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Fig. 1. Exploded view of Boy’s Surface. Given a polygonal model of a mathematical surface (a), our system determines an explosion
axis based on detected object symmetries and analyzes the surface geometry to position cutting planes (b). The resulting exploded
view conveys the internal structure of the surface by exposing important cross-sections that contain key geometric features (c).

Abstract— We present a technique for visualizing complicated mathematical surfaces that is inspired by hand-designed topological
illustrations. Our approach generates exploded views that expose the internal structure of such a surface by partitioning it into parallel
slices, which are separated from each other along a single linear explosion axis. Our contributions include a set of simple, prescriptive
design rules for choosing an explosion axis and placing cutting planes, as well as automatic algorithms for applying these rules. First
we analyze the input shape to select the explosion axis based on the detected rotational and reflective symmetries of the input model.
We then partition the shape into slices that are designed to help viewers better understand how the shape of the surface and its
cross-sections vary along the explosion axis. Our algorithms work directly on triangle meshes, and do not depend on any specific
parameterization of the surface. We generate exploded views for a variety of mathematical surfaces using our system.

Index Terms—exploded view diagrams, mathematical visualization, symmetry

1 INTRODUCTION

Complicated 3D surfaces are the primary subjects of study in several
branches of mathematics, including most sub-fields of topology and
geometry. For example, geometers study a variety of 3D surfaces, as
well as 3D projections of higher dimensional surfaces, to understand
how they evolve and what properties remain invariant. One way to
characterize the overall shape and structure of such surfaces is to con-
sider both their global geometric properties, such as symmetries, as
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well as their local geometric features, such as self-intersections and
critical points, i.e., minima, maxima and saddle points. However,
many interesting mathematical surfaces twist, turn, and fold back on
themselves, creating self-occlusions that can make it difficult to see
these geometric features. Yet, seeing these geometric features is of-
ten crucial for understanding the overall shape and structure of the
object. For example, in Boy’s Surface, most of the interesting geomet-
ric features are hidden within the object, which makes it difficult to
understand its internal structure (see Figure 1).

As Francis notes in A Toplogical Picturebook [15], topologists and
geometers have a long history of creating mathematical illustrations to
help convey the shape and internal structure of complicated surfaces.
One technique for depicting such surfaces is to create an exploded view
by cutting the object into parallel slices and then separating the slices
from each other along a linear explosion axis (see Figure 2). Such ex-
ploded views expose cross-sections of the object and reveal its internal
features and structure. The cross-sections also help the viewer under-
stand how the shape of the surface varies along the explosion axis.
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Fig. 2. Hand-designed exploded view illustrations. These example ex-
ploded views exhibit a few common conventions. In the Whitney Bottle
illustration, the explosion axis lies in a plane of bilateral symmetry, and
the first two slices show changes in the number of self-intersections and
connected components of the cross-section (a). In the Torus Immersion
example, the explosion axis coincides with the axis of rotational symme-
try; also, self-intersections and visible cross-sections are emphasized in
the final depiction (b).

There are two key challenges in creating effective exploded views:
i) choosing the orientation of the explosion axis, and ii) positioning
the cutting planes along the chosen axis to define the slices. Choosing
the explosion axis sub-optimally can produce slices with unnecessar-
ily complex geometry that do not convey important properties of the
object’s shape, such as symmetries (see Figure 3). Choosing the cut-
ting plane locations poorly is also undesirable. If the cutting planes
are so far apart that many different geometric features appear or dis-
appear within a single slice, it may be difficult to understand all the
changes within that portion of the surface. On the other hand, if the
cutting planes are too close together, adjacent cross-sections may look
very similar to one another making it difficult for the viewer to iden-
tify the slices of geometric or topological interest. We examined hand-
designed illustrations by Curtis [10] and by Francis [15] and found that
in the best exploded views, the orientation, position and number of cut-
ting planes are carefully chosen to convey the object’s overall structure
and key geometric features in a clear and concise manner. Given the
challenges in creating such illustrations, it is not surprising that well
designed exploded view visualizations exist for just a tiny fraction of
the wide variety of complicated surfaces that mathematicians study.

In this paper, we present an automated approach for generating ex-
ploded views of complicated mathematical objects. Our method takes
as input triangle meshes, which are often easier to find (e.g., in on-

line repositories of 3D models [1]) and create than parametric surface
representations. Our contributions include a set of prescriptive design
rules for choosing an explosion axis and placing cutting planes. We
developed these rules by analyzing several hand-designed exploded
views and identifying the characteristics that make them effective. We
also present a computational procedure to apply these design rules in
order to generate an exploded view. The algorithm encodes the rules
based on geometric properties, which we directly compute from the
input polygon mesh. Our method does not depend on the specific pa-
rameterization of the surface. Using our approach, we are able to gen-
erate exploded views that expose and emphasize important geometric
and topological features of mathematical surfaces, and help convey the
overall shape and structure of the depicted object.

2 RELATED WORK

In mathematical visualization, the most common techniques for ex-
posing the internal structure of surfaces are transparency, cutaways,
and “banded views”, a type of cutaway that removes alternating bands
from the surface [3]. There are several tradeoffs between these meth-
ods and exploded views. Making the entire surface semi-transparent
is arguably the simplest technique for (partially) exposing occluded
portions of the surface. While such transparency can sometimes con-
vey the overall complexity of the surface, it can be difficult for view-
ers to distinguish and interpret the surface geometry in regions where
multiple semi-transparent layers overlap (Figure 3b). Thus, cutaways,
banded views, and exploded views are often more effective for visual-
izing surfaces with complex internal structure. Another key difference
between these methods is that banded views and cutaways remove
portions of the surface to expose internal structure, whereas exploded
views include all of the surface geometry. On the other hand, exploded
views distort spatial relationships by separating portions of the surface,
whereas banded views and cutaways keep all of the geometry in place.
As we discuss in Section 6, there may be benefits to combining these
techniques in a single visualization. However, in this paper, we focus
on an approach for automatically generating exploded views.

Outside the domain of mathematical visualization, there is a large
body of existing work on conveying the internal structure of other
types of 3D objects, e.g., CAD models, anatomical data, etc. While
many of these methods focus on transparency [13, 31] and cut-
aways [6, 8, 9, 11, 22, 28], we limit this discussion to previous ap-
proaches for creating exploded views. Some existing systems require
the user to specify certain explosion parameters in order to create in-
teractive exploded views. Notable examples include McGuffin et al.’s
interactive browsing widgets [24], Li et al.’s image-based exploded
views [21], and Bruckner et al.’s force-based volumetric exploded
views [7]. Fully automatic systems for generating exploded views fo-
cus primarily on CAD and architectural models, including work by
Agrawala et al. [2], Driskill et al. [12], Li et al. [20], and Niederauer et
al. [27]. While such methods can produce compelling visualizations,
most of these techniques assume input models that have distinct parts
or layers and come with auxiliary annotations. Thus, the techniques
are not suitable for visualizing mathematical objects, which typically
consist of a single 3D surface.

A key component of our approach is an automated algorithm for
partitioning mathematical surfaces into multiple slices that are then
separated to create the exploded view. A few previous approaches also
use geometric analysis to determine where to cut the object into slabs.
Mori et al. [26] propose an automatic technique for generating a char-
acteristic cross-section of a given volume by analyzing its topological
structure. Ruiz et al. [30] extend this idea and propose a similarity-
based approach to identify the most informative cross-sections within
a volumetric dataset; they then use these cross-sections to generate
exploded views. Niederauer et al. [27] apply a similar high-level ap-
proach to visualize architectural scenes; they analyze the scene geom-
etry to locate individual stories that are then rendered separately in an
exploded view. Our system also uses geometric analysis to place cut-
ting planes in order to form exploded views, but our approach directly
analyzes the cross-sectional geometry of the input surface to determine
where to make such cuts.



3 DESIGN RULES

Although a handful of books on mathematical drawing techniques ex-
ist [3, 15], they do not offer explicit guidelines on how to create ex-
ploded view illustrations. Moreover, because they are difficult to cre-
ate, mathematical exploded view illustrations are not very common.
Nevertheless, we have found several good examples of such illustra-
tions by Curtis [10] and by Francis [15]. Based on our analysis of
these illustrations, we propose a set of design rules that can guide how
to choose an explosion axis, place cutting planes, and render slices to
create effective exploded view visualizations.

Choosing the explosion axis

Many mathematical surfaces exhibit rotational symmetry, e.g., Boy’s
Surface, Roman Surface. Illustrators often explode mathematical sur-
faces along such symmetry axes (see Figure 2b) because it results in
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Fig. 3. Choosing explosion axis based on symmetry. (a) The complicated
internal structure of the Boy’s surface, which is obtained by sewing a
Möbius strip to the edge of a disk, is mostly hidden in a normal render-
ing. (b) A semi-transparent view helps marginally as ambiguity in the
depth ordering and intersection pattern remains. (c) An exploded view
generated using our algorithm not only reveals the internal structure,
but also the rotationally symmetric slices emphasize the object’s over-
all symmetry. The table indicates the geometric change(s) within each
slice (see Section 4). (d) In contrast, an exploded view along an arbi-
trary explosion axis v with the same number but uniformly spaced slices
does not convey the object’s inherent symmetry and fails to highlight key
geometric features within the surface.

cross-sectional slices that are also rotationally symmetric, and thus
emphasize the overall symmetry of the object. Furthermore, it can
be easier for viewers to understand the shape of symmetric slices be-
cause they have repeated, regular geometry. Similarly, for objects with
bilateral reflective symmetry, but no rotational symmetry, illustrators
typically choose an explosion axis that lies in the plane of symmetry.
The exact axis orientation is often chosen based on the dimensions of
the surface projected onto the symmetry plane; aligning the axis with
the direction of longest extent produces an exploded view that shows
how the surface varies along its longest dimension (see Figure 2a). For
objects without any prominent symmetries, illustrators vary in their
choice of exploded view direction, sometimes just using the axis of
longest extent as the explosion axis.

Placing cutting planes

Given an explosion axis, illustrators partition the surface into slices
by placing parallel cutting planes along the explosion axis. The main
goal is to expose planar cross-sections of the surface that help view-
ers understand how the shape of the surface varies along the explo-
sion direction. Viewers should be able to see how the cross-section
evolves from slice to slice. Simply placing cutting planes at regu-
larly spaced intervals fails to highlight important geometric properties
such as self-intersections and critical points (see Figure 3d). Instead,
illustrators take into account the surface geometry and place cutting
planes to emphasize changes in the following geometric attributes of
the cross-sections:

• Connected components: Changes in the number of connected
components occur at critical points where regions of the surface
merge, pull apart, appear or disappear with respect to the explo-
sion axis.

• Self-intersections: Changes in the number of self-intersections
occur where the surface passes through itself.

• Sharp curvature extrema1: Changes in the number of sharp
curvature extrema indicate a significant change in the shape of
the cross-section. Since curvature extrema often correspond to
distinguishable feature points of a shape [4, 33], a change in the
number of sharp curvature extrema indicates where it becomes
more difficult for a human viewer to establish visual correspon-
dence between consecutive cross-sections. If the correspondence
is difficult to establish, this suggests that the shape of the cross-
section has changed significantly.

To help viewers understand these geometric variations, illustrators
place cutting planes on either side of each change, thereby exposing
the surface cross-section both before and after the change occurs. This
approach also emphasizes where self-intersections and critical points
arise by isolating them in separate slices (see Figure 2a). Moreover,
since each subsequent cross-section shows one significant change, the
final exploded view contains no redundant cross-sections presenting
identical information.

Rendering

Mathematical illustrations are often rendered in a simple pen-and-ink
style, in which silhouettes and sharp creases are drawn with lines
and hatching is used to indicate shading. In addition, illustrators
typically emphasize the cross-sectional curves in each slice and self-
intersection curves using a contrasting highlight color. In Figure 2b,
Curtis uses dark purple lines to highlight both cross-sections and self-
intersections.

1In our system, a vertex of a polygonal cross-sectional curve is a sharp cur-
vature extremum, if its discrete curvature value is larger than a certain threshold
and greater than discrete curvature values of its neighbors by another threshold.
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Fig. 4. Placing cutting planes. First, we uniformly sample the explosion axis (a). At each sample point, we compute a cross-section, as well as
the number of connected components, self-intersections (purple dots), and curvature extrema (red dots). Wherever any of these values change,
we mark the slice as a change point, shown in green (b-f). Finally, we place cutting planes halfway between each pair of adjacent stable change
points, shown in pink (g).

4 OUR SYSTEM

Based on these design rules, we have developed an automated ap-
proach for generating exploded views of mathematical surfaces. The
input to our system is a non-degenerate triangle mesh representing a
surface immersed into 3D space.

As an initial preprocessing step, we determine whether the surface
is orientable or non-orientable by examining polygon normals in a
breadth-first manner; if we encounter a flipped normal, we label the
surface non-orientable. Our approach consists of three main steps.
Given an input triangle mesh, our system first chooses an explosion
axis based on any detected symmetries in the surface. Next, our sys-
tem analyzes the cross-sectional geometry of the surface to determine
where to place cutting planes along the explosion axis. Finally, our
system renders the slices from a user-specified viewpoint in a pen-
and-ink style to create the final exploded view. We describe each of
the steps in detail.

Choosing the explosion axis

To determine the explosion axis, we first detect symmetries of the in-
put mesh using the algorithm introduced by Mitra et al. [25]. The
method uses a transform domain voting scheme to identify potential
symmetry candidates, which are subsequently verified and refined in
the spatial domain. The algorithm is robust to noise and surface pertur-
bations. If the analysis detects one or more rotational symmetries, our
system picks the symmetry axis with the highest order of symmetry2

as the explosion axis. Otherwise, if the symmetry analysis detects re-
flective symmetry, we project all vertices of the mesh onto the detected
symmetry plane and perform Principal Component Analysis (PCA) on
the projected 2D points. The algorithm then picks the largest princi-
pal component as the explosion axis for the model. If no rotational or
reflective symmetry is detected, we use the first principal component
of the shape as the default explosion axis. Alternatively, we allow the
user to specify the explosion axis as part of the input.

Placing cutting planes

To compute the locations of the cutting planes along the explosion
axis, we identify all the change points — i.e., the points where the
number of connected components, self-intersections, or sharp curva-
ture extrema of the surface cross-section changes. We then place cut-
ting planes halfway between each pair of adjacent change points.

To identify the change points we start by densely sampling the ex-
plosion axis uniformly across the entire extent of the surface (Fig-
ure 4a). In our experiments we use 120 as the default number of

2A shape S has n-order rotational symmetry with respect to a particular axis
u if S is invariant under any rotation about u by a multiple of 360/n degrees.

samples. For each position i of the cutting plane, we compute the cor-
responding cross-section si by first intersecting each triangle edge of
the input mesh with a plane that passes through i and is perpendicular
to the explosion axis. Then we string together the intersection points
with polylines using the underlying mesh connectivity for topology.
Thus for each cross section we obtain a set of polygonal curves.

For each such set of cross-sectional curves, we estimate three at-
tributes: i) the number of connected components Ci, ii) the number of
self-intersections Ii, and iii) the number of sharp curvature extrema Ei.
To find Ci, we count the number of polyline curves in si. To compute
Ii, we add up the number of intersections between the curves and the
number of self-intersections within each curve in si. Note that in alge-
braic geometry, a single intersection point p may be counted twice if
the intersecting curves are tangent at p [16, pp. 74–83]. However, in
our system, we count such coincident intersection points only once.
Finally, to compute Ei, we regularize the polylines using Gaussian
smoothing and then estimate the discrete curvature at each polyline
vertex by computing the turning angle between the adjacent line seg-
ments [17]. To further reduce noise, we perform a smoothing pass on
the curvature values by taking distance-weighted averages of the cur-
vature at adjacent vertices. Using the smoothed curvature values, we
label a vertex as a sharp curvature extrema, if its absolute curvature
value is larger than a threshold φ and greater than the absolute curva-
ture values of its neighbors by another threshold θ . We used default
values of φ = 11.5◦ and θ = 0.5◦ for all examples in the paper.

Having computed this information at each cross-section, we iden-
tify a change point as any i where the neighboring cross-sections si

and si−1 have Ci #=Ci−1, Ii #= Ii−1, or Ei #= Ei−1 (see Figures 4b–f).

Unstable change points. In some cases, as portions of the cross-
section merge or self-intersect, the values of C, I and E may change
several times over a small window of sample points, resulting in what
we call unstable change points – change points that are almost im-
mediately followed by another change point. Unstable change points
often arise around changes in the number of self-intersections I. For
example, Figure 4d shows the change points that arise as two ellipti-
cal components of the cross-section separate from each other. As the
ellipses separate, I changes from 2 to 1 and then to 0 in three con-
secutive cross-sections, which results in an unstable change point at
I = 1. Unstable change points can also arise around changes in the
number of critical points C, as shown in Figure 4e where two curva-
ture extrema appear immediately before the two elliptical components
merge. Finally, since our system works with mesh approximations of
mathematical models, unstable change points sometimes arise due to
numerical errors. For example, if on the original continuous surface
E should change from 1 to 3, our system, due to numerical instability,
may find three consecutive cross-sections where E changes from 1 to
2, and then to 3.



Even though multiple change points arise in these three scenarios, in
each case there is a single stable change that represents the important
visual change in the cross-section: in Figure 4d, I changes from 2 to
0 as the ellipses separate; in Figure 4e, C changes from 2 to 1 as the
two components merge into one; and in the final case, E changes from
1 to 3 as the shape of the cross-section changes. To ensure that every
change point corresponds to exactly one important visual change, we
eliminate unstable change points. Specifically, we detect clusters of
nearby change points and replace them with a single change point that
is centered within the window of change. We consider adjacent change
points to be nearby if they are closer than 2% of the total extent of the
surface measured along the explosion axis. Figure 4g illustrates how
cutting planes are placed with respect to change points.

Rendering

To generate the final result, our system renders each slice in a pen-
and-ink style from the specified viewpoint. We draw silhouettes and
sharp creases with black lines, and render the surface itself using dif-
fuse shading with a single directional light. We color non-orientable
surfaces white, and orientable surfaces purple and blue.

We render additional shading lines on the surface of the object that
run parallel to the cutting planes. The RGB color at each point p along
a shading line is computed using

(R,G,B) := (dpSR, dpSG, dpApSB) where, dp = |L ·Np|

and (SR,SG,SB) is the RGB color of the surface, Ap is the ambient
occlusion at p, L is the light direction, and Np is the surface normal
at p. The diffuse shading component dp ensures that shading lines are
darker where the surface normal bends away from the light direction,
and the ambient occlusion component Ap makes the lines more blue
on internal portions of the surface. On external portions of the surface,
shading lines are mostly grey because there is typically a small amount
of ambient occlusion.

Our system also detects and emphasizes self-intersections and vis-
ible cross-sections. Each cross-section is drawn with a thick red or
purple line. We choose the color using an alternating pattern such that
the two facing cross-sections of adjacent slices are always rendered in
the same color. Self-intersections are drawn using blue lines.

5 RESULTS

We found several sources of complicated mathematical surfaces on-
line [18,32], for the majority of which good hand-drawn diagrams are
not available. We used our system to generate exploded view illustra-
tions of several of these surfaces (Figures 3, 5 and 8). For all of the
models, computing the cutting plane locations required less than three
minutes on a MacBook Pro with a 2.6 GHz Intel Core 2 Duo and 4GB
of memory. The size of the meshes varied from 5K to 60K triangles.

Boy’s Surface is an immersed projective plane that is constructed by
sewing a Möbius strip to the edge of a disk; the model shown in this
paper minimizes Willmore elastic bending energy. The Slippers Sur-
face is a surface designed by Roger Bagula that resembles (from some
angles) a pair of slippers [5]. The Roman Surface is another map-
ping of the real projective plane into 3D that exhibits a high degree of
symmetry, including 3-fold rotational symmetry. We also generated
a variant of Roman that only has 2-fold symmetry3. We created the
“Flower” Surface by inflating and indenting the surface of a sphere
using regularly spaced Gaussian lobes. Everting Spheres 1 and 2 are
surfaces obtained at two different stages in the temporal sequence of
a sphere eversion [14] [29]; we generated these meshes using McGuf-
fin’s software [23] that implements Thurston’s realization of the sphere
eversion [19]. All of these surfaces exhibit symmetry: it is reflective
symmetry in the case of Slippers Surface and rotational symmetry for
the other surfaces. The explosion axis was chosen automatically by
the system for all of the results. The only user input required in these
examples is setting the viewpoint.

3 r(u,v) = (sin(2u)sin(v2),cos(u)sin(2v),sin(u)cos(2v)),
with 0 ≤ u ≤ π and −π/2 ≤ v ≤ π/2.
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Fig. 5. Slippers surface. At the top, we show two views of the surface.
The exploded view contains 17 slices that we display in two columns.
The table indicates what change(s) happen at each slice.

Boy’s Surface has several self-intersections that make it difficult
to understand how the surface twists and folds back on itself. Our
exploded view shown in Figure 3 exposes several important cross-
sections that help the viewer understand where these self-intersections
occur and how the cross-section evolves. For example, slice 3 shows
that the surface passes through itself in three places. Slice 4 shows how
a single cross-section component turns into three; the three “arms” of
the cross-section at the top of slice 4 merge to form three separate
closed loops.

Slippers Surface is a complicated surface where many topological
changes occur in the cross-section as the plane is swept along the ex-
plosion axis (see Figure 5). It is interesting to note that for several
slices in the exploded view (slices 4, 7, 8) all three geometric attributes
change within the same slice. For surfaces like Slippers where the
cross-section undergoes many changes along the explosion axis, our
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Fig. 6. Zoomed in slices. These images show specific features of slices
from Everting Sphere 1 (a–b) and Everting Sphere 2 (c–d).

system detects a large number of change points, which produces an
exploded view with many slices. Although these slices highlight all
of the key geometric variations along the explosion axis, they also add
visual clutter to the illustration.

Tetrahedral symmetry of the Roman surface is emphasized in the
exploded view generated with our approach (see Figure 8). Three out
of the four “lobes” located in the corners of a tetrahedron are visible
in the exposed cross-sections.

Roman variant does not exhibit 3-fold symmetry, but is 2-fold rota-
tionally symmetric about the y axis and reflective symmetric about xy
and yz planes. Slice 2 of the exploded view shows how four “lobes”
intersecting along a line move apart to form a cross-like shape as the
number of intersections changes from 1 to 5.

The “Flower” Surface demonstrates the importance of using cur-
vature extrema points for detecting significant changes in the cross-
section. The shape of the cross-section changes significantly over the
shape, yet it contains no other geometric changes (in the number of
self-intersections or connected components). Slice 2 shows the cross-
section changing into a (roughly) triangular shape as three prominent
lobes begin to appear. This causes E to change from 0 to 3. In the next
slice, as E changes from 3 to 6, three more lobes grow from the edges
of the triangle and turn the cross-section into a six-sided star.

Several transitions occur in Everting Sphere 1. Slice 3 shows the
change in the number of connected components: the 8 “pawns” around
the perimeter of the cross-section change shape to merge with each
other, forming two contours instead of eight (Figure 6a). Slice 4
demonstrates a change in the number of self-intersections — the two
internal contours collapse onto each other (Figure 6b). Note that be-
cause of the symmetry present in the shape, the top and bottom halves
of the exploded view are mirror images of each other.

Everting Sphere 2 contains many self-intersections. First, in slice
3 the number of self-intersections changes from 0 to 16 when the
“stems” of the 8 components intersect each other (Figure 6c). Slice
4 shows how the number of self-intersections changes from 16 to 32
as the “top” of the 8 components intersect as well (Figure 6d).

LIMITATIONS

Although our system creates effective visualizations for a class of
mathematical surfaces, our approach does have some limitations.

First, we use a single linear explosion axis to generate exploded
views. However, some surfaces have a curved axis of symmetry (e.g.,
the medial axis of a generalized cylinder). Using such a curved axis as
the explosion axis would produce regular, symmetric slices that em-
phasize the overall symmetry of the object. Unfortunately, since the
slices would no longer be parallel, neighboring slices might intersect.
It is not clear how to handle this issue.

Second, our approach for detecting significant changes in the cross-
section of the surface only considers changes in the number of con-
nected components C, self-intersections I, and curvature extrema E.
As a result, we do not detect certain types of geometric variations.
For instance, in some cases C, I and E can stay constant while the
positions of self-intersections, curvature extrema or the cross-section
components themselves change significantly as in the case of a twist-
ing surface. Such positional changes can produce major variations in
the relative positions of connected components that result in significant
self-occlusions between parts of the surface. Since we do not detect
such changes, our exploded views would not expose these variations.

(a) 3-fold symmetry axis (b) 2-fold symmetry axis

Fig. 7. Multiple symmetries. The Roman Surface (also shown in Fig-
ure 8) has both 3-fold and 2-fold rotational symmetries. Our system
automatically uses the 3-fold axis to generate an exploded view (a).
However, our algorithm also detects the 2-fold axis, which can be used
to produce a different visualization (b).



Our sampling approach may miss some important geometric
changes (e.g., unstable intersections where I goes from 6 to 4 to 6).
We could implement intersection detection in a more stable fashion by
computing self-intersections using a thin band of the surface around
each sample location along the explosion axis. Alternatively, we could
allow users to control the spacing adaptively in an interactive system.

Finally, our system computes the exploded view diagram for a given
immersion of the surface. Mathematicians using this visualization tool
might be more interested in the surface itself and not in a particular
immersion. Deriving a good immersion of the surface is an important
problem that we leave to future work.

6 CONCLUSIONS AND FUTURE WORK

In this paper, we propose several design rules for generating exploded
views of mathematical surfaces. These rules provide guidance on how
to choose an explosion axis, place cutting planes, and render slices.
We also present an automated system based on these design principles
that we used to generate effective illustrations of several complicated
surfaces. We see several directions for future work:

Evaluation. Although our results have similar characteristics to the
hand-drawn exploded views that we analyzed, we have not done a for-
mal evaluation of our visualizations. Ideally, such an evaluation would
help us understand how well our illustrations convey the internal struc-
ture of mathematical surfaces to human viewers. Another interesting
question to address is how the choice of explosion axis for objects with
multiple symmetries affects the quality of the final result. For example,
the Roman surface has both 3-fold and 2-fold rotational symmetries.
Our algorithm automatically chooses the 3-fold axis as the explosion
axis, but as shown in Figure 7, the 2-fold axis also produces a reason-
able exploded view. We leave this type of evaluation for future work.

Incorporating window cuts. In the future, we plan to add window
cuts to our system. Window cuts are often incorporated in illustrations
of mathematical objects (see Figure 2a) [15] to expose occluded re-
gions or features of interest. Although our exploded views show many
important geometric features of the surface in the top cross-sections of
slices, window cuts could help to expose regions of interest within a
single slice.

Interactive visualizations. The primary goal of our work is to create
effective static illustrations of mathematical surfaces. However, our
approach could also be incorporated into an interactive application for
viewing 3D shapes. One simple extension is to enable constrained di-
rect manipulation of slices along the explosion axis, as described by
Li et al. [20]. Another potential approach is to present the user with an
automatically generated exploded view diagram of the shape, where
interesting geometric features are emphasized and important cross-
sections are shown in the context of the shape. Then, the user can
further explore the shape by interactively dragging the cutting plane
within each slice, or by changing the placement of cuts.
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[6] S. Bruckner and M. E. Gröller. Volumeshop: An interactive system for
direct volume illustration. In Proceedings of IEEE Visualization 2005,
pages 671–678, 2005.
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Fig. 8. Summary of results. Each column of images shows the input surface at the top and our exploded view below. The table indicates what
change(s) each slice shows. Our system colors non-orientable surfaces white, and orientable surfaces purple and blue.


