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Figure 1: Conical meshes are planar quad meshes which discretize principal curvature lines, possess offset meshes at a constant distance a:
well as planar connecting elements supporting the offset meshes (left). Therefore they are especially suited for architectural design with glass
structures (right). This student project of a railway station by B. Schneider was generated by a subjipisiomocess (see also Fig. 14).

Abstract 1 Introduction

In architectural freeform design, the relation between shape and The original motivation for this research comes from architec-
fabrication poses new challenges and requires more sophisticationture, where freeform shapes are becoming increasingly popular,
from the underlying geometry. The new concept of conical meshes but the actual construction poses new demands on the underlying
satisfies central requirements for this application: They are quadri- geometry. Gehry Partners and Schlaich Bergermann and Partners
lateral meshes with planar faces, and therefore particularly suitable[Glymph et al. 2002] argue why freeform glass structures with pla-
for the design of freeform glass structures. Moreover, they possesshar quadrilateral facets are preferable over structures built from tri-
a natural offsetting operation and provide a support structure or- angular facets or neplanar quads. The authors also show a few
thogonal to the mesh. Being a discrete analogue of the network of simple ways to construct quad meshes with planar faces. However,
principal curvature lines, they represent fundamental shape charac-despite the huge amount of work on mesh processing and the inter-
teristics. We show how to optimize a quad mesh such that its facesest in discrete differential geometry [Desbrun et al. 2005], we are
become planar, or the mesh becomes even conical. Combining thishot aware of a thorough investigation of this topic from the perspec-
perturbation with subdivision yields a powerful new modeling tool tive of geometry processing.

for all types of quad meshes with planar faces, making subdivision
attractive for architecture design and providing an elegant way of
modeling developable surfaces.

The study of quad meshes with planar faces — cal€@meshes
henceforth — will lead us to interesting geometric results, in partic-
ular toconical meshes discrete counterpart of principal curvature
CR Categories: 1.3.5 [Computer Graphics]: Computational Ge- lines which have not been considered before. Algorithms which
ometry and Object Modeling—Geometric algorithms, languages, perturb a quad mesh into a PQ mesh can nicely be combined with
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Discrete differential geometry. PQ meshes have first been sys-
tematically addressed by R. Sauer, as summarized in his monograph
[1970] ondifference geometryne of the precursors of discrete dif-
ferential geometry [Bobenko and Suris 2005; Desbrun et al. 2005;
Polthier 2002; Hildebrandt et al. 2005]. It has been observed that
PQ meshes are a discrete counterpart of conjugate curve networks
on surfaces. They appear in the mathematics literature under the
name ofquadrilateral meshes, which actually means quad meshes
with the additional property that all quads are planar. The inter-
esting case o€ircular meshesvhere all quads possess a circum-
circle has been introduced in [Martin et al. 1986]. Like the coni-
cal meshes which are a focus of the present paper, circular meshes



are discrete analogues of the network of principal curvature lines.
Pointers to the literature on PQ meshes and circular meshes, espe-
cially to higherdimensional generalizations, are given in [Bobenko
and Suris 2005] and [Bobenko et al. 2006]. Convergence of cir-
cular meshes towards the network of principal curvature lines is
the topic of [Bobenko et al. 2003]. Here we discuss topics in pla-
nar quad meshes which have not been addressed previously, like
conical meshes and offset meshes, as well as developable surfaces  (a)
obtained by refinement and optimization.

Figure 2: (a) PQ strip as discrete model for a developable surface.
Quad meshes. The computation of quadominant meshes from  (b) Discrete developable tangent to PQ mesh along a row of faces.
smoothed principal curvature lines has been presented in [Alliez
et al. 2003]. Although the faces of these meshes are not exactly

z
planar, one should expect that they are at least approximately pla- T \ R
nar. Thus such meshes can serve as an input to algorithms presented !
below, which compute numerically precise PQ meshes and conical X
meshes by optimization. Variational shape approximation accord- r \<
ing to [CohenSteiner et al. ] aims at the optimal placement of a

given number of planar faces, which, in general, are not quadri- Figure 3: Visualization of conjugacy via shadow contours.
laterals. Other recent contributions to quadrilateral remeshing (see
e.g. [Dong et al. 2005; Marinov and Kobbelt 2004; Ray et al. 2005])

do not try to achieve planarity of quads. The conical mesh is a new type pfincipal meshesnd it pos-

. sesses the property that offsetting the face planes by a constant dis-
Developable surfaces. An arrangement ofi planar quads ina  tance yields a planar mesh of the same connectivity, which is again
single row (see Fig. 2) is a discrete representationdg\@lopable a conical mesh. This is a very useful property in layer composition
surface In this way the study of PQ meshes is related to the com- constructions for architecture, where each layer has to be covered
putational geometry of developable surfaces. Recall a few facts by planar panel elements and the geometry of the outermost layer

from differential geometry [do Carmo 1976; Pottmann and Wallner sihould also be valid for the offsets which represent the layer com-
2001]: A developable surfadeis the envelope of a ongarameter position (see Figures 1, 11, 12a, and 15).

family of planes. Each of these planes touches the surface along a

straight line, a sacalled ruling. There are three main types: Either o We propose th&Q perturbation algorithnfor computing a PQ
rulings are parallel[{ is a cylinder surface), or they pass through mesh from an input quadrilateral mesh. By combining PQ pertur-
a fixed points (I is a cone with vertex), or they are tangents of  bation with a surface subdivision scheme we obtain a powerful tool
a space curve (I is a tangent surface amds its singular curve). for modeling not only conical meshes, but also circular meshes and
Because developable surfaces can be mapped into the plane withgeneral PQ meshes. When applied to PQ strips, it leads to an effec-
out distortion, they possess a variety of applications, for example, tive and elegant approach to modeling developable surfaces.

in sheetmetal and platenetal based industries and architecture. In Sec. 2 we elaborate on the relation between PQ meshasito

Modeling with developable surfaces is a nontrivial task, which is jugate curve networkior understanding the variety of PQ meshes
only V\_/eakly_lncluc_ied in current 3D modelers. Several ways of ge- Sec. 2.2 discusses thQ perturbation algorithm In Sec. 3 we
ometric design with developables have been proposed. One can

use B-spline ruled surfaces and express developability via nonlin- combine subdivision and PQ perturbation to ghtezarchical con-
ear congtraints Aumann 2004: ChS and Se uinp2002y Via dual- struction of PQ meshedn particular, we obtaimevelopable sub-
. L . q ]. Via du division surfaces Conical meshesre introduced in Sec. 4, and
ity such constraints can be avoided, at the cost of a less intuitive

their main properties are derived. Sec. 5 discusses how to approxi-
planebased control structure [Pottmann and Waliner 2001]. There mate given data by a conical mesh via optimization of a quad mesh,
are also contributions based on constrained triangle meshes [Fre

2004; Wang and Tang 2004; Mitani and Suzuki 2004]. Singulari- ypossibly derived from robustly computed principal curves on an ap-

ties in crumpled sheets have also received attention, see e.g. [Cerd ropriate scale. We discuss our results in Sec. 6 and conclude the
et al. 1999; Frey 2004]. Recently there has been interest in devel- aper with some pointers to future research in Sec. 7.
opable surfaces for mesh parametrization [Julius et al. 2005] and

mesh segmentation [Yamauchi et al. 2005]. 2 PQ h d PQ turbati
meshes an perturbation

Surfaces in architecture and aesthetic design. Freeform ge-
ometries are becoming increasingly popular in architecture, thus
demanding adapted modeling methods which take the actual con-
struction and fabrication into consideration. The Smart Geometry
group fittp://www. smartgeometry. corpromotes research in this
direction; a good overview of the state of the art may be found in
[Kilian 2006]. Geometric modeling for aesthetic design and ‘opti-
mal geometry’ are the topics of [Sequin 2004] and [Sullivan 2005].

Conjugate Curves. Quad meshes with planar faces may be seen
as a discrete version of smalled conjugate curve networks on a
surface [Sauer 1970]. First we explaianjugate surface tangents
at a pointx of a surfaceb (see Fig. 3): Suppose that the straight line
Ty is tangent to the surfacexatChoose a light sourceonT;. Then

the lineT, tangent to the shadow contour (contour generatai)x

is conjugate td. Ty is contained in the conical surfaEef surface
tangents passing through the light souzcélere we could also use

a parallel illumination, withz at infinity. An alternative definition
1.2 Contributions and overview of conjugate directions in terms of the second fundamental form of
a surface is given by [do Carmo 1976, p. 150].

e We introduceconical mesheand demonstrate their superiority = The above is a special case of the following more general prop-
over other types of meshes for architectural design and other ap-erty: If I is the developable surface enveloped by the tangent planes
plications where planarity and exact offset property are demanded.along a curvec C @, andT; is a ruling of ' passing through the



surface, which carries the given PQ strip. The planar faces of the
strip represent tangent planes of the developable surface.

Now we consider a general PQ mesh with vertiggsi =0,...,n,
j=0,...,m. For theoretical investigations we will always assume
that interior mesh vertices have valence four; vertices with valence
= 4 are like singularities in a curve network and require special
treatment. In practice, meshes will not consist of quads orly —

Figure 4: Various conjugate networks and their suitability for mesh- gons withn 5 4 likewise are treated as singularities.
ing purposes. Left: The network of generating curves in a transla- Recall the property mentioned above which characterizes conju-

tional surface® is conjugate. Center: For any surfade the in- gate curve networks: the envelope of tangent planes along a curve
tersection curves (yellow) ob with planes through a fixed line of family A is a developable surface, whose rulings are tangent to
and the contour generators (blue) for viewpoints darm a con- curves of familyB. We can easily see that the row and column

jugate network. Right: Isophotes (yellow) and curves of steepest polylines of a PQ mesh enjoy a discrete version of this property:

descent (blue). Such networks may be unsuitable for meshing evengach row of faces; j (we letj = k,k+ 1) is a PQ strip, which rep-

for simple surfaces, if its curves do not intersect transversely. This resents a discrete developable surface tangent to the mesh (Fig. 2).

is caused by asymptotic directions (see frame). The row of verticesg, .. ., Vo k can be seen as the polyline of tan-
gency between the mesh and this developable surface. The rulings
of the developable surface are spanned by the edges; 1 for

pointx € ¢, then the lin€T, tangent to the curve at the poinix is i=1,...,n. The same lines occur as tangents of the column poly-
conjugate tol;. This relation turns out to be symmetric (see e.g. linesvig,...,vim. It follows that the system of row and column
[Pottmann and Wallner 2001]psymptotidirections are sel€on- polylines are aliscrete conjugate netwod( polylines. Moreover,
jugate. Aconjugate network of curvemnsists of two on@arame- a discrete developable surface tangent to a PQ mesh along a poly-
ter familiesA, B of curves which cover a given surfadesuch that ~ line is given by a row (or a column) of quad faces.

for each poinp € @ there is a unique curve éfand a unique curve
of B which pass througk, and furthermore, the tangents of these
two curves ak are conjugate. We may prescribe familyand get
family B by integration of the vector field of directions conjugate to
the tangents of family.

Consequentlyjf a subdivision process, which preserves the PQ
property, refines a PQ mesh and produces a curve network in the
limit, then the limit is a conjugate curve network on a surface

Examples of conjugate networks on surfaces are: 2.2 PQ perturbation

— The network of principal curvature lines is always conjugate.

— In a translational surface of the form{u,v) = p(u) + q(v), Given a quad mesh with verticesj, we want to minimally per-
generated by a translatory motion of a profile cup(e) along a turb the vertices into new positions such that the resulting mesh
directrix curveq(v), or vice versa, the isoparameter lines form a is a PQ mesh. One way to solve this problem is by a Sequen-
conjugate network (Fig. 4, left). tial Quadratic Programming method (SQP, see e.g. [Madsen et al.
— The movement of a viewpoirztalong some curve in space pro-  2004]), which minimizes fairness and closeness functionals subject
duces a family otontour generator§c(z)” on a given surfaceb, to the planarity condition. Another way is a penalty method which

wherez is interpreted as a light source. The curves conjugate to optimizes a linear combination of functionals which express pla-
the c(z)’s are calledepipolar curvesand are found by integrating  narity, fairness, and closeness to the original mesh, weighted in a
the field of light rays tangent to the surfade These curves arise  way which ensures numerically exact planarity.

in 3D surface reconstruction from apparent contours in an image . .

sequence [Cipolla and Giblin 2000]. Fig. 4 (center) shows the case N Order to express planarity of a quad faQg, we consider the
wherez moves along a straight lire four anglesp’;, ..., ¢ enclosed by the edges @fj, measured in

— The condition that the surface normals form a constant angle the interval[0, z]. It is known thatQ;; is planar and convex if and
with thez-axis defines aisophotic curve These isophotes are con-  only these angles sum up ta@2We use the notation

jugate to the system afurves of steepest descerith respect to the

z-axis (see Fig. 4, right, and e.g. [Pottmann and Wallner 2001]). Cpgi,j := (l)ﬁj +...+ ¢i‘,1j —2r=0. 1)
Below we need sums of the forffy ; Apqi,jCpgi,j, Which we write

2.1 PQ meshes aslgqcpq, i.e., the inner product of the vectokgg = (Apg;,j) and
Cpq = (Cpqi.j)-

Let us start with aPQ strip, which means a single row of pla-  For modeling developable surfaces it is important that the planarity
nar quadrilateral faces. The two rows of vertices are denoted by criterion also works for a thin planar quad which converges to a
a,.--,an andby, ..., bn (see Fig. 2). Itis obvious and well known  straight line segment. Here, the constraints in (1) serve to maintain
that such a mesh is a discrete model of a developable surface (se@onvexity and thereby avoid singularities, but they cannot express
e.g. [Pottmann and Wallner 2001; Sauer 1970Q]). This surface is planarity in the limit (the angle sum will tend tor2n any case, as-
cylindrical, if all linesa;bj are parallel. If the lines;b; pass through  suming convexity). Therefore we add another planarity term: De-
a fixed points, we obtain a model for a conical surface with vertex note the unit vectors along the edges in a@agby e j = (Viji1—

S. cherwise the PQ. strip is a patch on the tangent sgrfaoe of avi j)/IIVij+1 = Vijll: €41, fij = (Vg —Vi,j)/|\Vi+1.j —’Vi7jH,
polylinery,...,rn, as illustrated by Fig. 2: consecutive linadb; andfi j 1. Then, using the four vertices in an equal way, the pla-
andaj;1bj;1 are ceplanar and thus intersect in a point.;. It narity of Q; j is enforced by the following constraints,

follows that botha; andb; are contained in the lingri ;. This

property is the direct analogue of the well known fact that, ingen- ¢l . -—dete 6,1 1.fi i)=0, Gy i :=dete 64115 i11
eral, a developable surface is part of the tangent surface ofaspaced;“" @81 fip) ie“" (@81 fije)
curve. The linesiri;1 serve as the rulings of the discrete tangent Cgeyj j := det(&j, fi j, i j11) = 0, Cieyj j := det(eiraj, i j.fi j+1)

=0,
=0



A Ilnear combination of these constraints as used below is denoted fpqpenaity= 52 x 10°

by?L eCdet Note that these terms are included as effective planarity
constralnts only when computing PQ strips.

In addition, we introduce two energy terms to ensure that the result-

ing PQ mesh has a fair shape and stays close to the input mesh. Fo

aesthetic design we use the fairness téggp, which includes sim-
plified bending energies of the mesh’s row and column polygons.

frair =3 ; j[(Vienj —2vi FVicg )2+ (Vi — 2 j + Vi j-1)7).

At the boundary not all vertices required by the sum exist, so in

PQ.penaIty
=25x10°6
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Figure 6: PQ perturbation acting on a qedaiminant mesh (left)

addition we define that any undefined square is set to zero. For theextracted from principal curves (cf. Section 5). All faces, not only

PQ mesh to remain close to the surfagealefined by the original

quads, are planarized (planarity is visualized via flat shading). The

mesh, we need to minimize the distances of the perturbed meshshape change noticeable at the ears is due to concentration of highly

vertices from the original mesh surfadeby minimizing

felose'= z”‘ lIvi,j — Vi sz

wherey; j is the closest point (i.e., footpoint) ahto v; j. We put
the above terms together and define the Lagrangian function

@)

Note that the terrri(]'etcdet is needed only when computing a PQ
strip. SQP minimizes the energy temn frjr + Wa fjose SUbjECt tO
the constraintgpg = 0 andcget = 0. That is, the minimizer gives a
PQ mesh that has a fair shape and is close to the original subface
The desired minimum is a stationary point of the Lagrandias
Note thatApq and Aget are determined automatically by the SQP
method, whilew; andw, are user specified constants to control
relative weighting of fairness and geometric fidelity.

fPQ =W frair +Wa felose+ )«gqcpq + )L(]—etcdet-

SQP uses a sequence of Newdike iterations. In each round we

nonplanar quads in the original mesh. Higher geometric fidelity at
the cost of fairness is easily possible. At right: color coded devia-
tion from original mesh (max. 3% of object size).

The above coefficient matrix is highly sparse and has the(3Me-

5N) x (3M+ 5N) or (3M +N) x (3M +N) if not including the terms
AdeCdet, WhereM is the number of vertices ard the number of
faces of the input mesh. We use the sparse matrix packagéSS
andUMFPACK Our implementation of SQP works efficiently for
meshes of small or medium size (up to 1000 vertices). Our experi-
ence shows that for larger meshes it is more efficient to use a penalty
method: We combine the angle constraints in (1) in the function

zi_,jwi%j ot —2m)?, %)

and similarly the determinant terms fger. Then, we minimize the
objective function

fangle ' =

compute the Hessians and gradients of the four terms which occur

in the Lagrangiarfpq of (2) to form a local quadratic approxima-
tion of fpg at the current point. Computation of the Hessians is
straightforward, except for the squared distance tevm — i j 1

in feose Which involves the footpointg; j as dependent variables,

sincev; j —Vij,j is always perpendicular to the tangent planebof
aty; j. We usef(vij —Vi,j)- ni,j]2 as a quadratic approximation of
[vi.j —i,j[|?. This approximation arises from Gausewton min-

imization of the squared distancegf; from @ and has been suc-
cessfully used for registration [Chen and Medioni 1991] and curve
and surface approximation (see e.g. [Blake and Isard 1998]).

Rewrite fpq in (2) in the formfpg(x,A) = f(x) — ATc(x), wherex
denotes the unknown vertex coordinates; wy figjy +Wo feloseand
—ATc(X) = AJoCpq+ AdeCaet LetJ denote the Jacobian matrix of

the constraintg(x) andH denote the Hessian matrix ¢fg(x, 1)
w.r.t.x; (note that the contribution tid by the f;psetermis a Gauss
Newton approximation). The update step+ X+ h is solved from

EEAHEE

A c(x)

We use a soft linesearch strategy [Madsen et al. 2004] to determine
the actual update step sizgh, 0 < o < 1, to ensure stable conver-
gence and sufficient descent —sis updated by* = x+ ah.

T ¥ T B

Figure 5: PQ perturbation without a closeness term applied to a
highly un-planar mesh consisting of only a few quads.
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This is an unconstrained least squares problem which can be solved
effectively by the Gausbdlewton method with L-M regularization
[Kelley 1999]. We letu = 1 when considering a PQ strip, and=0
otherwise. For stability reasons, the coefficiemtsandw, have
higher values at the start of the iteration. Later, wewgtandw,

tend to zero, so that planarity can be achieved with high accuracy.
The following strategy works in practice: At the beginnimg,, w»

are chosen such thdgnge dominates in (5), and they are divided

by 2 in every iteration. In case of small valuesvaf andws,, near
singular linear systems are solved via SVD.

fPQ,penaIty: Wy frair +Wo feloset U fdet+ fangle—

In many cases the method exhibits much faster convergence than
the SQP method. An inherent problem of the penalty method are
stability deficiencies near the optimum. Therefore in practice we
use the penalty method to quickly derive an initial mesh near a local
minimum, and then employ SQP. PQ perturbation works very well
if the input quad mesh is reasonably close to a PQ mesh (cf. Fig.
6). Fig. 5 shows an input mesh which is far from planar, so PQ
perturbations results in large deviations from the original. In order
to planarizen-gons withn > 4, we use the fact that condition (1)
generalizes to-gons.

3 Subdividing developables and PQ meshes

To generate a PQ mesh from a coarse control mesh, we combine
the PQ perturbation algorithm with a quad based subdivision algo-
rithm like Doo-Sabin or CatmullClark in an alternating way: We
subdivide a given PQ mesh once, and then apply PQ perturbation
to make the resulting faces planar (see Fig. 7). These two steps are
iterated to generate a hierarchical sequence of PQ meshes.



Figure 7: (a)—(c): Hierarchy of PQ meshes obtéined by iterative
application of CatmullClark subdivision and PQ perturbation.

A single PQ strip can be subdivided by applying a curve subdivi-

sion rule like Chaikin’s to its boundaries, and subsequent applica-

tion of PQ perturbation in order to achieve face planarity. Alternat- Figyre 9: Developable kbius band in the shape of a trefoil knot.
ing application of these two steps isabdivision algorithm which | eft: PQ strip as control structure. Right: Result of subdivision
generates developable surfaceBecause of our treatment of PQ  augmented by PQ perturbation. Numerical smoothne€¥ isas
perturbation as a black box it is in general not possible to write geen from smooth reflection linefob penatty= 2.9 x 10-11).

down the limit of this subdivision process explicitly. Nevertheless ’

itis a much simpler design tool than developable B-spline surfaces,

whose control points have to satisfy a set of nonlinear constraints. . . . . .
curvature lines — the conical meshes to be introduced in this sec-

As illustrated in Fig. 8, the relation of the input PQ strip to the final tion — have geometric properties essential for architectural design
developable surface is very intuitive — certainly more so than the of freeform structures. For their computation via an augmented PQ
dual control structure in terms of tangent planes, which can be usedperturbation algorithm, see Sec. 5.

to avoid nonlinear constraints (cf. [Pottmann and Wallner 2001]). i ) . i
A vertexv of a quad mesh is aonical vertexf all the four (ori-

In the perturbation phase of the algorithm, the tefigg in (5) is ented) face planes meetingwaére tangent to a common (oriented)
important for maintaining planarity. The terfig,ge discourages sphere. This is equivalent to saying that these oriented face planes
selfintersecting quads and thus acts against the common problemare tangent to a commarriented cone of revolution (see Fig.

that the singular curve enters the designed patch. Firfallyhelps 10a). The axisG of I' can be regarded as a discrete surface normal
to prevent a zigzag effect in adjacent quads. at that vertex.

We call a PQ mesh eonical meshf all of its vertices of valence

four are conical. For theoretical investigations, we consider only
regular quadrilateral meshes whose vertices have valence 4, except
for valence-2 or valence-3 vertices on the boundary. A conical mesh
is in some sense dual to a circular mesh. Instead of requiring the
four vertices of a quad to be @drcular, we require that the four
(oriented) faces incident with a mesh vertex be tangent to an (ori-
ented) cone of revolution. We will see that conical meshes, like
circular meshes, discretize the network of principal curvature lines.

Figure 8: Developable subdivision surfaces generated with the per-There are exactly three types of conical mesh vertices, which can be
turbed cubic LandRiesenfeld algorithm,; this nonlinear subdivision  characterized geometrically as follows. A small sph@centered
scheme keeps the planarity of quads and thus achieves developain a mesh vertex intersects the mesh in a simple 4-sided spherical
bility of the limit. The control entity (a) is a piecewig#anar PQ polygonP. If the four vertices; of P cannot be contained in the
strip. (b) and (c): 1 and 3 rounds of subdivision. same hemisphers,is of thehyperbolictype. Otherwise (i.e., the
four verticesp; are contained a hemisphene)s either ofelliptic
type (see Fig. 10a) or oparabolic type depending on whethd?

4 Conical meshes
Gi,j 4—-——"6’]'\ Gita,j
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A particular discretization of the network of principal curvature @
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lines are theeircular mesheswhich are quad meshes whose quads

are not only planar, but also have a circumcircle [Martin et al. 1986; Figure 10: (&) Configuration of the faces of a conical mesh at a ver-
Bobenko and Suris 2005]. Even though they are not the focus of the €X. The faces touch the common cdnalong rulingsRy, ..., Ry,
present paper, it is however easy to extend our PQ perturbation al-2nd have interior anglesy, ..., @4. (b) Faces of a conical mesh at
gorithm to the computation of circular meshes (see Section 5 and tWo adjacent vertices; j andv; j,1, and the intersection poimt j

Fig. 17). It turns out that another discrete analogue of the principal Of n€ighboring axe&; j, Gi j 1.

Principal curvature lines form a special network of conjugate curves
on a surface. Apart from umbilic points, where this network pos-
sesses singularities, it behaves nicely, since its curves intersect a
right angles. This is not necessarily true for an arbitrary conjugate
curve network; asymptotic (setfonjugate) directions give rise to
degenerate situations that make such networks unsuitable for mesh
ing purposes (Fig. 4).




is convex or not. These three types of mesh vertices are discrete(2)
analogues of hyperbolic points, elliptic points and parabolic points
on a smooth surface.

An angle criterion for conical meshes. There is a simple con-
dition characterizing a conical mesh in terms of the interior angles
of its quads. This characterization is also important for computing
conical meshes (see Equ. (6) in Section 5).

Geometry Fact 1 A vertex of a quad mesh is a conical vertex if
and only if the angle balance, + w3 = @, + @4 is satisfied (see

Fig. 10 for notation). ¢
) o ) Figure 12: A conical mesh discretizes the network of principal cur-

Here we assume that no two adjacent faces incident with a meshyature lines. (a) A conical mesh has conical offset meshes and a
vertex are ceplanar, for otherwise the vertex is always conical. The discretely orthogonal support structure connecting the offsets. (b)
(oriented) great circles that carry the edges of the spherical polygon cone axes of neighboring vertices intersect in the discrete principal

P are tangent to a common (oriented) circle if and only if the vertex cyrvature centers. Connecting these axes leads to discrete row and
is conical. For elliptic vertices, Geometry Fact 1 follows from a  ¢olumn developables orthogonal to the mesh.

result by A. J. Lexell which states that a convex spherical quadri-
lateral has an incircle if and only if the sums of opposite sides are
equal. A proof of Geometry Fact 1 for all types of mesh vertices is The normals of a conical mesh. Starting from a planar mesh
given in [Wang et al. 2006]. As an example we now use the elliptic with quadsQ; j, we construct a mesh in the unit sphere whose ver-
vertex in Fig. 10a to illustrate why the angle balance holds in this ticesnjj are the unit normal vectors @f;. It is called thespherical
case. imageof the original PQ mesh. For conical meshes, the spherical

) ) ) image has special properties: As the four faces which meet in a
_an&der t_he right circular conE tangent to all the four faces vertexvy, are tangent to a common cofig,, the normal vectors
incident with v, the vertex ofl. Suppose that the face plane of these faces enclose the same angle with the cone’s axis. Thus
Qi touchesrl” along the rulingR;. Let Lj denote the intersection  these four normal vectors lie in a circle contained in the unit sphere;

line of Qi and Q1. Denoteo; = <(Li,R). Then, by symme-  the spherical center of this circle gives the unit direction vector of
try, <(Li,Riy1) = <(Li,R) = oi. Sincew = ai + &1, we have G, . Thusthe spherical image of a conical mesh is a circular mesh
W1+ 03 = 0 + O + O3+ 04 = 0 + W4. This property is a discrete analogue to the well known fact that the

spherical image of the network of principal curvature lines is an
orthogonal curve network on the sphere.

Support structures of conical meshes. Fig. 10b illustrates two
neighboring vertices; j andvi, 1 j of a conical mesh. There are
two facesQ; j andQ; ;1 containing both vertices. These two faces
are tangent to both con€sj andrlj, 1 j. It follows that their axes
Gi,j andGj 1, lie in the bisector plane of the oriented fad@s;
andQ j_1. The important fact derived here is that neighboring axes
(discrete surface normals) are-ptanar, and they are contained in
a plane orthogonal to the mesh in a discrete sense.

It follows that an edge of the mesh, the discrete normals at its end-
points, and the corresponding edge of any offset mesh, lie on a com-
mon plane. This property can be used to build ‘orthogonal’ support
structures as shown in Figures 1, 12 and 15, which are important
for the construction of freeform glass structures based on conical
Offsetting conical meshes. Meshes with planar faces (includ-  meshes. Celanarity of axes5; j andG; ;.1 implies:

ing triangle meshes, cf. e.g. [Kim and Yang 2005]) in general do not ) ) )

have the property that offsetting all faces by a fixed distance leads G€0metry Fact 2 Successive discrete normals of a conical mesh
again to a mesh with the same connectivity, since planes meeting a2long @ row or column are cplanar and therefore form a discrete

a common point in general do not meet again at a common point af- dévelopable surface (see Fig. 12).

ter offsetting. Conical meshes, however, have this property — they peca|l that the surface normals of a smooth surface along a curve

possess conical quad meshes as offset meshes, as illustrated by Figynstitute a developable surface if and only if that curve is a princi-

ures 11 and 12: The faces of a conical mesh incident with a vertex | curvature line. Fact No. 2 is a discrete analogue of this classical

vj j are tangent to an oriented cone with a&js;. After offsetting, result, and shows the following important property:

they are still tangent to a cone with tkameaxis. This behavior

of the discrete surface norm@ ; is consistent with the behavior ~ Geometry Fact 3 If a subdivision process, which preserves the

of the ordinary surface normal of a smooth surface under offsetting conical property, refines a conical mesh and in the limit produces a

(which also does not change). curve network on a smooth surface, then this limit curve network is
the network of principal curvature lines.

Figure 11: A conical mesh has conical offset meshes, here illus-
trated by a planar cut through a sequence of offsets.

Remark: It is easy to show that any PQ mesh having the offset-
ting property is a conical mesh; that is, the offsetting property is a
characterizing property of conical meshes. Offsetting planes by a
fixed distance along their normal vector is a simple instance of a
Laguerre transformation [Cecil 1992]. It is not difficult to see that
general Laguerre transformations map conical meshes to conical
meshes, whereas the property of a mesh being circular is preservedq
under Mobius transformations [Bobenko and Suris 2005].

Focal surfaces with conical meshes. Ina conical mesh, neigh-
boring axes (discrete surface normals) in a row intersect, and so do
neighboring axes in a column. These intersection points are dis-
crete row and columourvature centerswhich define, in general,

a two-sheet discrete focal surface. It is easy to see that the two
uad meshes defined by the row centers and the column centers are



actually PQ meshes, and that singularities of discrete offsets occur
at these two discrete focal sheets. This is analogous to the smoott
case [Porteous 1994].

Remark:We might ask if there are meshes which are both circular SN \’

. o . . o o TR,
and conical. The answer is in the affirmative, and it is not diffi- éﬁﬁg}r’g
cult to construct some. Interesting examples of conical meshes of ;r:eiff,liﬁgg:’,_.,;‘:l},:. X
constant cone opening angle, which are at the same time circular -(" 'Q.:JJ \

of constant circle radius, are derived from the discrete surfaces of
constant negative Gaussian curvature of [Wunderlich 1951]. One
of them is shown in Fig. 12. However, meshes with both properties
may be too inflexible to be useful for modeling and approximation.

Figure 13: Principal curves computed with different kernel radii.

The perturbation algorithm for computing a circular mesh is similar.
5 Computing conical meshes A quad is planar, convex, and has a circumcircle, if and only if the
four angles enclosed by its four edges have the property
We would like to approximate a surfagg which is given in any ¢i1]- + ¢i3j —-n=0, ¢i2j +¢iz.1j -n=0. )
representation, by a conical (or circular) mesh. Since both types ' ' ' '
of meshes converge to principal curvature lines under refinement, . . 4 B
it is a good choice to use a quad mesh extracted from principal We therefore replace the planar.ny qonStrd’iﬁH"'f?i-J —.27:_
curvature lines (e.g., the meshes from [Alliez et al. 2003]) as input 0in Equ. (1) by the two constraints in (7). The modifications of the

for an optimization algorithm which achieves the conical or circular P€Nalty method proceed along the same lines. We do not enforce
property by perturbing the vertices as little as possible. the conical condition for vertices of valence greater than four, as in

] L i i architectural applications such vertices are expected to get special
Robust computation of principal curves. Forcomputing prin-  treatment anyway. We could however easily make such a vertex
cipal curves, we er_nploy a method dlffer.ent from previous ap- cgnical by imposing the conical condition for any four faces adja-
proaches [Cohesteiner and Morvan 2003; Clarenz et al. 2004]. cent to the vertex. Similarly, for circular meshes the circular con-
In view of the desired average size of faces in a principal mesh, we gition is not enforced fon-gons withn > 4, except for artificial

find it appropriate to use as inpabust principal curvesonagiven 5 gons which arise from quads at T junctions, where the original
scale r(Fig. 13), which are computed as follows. The procedure an- qyad's vertices are made cocircular.

alyzes neighborhoods of poirf the given surface®. We choose

a kernel radius, which defines the scale on which we would like to
work. The domain of space which, locally aroymdies to one side

of the surface is denoted ly. For each poinp € ® we perform a
principal component analysis (PCA) of the 8&{p) = B"(p) N D,
whereB' (p) is a ball of radiug centered irp. This means that we
compute the barycentef of N" and the eigenvectott§, t5,t5 and
corresponding eigenvaludg < A5 < 4§ of the covariance matrix
Ji= [y (x=8")- (x—5")Tdx. Inthe limitr — 0, t§ converges to the
surface normal ap, andt},t}, converge to the principal directions.
What we actually compute is a kind of average of these geometric
characteristics over a small neighborhoocpofMost importantly,  Figyre 14: The conical mesh in front was obtained by a combi-
directionsty, t; are more robust against noise and minor perturba- nation of CatmulClark subdivision and conical optimization from

tions than those of classical differential geometry or than those in the control mesh behind. This conical mesh is the basis for the glass
[Clarenz et al. 2004], which are computed via PCA on the surface girycture in Fig. 1.

patch neighborhoo8' (p) N ®. For proofs and details on efficient
implementation we refer to [Pottmann et al. 2005].

The directiong], t;, need not be tangent to the given surface.at

However, we can still obtain meaningful principal directionpat 6 Results and discussion

if we just project them onto the tangent plangpatThe direction

of this projection shall be given by the third eigenvedigrwhich ]

estimates the surface normal. The projected directions do not haveDevelopable surfaces. Our experiments show that the proposed
to be orthogonal anymore, which is actually no loss and rather en- subdivision approach to developable surface modeling is a power-
hances stability when we now integrate these two vector fields to ful new tool (see Figures 9 and 16). The elimination of the singular
obtain principal curves at the chosen scalg(see Fig. 13). Our  curve from the actually designed patch is simplified by the multi-
a|gorithm for vector field integration and quad mesh extraction is scale approach inherent to subdivision: Planarization results in con-
based on ideas in [Alliez et al. 2003; Dong et al. 2005; Marinov Ve€X quads and thus eliminates singularities from the designed patch

and Kobbelt 2004]. We do not give more details, since this part is at each subdivision level (Fig. 16). This multiscale elimination of
not considered the topic of the present paper. the singular curve appears to be more efficient than the methods

Conical and circular optimization. It is not difficult to mod- known in the literature [Pottmann and Wallner 2001].

ify the PQ perturbation algorithm from Sec. 2.2 so that it produces The PQ perturbation method described in Section 2.2 makes use of
conical meshes. For perturbation into a conical mesh, we keep theg reference surface. If only a coarse PQ strip is available as a control
constraints of (1) and, according to Geometry Fact No. 1, for each structure for a smooth developable, such a reference surface may be

vertex add the constraint generated by applying thenperturbedsubdivision rule to the strip.
1 3 2 4 Numerical evidence for th€? smoothness of the perturbed cubic
o+ o — ofj — o =0. © LaneRiesenfeld rule is furnished by the apparent smoothness of

reflection lines in Fig. 9.
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Figure 15: Design studies with conical meshes and their offset meshes produced by subdivision and conical perturbation. The figure shows a
wide-angle perspective of the interior (left), an exterior view (center), and an offset detail (right).

Conical and circular meshes. The combination of subdivision iterations can be as high as 20-50 for the SQP method with a close-
and conical/circular perturbation produces high quality meshes suit- ness term present. Surface approximation by conical and circular
able for aesthetic design (see Figures 1, 14, and 15). Without sub-meshes would certainly benefit from even better initial meshes, but

division, it is essential that perturbation which aims at principal
meshes (circular or conical) is applied to a mesh which is not too far
away from a principal mesh. This is achieved by deriving a mesh
from principal curves (cf. Fig. 17). Otherwise, we either get large
deformations, or — if the surface is subject to further constraints

such as fixed points or closeness to a reference surface — we may”

obtain selfintersections, creases, and other undesirable effects.

Efficiency. The performance of our neoptimized PQ perturba-
tion code depends not only on the size of the input data, but also on

this aspect of quadominant remeshing is not a focus of the present
paper.

Convergence. It should be mentioned that there are meshes

here PQ perturbation fails because of topological obstructions.
On the other hand we did not encounter problems with meshes
based on principal curves, and PQ perturbation is capable of large
deformations when that is necessary for achieving planarity.

the geometry and the nature of nearness constraints. To give a few

numbers, on a 2 GHz PC we experienced computation times of 0.08
(penalty) and 0.75 seconds (sequential quadratic programming) for
PQ perturbation applied to the trefoil knot with 336 faces in Fig. 9.
Thus interactive modeling of developable surfaces is easily possi-
ble. Total mesh computation time for Fig. 15 was 13 seconds, of
which 80% was for 4 iterations of conical perturbation (penalty) at
the finest subdivision level with 5951 vertices. There is still room
for improvement when processing large meshes. The number of

Figure 16: Design studies with developable surfaces. Two of four
developable strips in the top figure show control structures, and
the other two show the result of subdivision together with singu-
lar curves.

7 Conclusion and future work

We have shown how to construct and approximate surfaces with
meshes composed of planar quadrilaterals. To our knowledge, ap-
proximation with conical, circular, or even just PQ meshes has not
been treated before. Combining an optimization algorithm for the
computation of these PQ meshes with qireded subdivision algo-
rithms results in a powerful modeling tool. It adapts subdivision for
applications in architecture and also provides a new way of mod-
eling developable surfaces. In particular, we have introduced and
studied conical meshes, which discretize the network of principal
curvature lines. They are well suited for designing ffeen glass
structures in architecture, and provide a simple and natural offset-
ting operation and the construction of a support structure from dis-
crete surface normals.

The many directions for future research include studies in discrete
differential geometry such as the investigation and computation
of special discrete surfaces (such as surfaces of constant mean or
Gaussian curvature, Willmore surfaces, etc.) in a principal mesh
and especially conical mesh representation. This would also be very
welcome for aesthetic design [Sullivan 2005]. Further research di-
rections are the incorporation of statics, stability and other aspects
of construction and fabrication into the computation of quad meshes
for architecture and the use of conical meshes and their offsets as a
discrete model for simulation problems with shells and plates.
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Figure 17: Circular mesh generated by optimizing a mesh generated
from principal curves (top right).



