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Abstract

We use various nonlinear partial differential equations to efficiently solve several surface modelling problems,
including surface blendingy-sided hole filling and free-form surface fitting. The nonlinear equations used in-
clude two second order flows, two fourth order flows and two sixth order flows. These nonlinear equations are
discretized based on discrete differential geometry operators. The proposed approach is simple, efficient and gives
very desirable results, for a range of surface models, possibly having sharp creases and corners.
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1. Introduction

We use various partial differential equations (PDE) to solve several surface modelling problems. The
PDEs we use include the mean curvature flow, the averaged mean curvature flow, two fourth order (sur-
face diffusion flow and quasi surface diffusion flow) and even higher order flows. All these equations are
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nonlinear and the geometry is intrinsic, i.e., the PDEs do not depend upon any particular parameteriza-
tion. The problems we solve include surface blendiMgsided hole filling and free-form surface fitting
with high order boundary continuity.

For the problems of surface blending aNdsided hole filling, we are given triangular surface meshes
of the surrounding area. Triangular surface patches need to be constructed to fill the openings enclosed b
the surrounding surface mesh and interpolate the hole boundary with some specified order of continuity.
For the free-form surface fitting problem, we are possibly given a set of points, or a wire frame of curves
that defines an outline of the desired shape, or even some surface patches. We construct a surface whi
interpolates the points or curves or the boundaries of the patches with specified order of continuity. The
free-form surface fitting problem is the most general, including the surface blendiny -@ided hole
filling problems, as its special cases.

Our twofold strategy for solving these problems is as follows: First we construct an initial triangu-
lar surface mesh (“filler”) using any of a number of automatic or semi-automatic free-form modelling
techniques (see (Bajaj and Ihm, 1992; Bajaj et al., 1993; Greiner, 1994; Peters and Wittman, 1996;
Xu et al., 2001)). One may also interactively edit this “filler” to meet the weak assumptions for an ini-
tial solution shape. This “filler” may be bumpy or noisy, and in general this “filler” does not satisfy the
smoothness boundary conditions, though it may roughly characterize the shape of the surface to be con
structed. Second we deform the initial mesh by solving a suitable flow PDE. Unlike most of the previous
free-form modelling technigues, our approach solves high-order boundary continuity constraints without
any prior estimation of normals or derivative jets along the boundary. The solution of the PDE is time
dependent. We consider two possibilities for the time span of the evolution. One is a short time evolution,
where we require the solution to respect to the initial shape or geometry (see Fig. 7). The other is a long
time evolution, where the initial filler provides a topological structure, and what we look for is a stable
solution state of the flow (see Figs. 1 and 4). In this paper, we focus our attention on these twofold solu-
tions of PDEs with boundary continuity constraints, rather than the construction of initial filler mesh. In
Section 3.4, we present automatic approaches for constructing the initial filler mesh, and our preferred
choice.

Previous work. Earlier research on using PDEs to handle surface modelling problems trace back to
Bloor et al.’s papers at the end of the 1980s (Bloor and Wilson, 1989, 1990). The basic idea of these

Fig. 1. (a) shows a head mesh with a hole around the nose. (b) shows an initial filler construction of the nose with a piece of
minimal surface. (c) the filler surface, after 30 iteration, generated using fourth orderflev2 {n (2.9)) with time step size
0.0002. (d) the filler surface, after 20 iteration, generated using sixth order&lexs(in (2.9)) with time step size.00002.
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papers is the use of biharmonic equations on a rectangular domain to solve the blending and hole filling
problems. One of the advantages of using the biharmonic equation is that it is linear, and therefore
easier to solve. However, the equation is not geometry intrinsic and the solution of the equation (the
geometry of the surface) depends on the concrete parameterization used. Furthermore, these methods ar
inappropriate to model surfaces with arbitrary shaped boundaries.

The evolution technique, based on the heat equaljpn— Ap = 0, has been extensively used
in the area of image processing (see (Preuer and Rumpf, 1999; Weickert, 1998). In (Weickert,
1998), there are 453 relevant references listed), whieris a 2D Laplace operator. This was ex-
tended lately to smoothing or fairing noisy surfaces (see (Clarenz et al., 2000; Desbrun et al., 1999;
Meyer et al., 2002)). For a surfagée, the counterpart of the Laplacianis the Laplace—Beltrami opera-
tor A o¢ (see (do Carmo, 1992)). One then obtains the geometric diffusion eqagtienA »,p = 0 for a
surface poinp(¢) on the surface\ (). Taubin (1995) discussed the discretized operator of the Laplacian
and related approaches in the context of generalized frequencies on meshes. Kobbelt (1996) considerec
discrete approximations of the Laplacian in the construction of fair interpolatory subdivision schemes.
This work was extended in (Kobbelt et al., 1998) to arbitrary connectivity for purposes of multi-resolution
interactive editing. Desbrun et al. (1999) used an implicit discretization of geometric diffusion to obtain
a strongly stable numerical smoothing scheme. The same strategy of discretization is also adopted and
analyzed by Deckelnick and Dziuk (2002) with the conclusion that this scheumnedaditionally stable.

Clarenz et al. (2000) introduced anisotropic geometric diffusion to enhance features while smoothing.
Ohtake et al. (2000) combined an inner fairness mechanism in their fairing process to increase the mesh
regularity. Bajaj and Xu (2003) smooth both surfaces and functions on surfaces? israooth function

space defined by the limit of triangular subdivision surfaces (quartic Box splines). Similar to the surface
diffusion using the Laplacian, a more general class of PDE based methodsficalisal face techniques

have been developed which simulate different kinds of flows on surfaces (see (Westermann et al., 2000)
for references) using the equatiagn — V (p, r) = 0, whereV (p, ¢) represents the instantaneous station-

ary velocity field.

Level set methods were also used in surface fairing and surface reconstruction (see (Bajaj et al., 2003;
Bertalmio et al., 2000; Chopp and Sethian, 1999; Museth et al., 2002; Osher and Fedkiw, 2000; Whitaker
and Breen, 1998; Zhao et al., 2000)). In these methods, surfaces are formulated as iso-surfaces (level
surfaces) of 3D functions, which are usually defined from the signed distance over Cartesian grids of
a volume. An evolution PDE on the volume governs the behavior of the level surface. These level-
set methods have several attractive features including, ease of implementation, arbitrary topology (see
(Breen and Whitaker, 2001)) and a growing body of theoretical results. Often, fine surface structures
are not captured by level sets, although it is possible to use adaptive (see (Preuf3er and Rumpf, 1999))
and triangulated grids as well as Hermite data (see (Kobbelt et al., 2001)). To reduce the computational
complexity, Bertalmio et al. (2000) solve the PDE in a narrow band for deforming vectorial functions on
surfaces (with a fixed surface represented by the level surface).

Recently, surface diffusion flow has been used to solve the surface blending problem and free-form
surface fitting problem (Schneider and Kobbelt, 2000; Schneider and Kobbelt, 2001). In (Schneider and
Kobbelt, 2000), fair meshes witt* conditions are created in the special case where the meshes are
assumed to have subdivision connectivity. In this paper, local surface parameterization is still used to
estimate the surface curvatures. The later paper (Schneider and Kobbelt, 2001) uses the same equatiol
for smoothing meshes while satisfyirg' boundary conditions. Outer fairness (the smoothness in the
classical sense) and inner fairness (the regularity of the vertex distribution) criteria are used in their fairing
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process. The finite element method is used by Clarenz et al. (2004) to solve the Willmore flow equation,
based on a new variational formulation of the flow, for the aim of surface restoration. Willmore flow is
also used to smooth triangular mesh in (Yoshizawa and Belyaev, 2002).

Main results. We use second order flows (mean curvature flow and averaged mean curvature flow) for
G° continuity, fourth order flows foG* continuity and sixth order flows fof? continuity in each of
several surface modelling problems. The proposed approach is simple and easy to implement. It is gen:
eral, solves several surface modelling problems in the same manner, and gives very desirable results for
range of complicated free-form surface models, possibly having sharp features and corners. Furthermore
it avoids the estimation of normals or tangents or curvatures on the boundaries.

The rest of the paper is organized as follows: Section 2 describes several nonlinear PDEs used in this
paper. In Section 3, we give details of the discretization and the numerical computation for the solutions
of the PDEs. Examples to illustrate the different effects achievable from the solution of the PDEs are
given in Section 4.

2. Partial differential equation models

Let M be a smooth surface ande M be the surface point. The general form of the geometric flows

we consider is in the following form (see (Westermann et al., 2000))

ap

-~ = V ,t )

" (p, 1)
whereV (p, t) € R3 represents a velocity field. We shall focus our attention on using two classes velocity
fields, one is curvature driven velocity field in the normal direction, the other is the higher order Laplace—
Beltrami operators acting on surface paojnt

2.1. Geometric partial differential equations

We now describe several geometric PDE models we use in this paper. More details on the existence an
uniqueness of the solutions, the numerical computations of the solutions and evolution behaviors can be
found in a series of papers by Mayer, Simonett, Escher (Escher et al., 1998; Escher and Simonett, 1998
Simonett, 2001) and Huiskens’ (1987) paper. Mt be a compact closed immersed orientable surface
in R3. A curvature driven geometric evolution consists of finding a fanuly((r): ¢ > 0} of smooth
closed immersed orientable surface®ihwhich evolve according to the flow equation

ap

rYi N(p)Vu(k, k2, p),  M(0) = Mo. (2.1)
Herep(t) is a surface point oM (z), V, (k1, ko, p) denotes the normal velocity @¢#1(¢), which depends
on the principal curvaturek,, k, of M(t), N(p) stands for the unit normal of the surfacedt). In
this paper we identify the surface poiptand surface normaV (p) as 3x 1 matrices (column vectors).
Hence, the arithmetic operations of these quantities are regarded matrix operations. The product of &
scalara € R and a matrixM is written as eithea M or Ma.
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Let A(r) denote the area oM (), V(¢) denote the volume of the region enclosed/bi(¢). Then it
has been shown that (see (Willmore, 1993, Theorem 4))

dA(r) dav@e)
- f V, H do, . / V, do, (2.2)
M(t) M)

whereH = %(kl + kp) is the mean curvature o¥1(z).

2.1.1. Mean curvature flow (see (Dziuk, 1991; White, 2002))

TakingV, =—H = ——(k1 + k2) in (2.1), we obtain the mean curvature flow PDE:
ap
o =—N(p)H(p), MO = M,. (2.3)
It follows from (2.2) that
dA
(t) / H2do. (2.4)
M)

(2.4) implies that the mean curvature flow is area reducing.

2.1.2. Averaged mean curvature flow (see (Escher and Simonett, 1998; Huiskens, 1987; Sapiro, 2001))

In (2.1), if we takeV,, = h(t) — H(t), whereh(t) = fM(t) Hdo/ me do, then we have the averaged
mean curvature flow PDE:
ap
5 = N[ = H(p)], M) =Mo. (2.5)
The existence proof of the global solutions to this flow can be found in Huiskens’ (1987) paper. It follows
from (2.2) that

dA(t)

/(hH Hz)da—/[hH—Hz h(h— H)]d f(h H)?do <0, (2.6)
M(t) M(1) M(t)

since obviouslyf,,, A(h— H) = h(h [,,,, do — [,,,, Hdo) = 0. Onthe other hand, the second equation
of (2.2) implies that

d‘(;t(t):h(t)/ do — / Hdo =0,
M) M(1)

Hence the averaged mean curvature flow is volume preserving and area shrinking. The area shrinking
stops ifH = h.

2.1.3. Surface diffusion flow (see (Schneider and Kobbelt, 2001))
If we takeV,, = AH, we get the so-called surface diffusion flow PDE:

0
a—f = N(p)AH(p), M(0)= Mo, 2.7)
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where A := A, is Laplace—Beltrami operator which acts on functions defined on sufd@g. The
existence and uniqueness of solutions for this flow is given in (Escher et al., 1998). From (2.2) and
Green'’s formula we have

d
EA(t): f AHHdo = — / IVH|?>do <0,

M) M)

%V(l‘) = f div(VH)do = — f VHV(1)do =0,
M(t) M)

whereV stands for the (tangential) gradient operator (see (do Carmo, 1976, pp. 101-102)) acting on
differential functions defined on the surfagd. Hence, the surface diffusion flow is area shrinking, but
volume preserving. The area stops shrinking when the gradidifitiszero. That isM is a surface with
constant mean curvature.

2.1.4. Higher order geometric flows
0
a_lt’ = (—DMIN(p)AFH(p), M(0) = Mo. (2.8)

Using Green formula, we have

/ A*H do = / AATH)do = / V(AM1H)V(1)do = 0.
M(1) M) M)
Hence, the flow (2.8) is volume preservingif= 1 from the second equation of (2.2).

Remark 2.1. We should note that the area/volume preserving/shrinking properties for the flows men-
tioned above are valid for closed surfaces. In our application of these flows, these properties may not
be true since the surfaces always have fixed boundaries. For a open surface with fix boundary, the vol-
ume V(¢) could be defined as the directional volume betwgadii0) and M (z). It is easy to see that

the volume preserving property for the averaged mean curvature flow is still valid. But for the higher
order flow (2.8) k > 1), this property is no longer valid, because a term related to the boundary does not
vanish when Green’s formula is used. For our modelling problems, volume preservation is not a desirable
property (see Figs. 1 and 4).

Remark 2.2. In (Schneider and Kobbelt, 2001), Schneider and Kobbelt use elliptic equétiom H (p)

=0, while we use several time dependent parabolic type equations. In our approach, we have a progres
sive process starting from an initial value, so that a family of solutions is obtained. Such an approach is
very desirable if the initial value is an approximation of the required solution.

2.2. Quas geometric partial differential equations

Now we generalize the heat equation on a surface to the following higher order flows:

2_1; = (—DMA p, M@O)=Mo, k>0 (2.9)
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SinceAp = —2H (x)N(p), it is easy to see that (2.9) is the mean curvature flow whenl (up to a
factor 2). But sincé AXH)N # A*(HN) in general, (2.9) is different from the flow (2.8). To distinguish
the difference between (2.8) and (2.9), we call (2.9) as a quasi geometric PDE.

The experiments conducted in this paper show that flows (2.9) sometimes behave better than the geo-
metric flows mentioned above for our geometry modelling problems. However, the theoretical analysis
on the existence and stability of their solutions is currently unavailable.

3. Solution of the PDEs

There are basically two classes of approaches for solving a PDE on any domain. One approach is based
on finite divided differences, the other is based on finite elements (see (Bajaj and Xu, 2003; Clarenz
et al., 2004; Deckelnick and Dziuk, 2002)). The approach we adopt in this paper is based on finite
divided differences. Since we are dealing with differential equations over 2-manifdikfs the classical
finite divided differences will be replaced by discretized differential geometric operators over surfaces.
Section 3.1 deals with discretized geometric differential operators. Next in Section 3.2 we detail how the
boundary conditions are respected. Discretizations of the PDEs in the spatial direction are described in
Sections 3.3 and 3.4. Semi-implicit discretization in the time domain is considered in Section 3.5. Other
issues, such as mesh regularization and initial mesh construction, are addressed in Section 3.6.

3.1. Discretized Laplace-Beltrami operator

One of the fundamental problems in solving our PDEs is the discretization of the Laplace—Beltrami
operator. On a triangular surface mesh, several discretized approximations of the operator have been
proposed (see (Desbrun et al., 1999; Guskov et al., 1999; Taubin, 2000; Xu, 2004b)). In this paper we
adopt the discretization developed by Meyer et al. in (Meyer et al., 2002). A comparative research about
the various discretized Laplace—Beltrami operators is conducted in (Xu, 2004a). It has been shown that
the scheme of Meyer et al.’s is better for discretizing our PDESs fLis¢ a smooth function on a surface,
thenAf is approximated over a triangular me&hby

ta; + COtB;;
Af(p)~ > IR i)y~ rip], (3.2)

Ap(pi) jeN1 (D)

where N1(i) is the index set of 1-ring of neighbor vertices of vertgx «;; and g;; are the triangle
angles shown in Fig. 2 (lefth y (p;) is the area for vertey; as shown in Fig. 2 (right), wheig is the
circumcenter point for the triangle;_1p; p;] if the triangle is non-obtuse. If the triangle is obtuge,
is chosen to be the midpoint of the edge opposite to the obtuse angle./nee—2H (p)N(p) (see
(Willmore, 1993, p. 151)), we have

Z COtOll'j + COt,Bij

(Ap) p=p; = —2H (p;)N (p;) ~ >

(pj — pi)- (3.2)

Au(pi) P

This gives an approximation of the mean curvature normal (see (Meyer et al., 2002)). The higher order
Laplace—Beltrami operators are discretized recursively as

Ak D=A Ak-1 D= COtO(ij +C0t,3,'j
F(pi) ( Hpi) yWTSE —

JEN1(@)

(A f(p) — AT F(p)]  (3.3)
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hole

"outer" mesh

Fig. 3. Left: The involved vertices of the “outer” mesh fot5& boundary condition. The “outer” mesh is just the boundary of
the hole. Middle: The involved vertices of the “outer” mesh fat& boundary condition. Right: The involved vertices of the
“outer” mesh for aG2 boundary condition.

with A%f(p;) = f(pi). Note thatA¥ £ (p,) involves function values on f&ring of neighboring vertices
of Di-

3.2. Handling of boundary conditions

3.2.1. Natural boundary conditions for blending and hole filling
By the natural boundary conditions, we mean that no continuity conditions are specified at the bound-
ary points, but the continuity is implied by the “outer” mesh incident to the boundary of the hole (see
Fig. 3). Such atreatment for boundary condition is suitable for both the blending problem aveitied
hole filling problem, since the “outer” mesh always exists in such problems.
Let g; be the order of continuity at a boundary pomt ¢ = maxg;. Then we can use the ordeg 2
flow ?TI; = (=1)¢**A8H(p)N(p) for constructing the triangular surface patch wi continuity at
the boundary vertey,. A H is discretized recursivelyA® H = A(A$~1H). At a boundary vertey;,
A*H (p;) is evaluated according to the following rule:

Evaluation rule at boundary. AH (p;) is evaluated recursively by formulas (3.6) and (3.7)if k < g;,
otherwise A*H (p;) is set to zero and the recursion stops.



G. Xu et al. / Computer Aided Geometric Design 23 (2006) 125-145 133

Note that even for an inner vertgx, the recursive definition may make' H (p;) involve the evalua-
tion of a lower order Laplace—Beltrami operator on the boundary. In general, the recursive evaluation of
A*H (p;) at p; (for p; either being an inner or an outer vertex) involvgst 1)-ring neighbor vertices
of p;. Some of them may be inner vertices, and the remaining are outer vertices. The inner vertices are
treated as unknowns in the discretized equations and the outers are incorporated into the right-hand side.

3.2.2. Natural boundary conditions for free-form surfacefilling

In the free-form surface filling problem, we are given a wireframe of curves (edges) and we wish to
flesh the wireframe with surface patches that contain the curves as boundary with pre-specified order
of continuity. At each of the intersection points of the patches, an order of continuity is pre-specified
and the evaluation rule mentioned above is applied. For each inner point, a discretized linear equation is
generated using the operator discretization (3.7). These linear equations for different patches are collected
together and solved simultaneously. Note that one linear equation may involve inner vertices of several
patches. However, if the continuity order at each boundary point is zero, any equation corresponding to
an inner vertex does not involve inner vertices of other patches.

Remark 3.1. Schneider and Kobbelt (2001) use Moreton and Sequin’s least square fitting of the second
fundamental form relative to a local parameterization to estimate the required data on the boundary. These
estimations of the boundary derivative data are based on incomplete information. Hence, the estimated
data maybe not reliable. Our approach is based on the idehfity = —2H (p) N(p). Hence, we do

not need to estimate boundary derivative data, such as normals, tangents or curvatures. Furthermore, the
boundary conditions are treated in the same way for equations with different orders.

3.3. Spatial discretization of quasi geometric flows

Let us consider first the discretization of (2.9) in the spatial directionkfer 1,2, 3. Let P =

(p1, .o pmlT € R™3 AP =[Ap1, ..., Ap,]T € R™*3, whereps, ..., p, are all the unknown vertices
to be determined in each of our modelling problems. Then (3.2) could be written in matrix form:
AP =—(DW)P + BY, (3.4)
- l l - - . m .
whereD =diad 577. .. ., 757,51 is @ diagonal matrixyV = {w;;};";_; with
ZkENl(i) Cota;, + cotBy, =/,
w;j = —(Cotw;; + COtp;;), i #J, i € N1i(j), j € N1(i),
0, otherwise

Furthermore)V is a sparse, symmetric and positive definite matrix (see (Schneider and Kobbelt, 2001)).
The constant ternB™® e R"*3 is obtained from the boundary conditions. It follows from (3.4) that

A2P = (DWDW)P + B®, (3.5)

whereB® e R™*3 is obtained from the boundary conditions. AgaifD)V is a sparse, symmetric and
positive definite matrix. In general,

AP = (=D OW) P + B,

and the matrix foD~1(DW)* is also sparse, symmetric and positive definite.



134 G. Xu et al. / Computer Aided Geometric Design 23 (2006) 125-145

3.4. atial direction discretization of geometric flows

Let
Z Cota;x+CotBix L.
keNi(@) ~ 2am(p 0 LT
R cota; j+cotp;; . .o . . .
Wij = —ZAIT]WJ, i #j, i € N1(j), j € Ni(D),
0, otherwise

andN (i) = N1(i) U {i}. Then we have

1
NOH(p) X5 ) oiipj. (3.6)
JEN()

The higher order Laplace—Beltrami operators actingdoare discretized recursively as

AYH(p)) = AT HY (py ~ = Y oy ATHH(p)) (3.7)
JEN()
with
1
AH(p)=H(p) ~5 Y oiN(p)" pj. (3.8)
JEN(D)

Note thatA* H (p;) involves values of the mean curvature ok-eng of neighboring vertices of;.
Using (3.6)—(3.8) and the evaluation rule at the boundary, we can W(itg) Ak H (p;) as the follow-
ing form:
N(p)AH(p) ~ (=D Y "o p;+BY. o) eR>®, B eR®,
Jj€Jo

where Jy is the index set of the (unknown) vertices to be determimiéﬁ,comes from boundary condi-
tion. To be more specific, let denote the index set of the mesh J; be the union of/y and the index
set of the boundary vertices whe®é condition is specified. Then

1 1 1
N(pi)H(p)) ~ > Z @ijpj =3 Z @ijPj+ 5 Z wijpj
JENG) JEN@NJo JENON{I\Jo}
=2 o' pi+ B, (3.9)
Jjeldo

whereo = 3o I3 for j € N(i) N Jo, o), = 0 otherwise B =1 3. 1oy @i P - Similarly,

N(p)AH(p)~—N(p) Y wiy;H(p)==N(p;) Y w;H(p))

JEN@) JjeN(i)NJy
=—N(p) Y w;N(p)"Npj)H(p;))
JjeN(i)NJy

S @,»zv(pi)N(pj)T[Zmﬁ)pk + BEO)]

JeEN@)NJ1 kelJo
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=—> oy'p+ B, (3.10)
Jj€Jo
N(p)A?H(pi)~—N(pi) Y wjAH(p)==N(p) Y wi;AH(p))
jeN() jeN@HNJ,

~ N(pi) Z wjj Z wjiH(pr)

jeN@HNL  keN()HNA

Z Z w;; ik N(p)N (pr)” [Z ml(c?)P + B;EO)]
JeN(i)NJ2keN(j)NJy leldo
=Y op;+B?. (3.11)
Jj€Jo
(3.9)—(3.11) are used to discretize the right-handed side of (2.8) 00, 1, 2. The discretization of
N(pj)A*H (p;) for k > 2 is recursively calculated using (3.7) and boundary conditions.

3.5. Time discretization

Given an approximate soluticfp\'}”, of the order 2 PDE atz, for all the inner vertices, we con-
struct an approximate soluti(mrl.("“)};":1 for the next time step, .1 =1, + t™ by using a semi-implicit

Euler scheme. That is, we replace the derivaﬁ}?ewith [p(thr1) — p(t,)]1/T™, and the quantities

w;; in (3.4), w;; and N(p;) in (3.6)—(3.8),A(¢) in (2.5) are computed using the previous result at

t,. Normals N (p;) are computed from Loop’s subdivision surface (see (Bajaj and Xu, 2003) for de-
tail). Such a treatment yields a linear system of equations with the inner vertices as unknowns. Let

POHD = [(pUTHT L (ptDT]T e R3™. The linear system for the geometric flows can be written as
the matrix form
[1+PWOprD =0 W =P}, BYeR. (3.12)

The matrix)V® e R3"*3" is highly sparse, hence an iterative method for solving such a linear system
is desirable. We use Saad’s iterative method (Saad, 2000), named GMRES, to solve the system. The
experiment shows that this iterative method works very well.

Let POtD = [pi"*tD | ptD]T ¢ Rmx3 The linear system for the flows (2.9) can be written as the
matrix form
[1+ " @OW)H P+ =B®, or whprtd =p-ip® (3.13)

where B® ¢ R"<3, W® = D=1 4 tMW(DW)k e R™" is a highly sparse, symmetric and positive
definite matrix, and hence we use a conjugate gradient iterative method with diagonal preconditioning to
solve the system.

Note that for the same size problem, the size of coefficient matrix in (3.12) is three times larger than
that of coefficient matrix in (3.13). Furthermore, the matx® in (3.13) is symmetric and positive
definite. The matrix in (3.12) is not. We also note that the discretization of (2.9) does not involve the
computation of the surface normals.

Remark 3.2. It is well known that the condition of the linear system arising from the proposed semi-
implicit discretization behaves like @+ t™h~%), whereh is the minimal edge length of the mesh.
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Hence, if the mesh to be evolved is very irregular, the resulting system will be ill-conditioned. In such a
case, a small time step size is required to make an iterative solver converge. Such a problem is relieved b
the mesh regularization treatment (see Section 3.6). On the other hand, more advanced iterative methoc
such as multi-grid techniques based on a hierarchical mesh representation (see (Lang, 2001)) or algebrai
multi-grid techniques, could be used to accelerate the iteration process. In the current implementation,
these techniques are not incorporated.

Upper-bound of time step. It is known that several surface evolutions (e.g., the mean curvature flow
(see (Dziuk, 1991; White, 2002)) and the surface diffusion flow (see (Bansch et al., 2002))) may develop
singularities. For our geometric modelling problems, suppose we have a topologically correct initial
surface mesh construction and we look for solutions that have the same topology as the initial mesh.
Hence, we require that our solution is within the time period in that no singularity occurs. Therefore, we
shall determine the time stepy so thatr, should not go beyond the time moment when the singularity
occurs. LetL(p!", M(1,)) be the spatial discretization of(p, r) at vertexp™ over the meshv (z,).

Then from the approximate equality

[P = p® | =™ | L(p™, M)

and the requirement

1
(n+1) (n) ; (n) (n)
. —p"| <= min Y _ p 3.14
||pl Pi H\ZjeNl(i)”p] Di ” ( )
we determine an upper-bound fot’ as follows
: ) (n)
1 (Mminjemollp; —pi |l
™ < B,:== min { /< 1(1(21) / d .
IL(p;, M (1))l

2 1<i<m
Requirement (3.14) guarantees that no vertex-collision happens. When the singularity is nearly to occur,

the upper-bound, will approach to zero. Hence the evolution cannot move beyond the singular point
for time.

Remark 3.3. When the singularity is nearly to occur, the upper-boundwill approach to zero. This
will be a very low efficiency process. So a threshold vadgishould be put on the minima,. If the
determinedB,, is smaller than the threshold value, we terminate the evolution process (see (3.17)—(3.18)).

3.6. Other important issues

3.6.1. Mesh regularization

The surface motion by the geometric PDEs described in Section 2 may cause a very irregular (nonuni-
form) distribution of the mesh vertices. Hence, introducing a regularization mechanism in the evolution
process is necessary. Sirtbe tangential displacement does not influence the geometry of the deforma-
tion, just its parameterization (see (Epstein and Gage, 1987)), we also add a tangential displacement to
the motion. Hence, the general form of our geometric evolution problem could be written as

0
=V +Vi(pT(p). MO =Mo. (3.15)
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whereT (p) is a tangent direction at the surface pgintV;(p) is the tangential velocity. In the process
of numerical solution of Eq. (3.15),(p)T (p) is chosen as

Uo(p") — (Uo(p™), N(pI™))N (p") (3.16)

wherelo(p,") = AN Y iemay (S — p), N is the surface normal computed from the limit sur-

face of Loop’s subdivision. This discretization Bf(p)T (p) is very similar to the one given by Ohtake

et al. (2000), which ig(p™) — Uo(p™), N(p")Us(p\™). The difference is that our displacement is

in the tangent plane. In (3.1@)o(p") could be replaced bifo(p" ") to use as many of the new values

as possible, and still yield a linear system. However, such a treatment destroys the symmetric property of
the coefficient matrix. The tangential motion (3.16) is also used by Wood et al. (2000) and Ohtake et al.
(2001).

3.6.2. Sopping criteria
We need to determine the minimal iteration numbgso that the evolution procedure stops ats,.
The following two criteria are used

|M(t,) —M©)| >e1 or B, <eo (3.17)
| M(tui) = M@) | /7™ <e2 or By <eo (3.18)

wheree; are given control constants,, is the determined upper-bound fet”. Criterion (3.17) is for
short time evolution, where we requité(nt ™) nearM (0). Criterion (3.18) is for long time evolution,
where we are looking for a stable status of the solution. Condilipr: ¢ is imposed for avoiding
dead-loop around the singular point of time.

3.6.3. Construction of initial surface mesh

To provide an initial solution to the geometric evolution problem, we need to construct an initial
triangular surface mesh (“filler”) for each opening using any of a number of automatic or semi-automatic
free-form surface construction techniques (Bajaj and lhm, 1992; Bajaj et al., 1993; Davis et al., 2002;
Greiner, 1994, Peters and Wittman, 1996; Xu et al., 2001). One can also interactively edit this “filler” to
meet the weak assumptions for an initial solution shape.

Since the opening to be filled could be topologically complicated, we solve the problem in two steps.
In the first step we fit each opening by an implicit algebraic surface or spline which interpolates or
approximates the boundary data (Bajaj et al., 1993; Bajaj and Xu, 1994; Peters and Wittman, 1996). The
approach we used is the one developed by Bajaj et al. (1992, 1993, 1994). In this approach, the data to be
interpolated or approximated could be points or curves (even with normals). For ours, the boundary data
are always points. Of course, this approach may not guarantee to produce topologically correct surfaces.
If this happens, we break the opening into several parts by inserting a few curves (polygons) and then
repeat the surface fitting for each part until we achieve a reasonable shape for the “filler”.

After the algebraic surface is obtained, a triangulation step is employed. Since this triangulation should
be consistent with the boundary polygon of the opening, we adopted the expansion technique developed
in (Bajaj and Xu, 1994). Using this approach, we triangulate the surfaces starting from the boundary of
the opening.

Remark 3.4. Comparing with finite element approach, the finite difference approach described above
is easy to implement and it treats the equations with different orders in a uniform fashion. In the finite
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element approach, one has to make efforts to derive a variational form for each of the PDEs. For higher
order flows, hybrid method is used in general, such an approach will introduce much more unknowns,
and therefore the resulted linear system is much larger. For example, in order to use finite element methoc
(linear element) for the surface diffusion flow, Bénsch et al. (2002) split the PDE into a system of four
equations.

4. Compar ative examples

In this section, we give several examples to show how the PDEs are used to solve different problems
in a uniform fashion. We also compare the effects of flows (2.8) and (2.9). All the figures produced by
the fourth and sixth flows are generated using (2.9), except for the figures of the second row of Fig. 4
and third row of Fig. 6. These figures are produced using the flow (2.8). When we compare the effects
of (2.8) and (2.9), we use the same number of iterations but double time step size for (2.8) because the
factor 2 in the relatiom\p = —2HN.

4.1. Comparison of the flows

The first three figures of the first row of Fig. 4 show the long time evolution solutions of the mean
curvature flow, the fourth order flow, and the sixth order flow (2.9) for the input semi-sphere with an
initial construction of the opening, a triangulated disk. The mean curvature flow does not change the
disk. (b) and (c) are the results after 10 iterations with = 0.1 andz ™ = 0.001, respectively. Further
iterations do not have a significant change on the shape of the solution surface. The fourth and sixth orde
flows yield convex surfaces and the smoothness is clearly observed. Also notice that the sixth order flow

() (h) i j (k) (1)

Fig. 4. The first and second row show the results of (2.9) and (2.8), respectively. (a) (same as (g)) The input semi-sphere (left
part) with an initial planar triangulation of the disk opening. The mean curvature flow does not change the disk (initial mesh).
(b) The result of fourth order flow after 10 iteration with” = 0.1. (c) The result of the sixth order flow after 10 iteration

with 7 = 0.01. (d), (€) and (f) show three intermediate results of the sixth order flow#¥fth= 0.001, and 1, 6 and 10
iterations, respectively. (h) The result of the surface diffusion flow after 10 iterationsWith= 0.2. (i) The result of the sixth

order flow (2.8) after 10 iteration with™ = 0.02. (j), (k) and (I) show three intermediate results of the sixth order flow (2.8)

with 7@ =0.002, and 1, 6 and 10 iterations, respectively.
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Fig. 5. Comparison of different flowa\* representsRorder flow (2.9) is usedd M denote the averaged mean curvature flow.

The time step sizes for the second, fourth and sixth order flows are chosen to be 0.1, 0.0025, and 0.0000625, respectively. (c),
(e), (g) are the faired interpolating surface meshes after 6 iterations, where the continuities at the boundary curves are set to 0,
2 and 0, respectively. (d), (f), (h) are the mean curvature (MC) plots of (c), (e), (g), respectively.

recovers the sphere accurately. The last three figures show three intermediate results of the sixth order
flow. The second and third figures of the second row of Fig. 4 show the evolution solutions of the surface
diffusion flow and sixth order flows (2.8) for the input semi-sphere with an initial construction of the
opening. (h) and (i) are produced using the same number of iterations as (b) and (c), respectively, and
double time step sizes. Again, the last three figures show three intermediate results of the sixth order
flow. Comparing with the figures of the first row, the geometric flows change the surface shape in a much
slower rate.

Remark 4.1. We have pointed that the geometric flows (2.8) have volume preserving properties for a
closed surface. However, for an open surface with fixed boundary, the volume preserving properties are
not guaranteed. (h) and (i) show that the volume preserving property is not valid.

Fig. 5 shows the combined use of different flows. The aim of this toy example is to illustrate the
difference of these flows, especially the continuity on the patch boundaries. (a) shows four circles to be
interpolated. Two of the circles are in the-plane, the other two are in the-plane. (b) shows an initial
G° surface mesh constructed using (Bajaj and Ihm, 1992) with some additional noise added. (c), (e) and
(g) are the faired interpolating surfaces after 6 iterations using different combinations of the flows. The
time step sizes for the second, fourth and sixth order flows are chosen to be 0.1, 0.0025, and 0.0000625,
respectively. Since the higher order flows evolve faster than the lower order flows, we use smaller time
step sizes for higher order flows to obtain nearly the same surface evolution speed. Each of the meshes
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consists of four surface patches. The left two patches are in the reRions= {(x, y,z): x <0, y >0}

and R~ :={(x,y,2): x <0, y <0}, respectively, and generated by one type of flow. The right two
patches are in the regiom®™ := {(x,y,z): x >0, y >0} andR*™ :={(x,y,2): x >0, y <0},
respectively, and generated by a different flow. (d), (f) and (h) are the mean curvature plots of (c), (e) and
(9), respectively. The mean curvature at each vertex is computed by (3.2).

The aim of (c) is to show the difference between the mean curvature flow and the averaged mean
curvature flow, where the left part is generated by the averaged mean curvature flow and the right part
is produced by the mean curvature flow. The mean curvature flow shrinks the surface very fast while
the averaged mean curvature flow does not. Further evolution using the mean curvature flow will yield
a pinch-off of the surface. Therefore, if we model a surface patch using second order flows%ith
boundary condition, the averaged mean curvature flow is more desirable than the mean curvature flow.

The patches ilR~* and R~ of (e) are produced by the sixth order flow (2.9) (with= 3), while
the patches ik** and Rt~ are produced by the fourth order flow (2.9). As a whole, the surface looks
smooth, our curvature plot reveals the smoothness difference at the intersection curves, the sixth orde
flow gives a smoother result than the fourth order flow.

(g) is produced as (e), but the continuity order at the four circles are set to zero. B&goatinuity
is achieved there.

4.2. Surface blending

Given a collection surface mesh with boundaries, we construct a fair surface to blend the meshes
at the boundaries with specified geometric continuity. Fig. 6 shows the case, where three cylinders to be
blended are given (a) with an initiél® construction (b) using (Bajaj and Ihm, 1992) with some additional
noise added. The blending surfaces (c), (e) and (g) are the faired blending meshes generated using tf
flow (2.9) with k = 1, 2, 3, respectively. These figures show the results after 32, 32 and 60 iterations
with time step sizes .01, 0001, and 001, respectively. (d), (f) and (h) show the mean curvature
plots correspondingly. These figures clearly show the difference of smoothness achieved at blending
boundaries. The mean curvature flow givcontinuity results. The fourth order flow produces smooth
surfaces at boundaries. The sixth order flow produces even smoother surfaces as expected.

() and (k) are the faired blending meshes generated using the flow (2.8k with, 2, respectively.

These figures show the results after 32 and 60 iterations with time step €99@sahd 00002, respec-
tively. (j) and (I) show the mean curvature plots of (i) and (k), respectively. It should be noted that the
flows (2.9) generate little fatter surface than the flows (2.8).

4.3. N-sided holefilling

Given a surface mesh with a hole, we construct a fair surface to fill the hole with specified geometric
continuity on the boundary. Fig. 1 shows such an example, where a head mesh with a hole in the nose
subregion is given as input (a). An initigl® reconstruction of the nose is shown in (b) using (Bajaj
and lhm, 1992) and then evolved with the mean curvature flow. The blending surfaces ((c) and (d)) are
generated using the flow (2.9) with= 2 and 3, respectively. It should be observed that the sixth order
flow yields a better restoration surface. The head mesh with the hole in the nose subregion is available
from http://Isec.cc.ac.cn/~xuguo/xuguo2.htm.
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http://lsec.cc.ac.cn/~xuguo/xuguo2.htm
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Fig. 6. (a) shows three cylinders to be blended. (b) shows the initial construction. (c), (e) and (g) are the faired blending meshes
generated using the flow (2.9) with= 1, 2, 3, respectively. These figures show the results after 32, 32 and 60 iterations with
time step sizes.01, 0001, and MO001, respectively. (d), (f) and (h) show the mean curvature plots correspondingly. (i) and

(k) are the blending meshes generated using the flow (2.8)Akwtl, 2, respectively. These figures show the results after 32

and 60 iterations with time step size902 and 00002, respectively. (j) and (I) show the mean curvature plots of (i) and (k),
respectively.

4.4. Free-form surface construction

For the free-form surface fitting problem, we are given some curves, or partial patches, or points as in-
put, and we wish to construct a fair surface mesh to interpolate this multi-dimensional data. Fig. 7 shows
the approach of free-form surface construction, where some input curve&Withntinuity requirement
are given to preserve the sharp edges, and also given are some surface bands wahtauity require-
ment (see (a)). (b) shows an initial construction of @fesurface mesh using the patch filling scheme
(Xu et al., 2001) with added noise. (c) is the faired surfaces, after 12 iterations, generated using the flow
(2.9) withk = 2. The time step size is chosen to b8@L. (d), (e) and (f) are zoomed in views of (a), (b)
and (c), respectively.

Fig. 8 shows the free-form fitting approach from an input triangular mesh, where (a) shows the input
surface triangular mesh with @* continuity requirement at the vertices (see (a)). (b) shows an initial
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Fig. 7. Interpolating curves and patches: (a) shows some input curvesGRittontinuity requirement and some bands of
mesh withG1 continuity requirement. (b) shows an initial construction of the surface mesh. (c) is the faired surfaces, after 12
iterations, generated using the flow (2.9) witk= 2. The time step size is chosen to h&@l. (d), (e) and (f) are the zoom in
results of (a), (b) and (c), respectively.

construction of the surface mesh, where each input triangle is approximated with 16 sub-triangles. The
newly introduced vertices are treated as unknowns and the input vertices are fixed in the fairing process
(c) and (d) are the faired meshes, after 2 iterations with= 0.01, generated using the mean curvature
flow and the averaged mean curvature flow, respectively. (e) is the faired mesh by fourth order flow, after 2
iterations witht ™ = 0.001. (f) is the mean curvature plot of (e). The area shrinking of the mean curvature
flow makes the input vertices to be interpolated become thorns (see (c)), while the area shrinking and the
volume preservation of the averaged mean curvature flow make some of input vertices become thorns
and some others become pits (see (d)). However, the fourth order flow does not suffer from this problem
(see (e)). The obtained surface interpolates the input points and exdifo#isioothness everywhere as

well.

5. Conclusions

We have presented a general scheme for using PDEs to solve several surface modelling problem:
and with high order boundary continuity conditions. Our scheme has the following features: It produces
very fair and desirable solution surfaces. It is simple and easy to implement. Specifically, it solves the
free-form blending problem, th& -sided hole filling problem and free-form surface fitting problem in
a uniform fashion, and solves the high order boundary continuity problem in an easy and natural way
and avoids prior estimation of normals or derivative jets on the boundaries. The implementation results
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Fig. 8. Interpolating points: (a) shows some input points and their triangulation. (b) shows an initial construction of the surface
mesh. (c) and (d) are the faired surfaces, after 2 iterations #fth= 0.01, using the mean curvature flow and the averaged
mean curvature flow, respectively. () is faired surfaces, after 2 iterations With= 0.001, using the fourth order flow (2.9).

() is the mean curvature plot of (e).

show that our solution works well for a wide range of surface models. Note that'tloe higher order
continuity interpolatory surface blending solution produced by, e.g., (Bajaj and Ihm, 1992; Peters and
Wittman, 1996) for complicated corners, or holes with many boundary curve segments, are usually of
very high algebraic degree and thereby prone to be with unsuitable for certain applications. The current
solution of starting withG° low degree blends, coupled with higher order flow evolution, yields in general
a much better alternative for very smooth surface solutions.

Both the geometric flows and quasi geometric flows yield smooth surfaces at the boundaries. However,
guasi geometric flows (2.9) have some attractive features, including ease of implementation, smaller and
better behaved coefficient matrices and no requirement of derivatives (normal) estimation.
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