
A Tool for Subdivision of Quad/Tri Meshes with Sharp Features

Soham Uday Mehta

University of California, Berkeley ∗

(a) (b) (c) (d)

Figure 1: (a) An example mesh with both Triangles and Quadrilaterals, in wireframe (b) The Subdivided Mesh, using the hybrid Quad/Tri
subdivision algorithmn: No sharpness gives a very smooth surface which barely resembles the base mesh (c) Introducing sharpness at selected
locations gives a different look (d) Another example with different sharpness values gives a still different appearance to the subdivision surface

Abstract

Designers often want the added flexibility of having both quads and
triangles in their models. It is also well known that triangle meshes
generate poor limit surfaces when using a quad scheme, while quad-
only meshes behave poorly with triangular schemes. Further, regu-
lar subdivision produces smooth surfaces even from sharp-cornered
base meshes and sometimes sharpness in the subdivision surface is
desrired. In this project we introduce a new tool for subdivision
of meshes with triangles and and quadrilaterals, with user-specified
sharpness on edges which permits great flexibility in controlling the
output subdivision surface. This project essentially integrates two
separate algorithms introduced by previous work into one frame-
work, and provides a user-interface for interactive subdivision of
quad-tri meshes.

1 Introduction and Related Work

Subdivision surfaces are currently one of the most powerful surface
representations used to model smooth shapes. Unlike regular
surface splines, such as NURBS, subdivision surfaces can handle
shapes of arbitrary topology in a unified framework. Also, unlike
polygonal meshes, subdivision surfaces generate smooth surfaces,
which is important in designing aesthetically pleasing shapes.
Subdivision surfaces were introduced by Catmull and Clark
[Catmull and Clark 1978] and Doo and Sabin [Doo and Sabin
1978]. They both generalized tensor product B-splines of bi-degree
three and two, respectively, to arbitrary topologies by extending
the refinement rules to irregular parts of the control mesh. Later,
in 1987 Loop [Loop 1987] generalized triangular Box splines of
total degree four to arbitrary triangular meshes. These subdivision
schemes have the desirable property that they admit a polynomial
representation on the regular part of the mesh. Consequently, these
surfaces are curvature continuous almost everywhere [Reif 1995].
The visual quality of a subdivision surface depends in a crucial way

∗This work is the final project for CS284, Fall 2012, instructed by Prof.

Carlo Sequin. The author can be contacted at sohamum@eecs.berkeley.edu

on the initial, or base, mesh of control vertices. For general shapes
designers often want to model certain regions with triangle patches
and others with quad patches. Unfortunately, both Catmull-Clark
and Loop surfaces require that all patches be quadrilateral or
triangular, respectively. In theory this is not a problem, since
any triangle can be converted into three quads and any quad can
be tesselated. However, as illustrated in Figure 2, Catmull-Clark
surfaces behave very poorly on triangle-only base meshes: the
resulting surface exhibits annoying undulating artifacts. Similarly,
Loop schemes do not perform well on quad-only meshes. More
importantly, designers often want to preserve quad patches on
regular areas of the surface where there are two natural directions.
Consequently it is often desirable to have surfaces that have a
hybrid quad/triangle patch structure. A few schemes have been
proposed to subdivide quad-tri meshes in a unified framework,
approximating ones such as [Stam and Loop 2003], [Schaefer
and Warren 2005] and interpolatory ones such as [Jiang et al.
2009]. The Hybrid subdivision algorithm in [Stam and Loop
2003] is surprisingly simple and is based on the fact that both
Loop and Catmull-Clark surfaces can be generated by a linear
subdivision step followed by vertex-smoothing, and this is the
one we chose to implement. Their theory is discussed in Section
2. As can be observed in Fig2 (a), regular Quad/Tri subdivision
produces extremely smooth surfaces, even starting from a relatively
sharp-cornered mesh, and while this is mostly good, sometimes
it is desirable to have some sharpness in the subdivision surface.
Ideally we would like to be able to control the sharpness locally,
without having to cram vertices in the base mesh. [Hoppe et al.
1994] introduce a scheme to modify the ubdivision rules to create
piecewise smooth surfaces containing infinitely sharp features such
as creases and corners. This is illustrated in Figure 1 (c). Extending
this idea, [DeRose et al. 1998] give special rules for semi-sharp
creases. We discuss these rules in Section 3.

We are not aware of any tool which combines these two al-
gorithms, and we also feel the need for a convenient user interface
to interact with Quad/Tri meshes and edit any edge’s sharpness
as desired. We discuss the implementation of the above two



algorithms in one framework, in Section 4. Our results and
User-Interface are shown in Section 5.

Figure 2: On the left is a cylinder with both Quads and Tris. Loop
(second from left) performs poorly on triangulated Quad meshes
and Catmull Clark (second from right) performs poorly on quad-
rangulated Triangle meshes. The hybrid [Stam and Loop 2003]
scheme (right) performs best. [Figure adapted from [Stam and
Loop 2003]]

2 Quad-Tri Subdivision

Here we breifly describe the quad/tri subdivision algorithm of
[Stam and Loop 2003]. We start with a base mesh that is formed of
quads and triangles only (e.g. Fig. 3(a)). The algorithm comprises
two steps. In the first step, each each edge into two, each quad into
four and each triangle into three, as shown in Fig 3 (b). Then in
a second step we replace each vertex with a linear combination of
itself and its direct neighbors resulting in the mesh shown in Fig 3
(c).

Figure 3: The main steps in the Quad/Tri subdivision algorithm (a)
A quad-triangle base mesh (b) After linear subdivision and (c) After
the smoothing pass [Figure adapted from [Stam and Loop 2003]]

2.1 Smoothing Pass

First consider the regular case when a vertex is surrounded by two
adjacent quads and three adjacent triangles. In this case the obvious
choice is the mask shown in Figure 4 (a), which is a simple aver-
age of the regular Loop and Catmull-Clark masks. Now let nE be
the number of edges emanating from the vertex and let nQ be the
number of quads surrounding the vertex. As shown in Fig. 4(b),
denote by α the weights associated with the irregular vertex and let
β and γ be the weights associated with the neighboring edge and
face vertices, respectively. As observed by [Stam and Loop 2003],
a natural generalization of the regular case is to let the weights be

equal to

β = α/2 and γ = α/4 (1)

The weights must sum to 1, α + nEβ + nQγ = 1. Therefore, we
set

α =
1

1 + nE/2 + nQ/4
(2)

We use the above set of weights to smoothen each vertex in the
linearly subdivided mesh of Fig. 3(b).

(a) (b)

Figure 4: (a) At a vertex after linear sudivision, the subdivision
mask for the regular case (with 2 quads and 3 tris) is a hybrid of
Loop and Catmull Clark, (b) The subdivision mask for the general
case is extrapolated from the regular case, so that β = α/2 and
γ = α/4 [Figure adapted from [Stam and Loop 2003]]

2.2 Vertex Correction

The choice for the mask is quite arbitrary as there are potentially
many other affine invariant generalizations. Ideally we want a mask
which gives the most aesthetically pleasing surfaces. One way to
formalize this requirement is to make the curvature well behaved
at each vertex. [Stam and Loop 2003] observe that for nE < 5
their algorithm produces pinching artifacts as shown in Fig 5(a). To
limit surface at the corners, it should be drawn more ‘inward’. This
idea of a correction step was first introduced implicitly by Catmull
and Clark to improve the behavior of the surface at a vertex corner
where three quads meet. In essence, the correction step translates
the smoothed vertex along the direction defined by the difference
between its smoothed position v1 and its previous (after linear sub-
division) position v0 by an amount η:

v2 = v1 + η(v1 − v0) (3)

If η > 0, the vertex is drawn more inward, and if η < 0, the vertex
is pused outward. To understand how to compute η, we must look at
the eigenstructure of the subdivision matrix of the hybrid scheme.
Let the eigen values of the matrix be

1 ≥ λ1 ≥ λ2 ≥ µ1 ≥ µ2 . . . (4)

Then [Stam and Loop 2003] observe that the characteristic factor
ρ determines the local curvature smoothness of the mesh.

ρ = λ1/µ
2
1 (5)

It is well known that ρ = 1 for C2 continuity. [Stam and Loop
2003] numerically determine the optimal value of η which makes ρ
close to 1. The reader is encouraged to look up their paper for the
specific values they propose, omitted here for brevity. It is worth
mentioning that except for nE = 3, they are able acheive a ρ = 1,
hence they only have C1 continuity for the nE = 3 case.



(a)

(b)

Figure 5: (a) The basic smoothing pass still leaves undesirable
sharp corners at vertices with less than 5 incident edges (b) The
Vertex correction eradicates this issue [Figure adapted from [Stam
and Loop 2003]]

3 Sharp Features

Let us now discuss the sharp1 subdivision scheme of [DeRose
et al. 1998]. Although they propose their rules in a Catmull-Clark
quad-only setup, it wasnt too hard to adapt their rules to the quad/tri
subdivision algorithm. On a high-level, their hybrid subdivision
algorithm uses infinitely sharp subdivision rules for the first s
subdivision steps on an edge with sharpness s, followed by the
smooth subdivision rules applied to the limit. Intuitively this leads
to surfaces that are sharp at coarse scales, but smooth at finer
scales. Let us first discuss the infinitely sharp subdivision rules.

An edge p1p2 is tagged ‘sharp’ if its sharpness is s ≥ 1.
Then the new edge-point (also called odd vertex) po is placed
at the midpoint psharp

o = 0.5(p1 + p2). In other words, in the
framework of our Quad/Tri Subdivision, the edge point will not be
moved after the linear subdivision step. If the edge has a sharpness
0 < s < 1, the final position of the edge-point is a linear blend
between the position computed using the sharp rules psharp

o and
that computed using the smooth rules psmooth

o :

po = spsharp
o + (1− s)psmooth

o (6)

Now consider a new vertex-point (also called even vertex)
pe produced from a base mesh vertex p with one or more incident
sharp (s > 0) edges. If there is only one incident sharp edge, the
vertex will be smoothed as usual - it is not affected by having an
incident sharp edge.

If, however, there are exactly two incident sharp edges pp1

and pp2 then the new position is

psharp
e =

1

8
(6p+ p1 + p2) (7)

1Henceforth we will use the term ‘sharp’ to mean both semi-sharp and

infinitely sharp.

Note that if the two incident sharp edges both have sharpness
s1, s2 < 1, then we use the average sharpness s = 0.5 ∗ (s1 + s2)
to blend between the smooth and sharp positions of pe as described
above in equation 6.

Finally, if there are more than 2 incident sharp edges (s > 0) at
a vertex, then the new position is the same as the old position,
psharp
e = p. While subdividing from one level to the next, we must

also reduce the sharpness of each edge at each level of subdivision,
to conform to the intuitive notion that sharpness corresponds to
the number of levels of subdivision for which the edge is kept
sharp. The obvious solution is to reduce the per-edge sharpness
by 1 - if an edge e with sharpness s splits into e1 and e2, then
their sharpness is set to s− 1 each. [DeRose et al. 1998] however
propose to blend sharpness from neighboring edges while reducing
it at each level of subdivision, so that the disparity in the sharpness
of neighboring edges is reduced at each subdivision step. The
blending is done in a 3 : 1 ratio as indicated in Fig. 6.

Figure 6: Propagating edge sharpness at each subdivision step: In-
stead of simply reducing per-edge sharpness by 1, we blend sharp-
ness between adjacent edges in a 3:1 ratio, to reduce the sharpness
disparity between adjacent edges as we increase subdivision depth

4 Implementation

Our algorithm combining sharp features and Quad/Tri subdivision
was implemented in C++/OpenGL on a Visual Studio platform.
The Mesh data structure comprises a interconnected lists of the
following data structures:

Vertex{

float3 position, normal;

Face* startFace; //pointer to one Face

int index; //used for indexing with next level

float s; //sharpness, default = 0

}

Face{

FaceType type; //enum{Quad,Tri}

Vertex* v[4]; //pointer to vertices

Face* f[4]; //pointers to neighbor faces

int index; //used for indexing with next level

}

Edge{

Vertex* v[2]; //pointer to end points

float s; //user-specified sharpness, default = 0

}



Note that both the edge and vertex data structures store the
sharpness values. Out user-interface (discussed in the next Section)
allows users to edit edge sharpness - only edges with s > 0 are
pushed into the base mesh M0’s edge list when the system is
‘updated’.

The core algorithm is implemented in the sharpSubdivide
function which takes as input a fully connected mesh Mi, and
the output is a new, fully connected, subdivided mesh Mi+1. We
obviously start by calling sharpSubdivide with input M0. The
main steps in this function are listed below:

1 Copy all vertex positions pe from Mi, into Mi+1

2 For each face f in Mi

1 Insert 4 (NULL) faces in Mi+1

2 If f is a QUAD, insert a face center vertex into Mi+1

3 For each even vertex pe, search incident edges from Mi

1 If 2 edges with s > 0 found, compute and store psharp
e ,

and store pe.s = 0.5(s1 + s2)

2 If more than 2 edges with s > 0 found, set pe.s = −1,
indicating marked for no smoothing

4 Create a Map<edge> edges; for each edge e of each Face f

1 If e /∈ edges, insert new odd vertex po at edge midpoint

2 If e.s > 0; insert new edges into Mesh.edges, and set
sharpness according to Fig. 6

3 If 0 < e.s < 1 set po.s = e.s; if e.s > 1 set set
po.s = −1

5 Update new vertex->StartFace pointers

6 Update new texture coordinates by averaging from previous
Mesh

7 Update new texture coordinates by averaging from previous
Mesh

8 Update Face->f neighbor face pointers

9 Create list<float3> newPos; for each vertex p in Mi+1

1 If p.s = −1, store p in newPos and continue to next
vertex

2 If p.s = 0, smoothen and apply vertex correction and
store in newPos

3 If 0 < p.s < 1 blend between smooth and sharp posi-
tions and store in newPos

10 Copy position from newPos to the vertex list of Mi+1

11 Compute all vertex normals by adding adjacent face normals
and normalizing

The algorithm roughly consists of 3 parts. In the first part,
steps 1 through 4, the new mesh Mi+1 is created as per the
Stam-Loop linear subdivision pass, and in addition vertices on
sharp edges or with incident sharp edges are processed. The
sharpness values of the odd and even vertices are also set if they
were subdivided with s < 1, to be used later for blending between
sharp and smooth. Particularly interesting is step 4, where we
create a C++ Map of edges, which allows us to rapidly loop
though each edge of each face and check if the edge was previously
encountered, thus enabling us to efficiently create new odd vertices.

The second part, steps 5 through 8, essentially establishes
connectivity in Mi+1 as required by the vertex, face and edge data
structures described earlier in this section.

Finally, in the last part, steps 9 and 10 apply the Stam-Loop
smoothing pass as in Sec.2.1 and the vertex correction step of
Sec.2.2. The new positions must be stored in a separate temporary
list to avoid overwriting the old positions before all positions
are recomputed. At this stage, if any vertices were marked with
sharpness 0 < s < 1, the blending step must be performed. The
last step finally computed all vertex normals to be used for Gourard
shading of the mesh.

5 Results

In Fig 1 we demonstrate the great degree of control our sharp sub-
division algorithm provides. The base mesh consists of both quads
and tris, and setting different sets of sharpness values produces dif-
ferent results as desired.

Our algorithm also produces smooth scalar field interpolation. It
is difficult to prove C1 continuity for our algorithm explicitly,
however the two base algorithms of [Stam and Loop 2003] and
[DeRose et al. 1998] have been shown to be C1 everywhere. We
observed no issues with texture coordinate interpolation for a vari-
ety of cases and this can be taken as an indication of C1 continuity.
One example with a smooth texture is shown in Fig 7.

Our algorithm can trivially handle meshes with only quads, as
shown in Fig 8 (a) and (b), and only tris, as in Fig 8(c) and (d). The
second case also has a base mesh with a large number of triangles.
This can be slow to initialize but it may be possible to speed up the
algorithm with appropriate multi-threaded or GPU optimization.

5.1 Graphical User Interface (GUI)

An important contribution of this project is the user interface or
GUI which allows the user to interactively edit edge sharpness and
test the results on arbitrary manifold and water-tight meshes. It was
designed on top of the open-source OpenGL User Interface Library
GLUI [Rademacher 2008]. The interface, as shown in Fig 9, has
a main display area which shows the base mesh M0 in wireframe
only, as a cage around the level-5 subdivided mesh M5, which is
Gourard shaded and can be textured. The user can hide either mesh
to focus on the other. All the function are provided in two panels
at the bottom and right of the main display area. In brief, these
functions are:

• Loading meshes in standard OBJ format

• Clicking on the base mesh edges and editing sharpness

• Updating the subdivided mesh edges and editing sharpness

• Loading .RAW texture files if the base mesh was provided
with texture coordinates

• Camera rotation, translation and zoom

• Adjustable lighting: both direction and color

• Saving the current view of the display area as a .RAW image

6 Key Challenges

One of the key challenges of this project was handling quads and
tris separately for each face operation. The issue is non-trivial be-



(a) (b) (c) (d)

0

1

2

3

4

5

(e)

Figure 7: (a) An example of a simple mesh with a textured subdivision surface (b) With sharp edges our alogrithm still keeps the textures
smooth across edges, (c) and (d) show another example of a textured subdivision surface. In (e) we show the color code used for indicating
edge sharpness in all figures in this report and in our User Interface

Figure 9: Our user-interface affords great interactivity with the algorithm. The horizontal panel on the bottom controls the camera and light
directions, the vertical panel on the right provides buttons to load a new Mesh, edit sharpness of selected edges, update the mesh with the
new sharp edges, load texture files. and save images.



(a) (b)

(c) (d)

Figure 8: Our method can handle a quad-only mesh as shown in (a)
and produces clean, pleasing subdivision surfaces, also including
sharpness as in (b). Similarly, (c) shows the subdivision of a coarse
but still complex triangle-only mesh of the armadillo, and (d) shows
the same mesh as (c) but with the base mesh wireframe hidden

cuase a quad on subdivision introduces a new vertex at the face
center while a triangle does not. Another challenge was streamling
a 1-pass sharp Catmull-Clark subdivision algorithm with a 2-pass
quad/tri subdivision algotihm. This was described in detail in Sec-
tion 4.

7 Conclusion and Future Work

We mention a few future developments that this work could benefit
from. We would like to do a curvature analysis of our subdivision
surfaces to verify if sharpness affects curvature continuity of the
neighboring mesh. However, computing accurate curvatures from
polygonal meshes is a challenging problem in itself. We would also
have liked to handle meshes with boundaries, that is, meshes that
are not closed or water-tight. This is a relatively straightforward
extension.

In conclusion, we demonstrated an algorithm to subdivide
quad/tri meshes with sharp features. We also designed a user-
friendly GUI for interactively editing edge sharpness. The source
code is available online fro free non-commerical use [Mehta 2012]
and we hope the tool to have practical utility to artists, hobbyists
and professional designers or modelers.

8 Acknowledgements

The author would like to thank the course instructor Prof. Carlo
Sequin for his valuable guidance and feedback.

References

CATMULL, E., AND CLARK, J. 1978. Recursively generated b-
spline surfaces on arbitrary topological meshes. Computer-Aided
Design 10, 6, 350 – 355.

DEROSE, T., KASS, M., AND TRUONG, T. 1998. Subdivision sur-
faces in character animation. In Proceedings of the 25th annual
conference on Computer graphics and interactive techniques,
ACM, New York, NY, USA, SIGGRAPH ’98, 85–94.

DOO, D., AND SABIN, M. 1978. Behaviour of recursive division
surfaces near extraordinary points. Computer-Aided Design 10,
6, 356 – 360.

HOPPE, H., DEROSE, T., DUCHAMP, T., HALSTEAD, M., JIN,
H., MCDONALD, J., SCHWEITZER, J., AND STUETZLE, W.
1994. Piecewise smooth surface reconstruction. In Proceedings
of the 21st annual conference on Computer graphics and inter-
active techniques, ACM, New York, NY, USA, SIGGRAPH ’94,
295–302.

JIANG, Q., LI, B., AND ZHU, W. 2009. Interpolatory
quad/triangle subdivision schemes for surface design. Comput.
Aided Geom. Des. 26, 8 (Nov.), 904–922.

LOOP, C. 1987. Smooth Subdivision Surfaces Based on Triangles.
Master’s thesis, University of Utah.

MEHTA, S. U., 2012. Quad/tri sub-
division with semi-sharp features.
http://www.eecs.berkeley.edu/˜sohamum/QTS_Subdiv.
[Online; accessed Dec-2012].

RADEMACHER, P., 2008. Glui user interface library.
http://www.cs.unc.edu/˜rademach/glui. [Online;
accessed Dec-2012].

REIF, U. 1995. A unified approach to subdivision algorithms near
extraordinary vertices. Computer Aided Geometric Design 12,
2, 153 – 174.

SCHAEFER, S., AND WARREN, J. 2005. On c2 triangle/quad sub-
division. ACM Trans. Graph. 24, 1 (Jan.), 28–36.

STAM, J., AND LOOP, C. 2003. Quad/triangle subdivision. Com-
puter Graphics Forum 22, 1, 79–85.


