces. The patch structure of the spline surfaces are indicated by
color: blue and yellow patches are quartic, red and green patches are cubic, and gray patches are bi-quadratic.

Figure 6: More examples: the color coding of patches is the same as above. The boundaries of meshes are handled by the scheme
outlined in Appendix A. This approach may be used to create creases on a surface as illustrated by the two shapes in the lower right
hand corner. Disjoint meshes that share boundary geometry will result in a crease.



      

A.1 Boundary Edges

Let the vertex pair {V0, V1} be a boundary edge of M0 belonging
to face F . Let P0 and P1 be the vertices of M1 constructed in
step 1 corresponding to the vertex-face pairs {V0, F} and {V1, F}
respectively. Two new vertices

Q0 = 3
2V0 + 1

2V1 − P0,

Q1 = 1
2V0 + 3

2V1 − P1,

and one new face {P0, P1, Q1, Q0} are added to M1.

A.2 Boundary Vertices

Let V be a vertex on the boundary of M0. Let k be the number
of faces incident on V . Let P1, . . . , Pk be the vertices of M1

corresponding to V constructed in step 1, and let P0 and Pk+1

be the vertices found by the boundary edge construction given in
Appendix A.1.

When k = 1, V is a corner of M0. By treating this vertex as
a discontinuity in the boundary B-spline curve, the spline surface
boundary will have a corner. A new face {P0, P1, P2, P3} is added
to M1 where

P3 = 4V − P0 − P1 − P2.

When k > 1 a new n = 2k-sided face {P0, . . . , Pn−1} is
added to M1 where

Pi = 2(uQ0 + (1 − u)Q1) − Pn−i+1, i = k + 2, . . . , n− 1,

with
Q0 = 1

2P0 + 1
2P1, Q1 = 1

2Pk + 1
2Pk+1,

and
u = 1

2 (1 + cos 2πi
n

+ tan π
n

sin 2πi
n

).

These constructions, offered without proof, are included be-
cause they are of practical value. The boundaries of the spline
surfaces illustrated in Figures 5 and 6 were dealt with using this
technique.

B Proof of Theorem 4.1

Let Mk = β(cos 2πk
n

+ tan π
n

sin 2πk
n

). Expand the right hand side
of Equation (5) as follows:

1
2Qi−1 + 1

2Qi+1

= 1
2n

n−1∑
j=0

Pj(1 + Mj−(i−1)) + 1
2n

n−1∑
j=0

Pj(1 + Mj−(i+1)),

= 1
2n

n−1∑
j=0

Pj(2 + Mj−i+1 + Mj−i−1),

= 1
2n

n−1∑
j=0

Pj(2 + 2 cos 2π
n
Mj−i),

= 1
n

n−1∑
j=0

Pj(1 − cos 2π
n

) + 1
n

n−1∑
j=0

Pj cos 2π
n

(1 + Mj−i),

= (1 − cos 2π
n

)O + cos 2π
n
Qi.

The key step of combining Mj−(i−1)+Mj−(i+1) to get 2 cos 2π
n
Mj−i

comes about using the well known trigonometric identities:

cos θ + cosφ = 2 cos 1
2 (θ + φ) cos 1

2 (θ − φ), and

sin θ + sinφ = 2 sin 1
2 (θ + φ) cos 1

2 (θ − φ).

Clearly the points Qi are co-planar since from (5) any Qi can
be found as a linear combination of O,Q0, and Q1, and must
therefore lie in the plane spanned by these three points.
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