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This paper describes a method for recursive/y generating 
surfaces that approximate points/ying-on a mesh of  arbit- 
rary topology. The method is presented as a generaliz- 
ation of  a recursive bicubic B-spline patch subdivision 
algorithm. For rectangular contro/-point meshes, the 
method generates a standard B-spline surface. For non- 
rectangular meshes, it generates surfaces that are shown 
to reduce to a standard B-spline surface except at a small 
number of  points, called extraordinary points. Therefore, 
everywhere except at these points the surface is continuous 
in tangent and curvature. A t the extraordinary points, the 
pictures of  the surface indicate that the surface is at least 
continuous in tangent, but no proof of  continuity is 
given. A similar algorithm for biquadratic B-splines is 
also presented. 

Recursive patch subdivision algorithms have been used 
extensively in computer graphics since Catmull first devised 
them for rendering shaded pictures of curved surface 
patches I . The algorithm he devised recursively subdivides 
a surface patch into four subpatches until the resulting 
patch is roughly the size of a picture element (pixel) of 
the raster display on which it is to be rendered. At this 
point, the tests of its visibility and the respresentation 
of its shading properties are greatly simplified. 

When Catmull's work was near completion, George 
Chaikin described in a seminar a method for generating 
smooth curves by recursively cutting the corners from a 
control polygon 2. Motivated by this, Catmull invented 
a method for generating cubic surfaces for polyhedral 
nets of arbitrary topology. However, since he could not 
prove that the surface was well-behaved at all points on the 
surface, he did not implement it. Recently, Clark imple- 
mented the method to empirically determine if the sur- 
face is well behaved and generalized the rule for determin- 
ing the new surface points. Presented in this paper is a 
set of subdivision rules that have been refined to the 
point where the pictures suggest that the generated sur- 
face is continuous in tangent and curvature. Doo and 
Sabin have analysed the behaviour of the surface in the 
neighbourhood of the extraordinary points s , and the pic- 
tures presented here incorporate some tests of their 
predictions. 
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The algorithm described herein is very useful for the 
purposes of making smooth pictures of three dimensional 
objects. The task of defining smooth approximations to 
objects is much simpler if the points in terms of which the 
object is defined do not have to lie on a topologically 
rectangular grid. 

The basis of the method results from considering a 
standard bicubic B-spline patch on a rectangular control- 
point mesh. The shape of such a patch is governed by 16 
control-points, as shown in Figure 1. The original points 
are circled. In subdividing this patch into 4 subpatches, 
25 subcontro/points are generated. These are indicated 
in the figure by Xs. Note that some of the Xs lie in the 
middles of the squares of the original mesh; these are 
called new face points. Likewise, some of the new points 
lie on the edges connecting original control points; 
these are called new edge points. The points corresponding 
to the old control points are called new vertex points. In 
splitting the original patch, it is found that each new 
control point of a given type is computed from its neigh- 
bouring points by the same form of algebraic expression. 
For example, new face points are computed as the aver- 
age of the four old vertices that define the face. 

This paper describes a method for generalizing these 
subdivision rules to arbitrary control-points meshes. The 
method applies the same expressions that are generated 
in the rectangular case to faces, edges and points of 
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Figure 1. Standard bicubic B-sp/ine patch on a rectangular 
control-point mesh 
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arbitrary meshes. That is, new face points are computed 
as the average of the old points defining the face, etc., 
and the new vertex points depend upon the number of 
edges incident on a vertex in such a way that the correct 
expressions result when this number is 4, as in the rec- 
tangular case. 

RECTANGULAR B-SPLINE PATCH SPLITTING 
The bicubic B-spline patch can be expressed in matrix form 
by 

S(u,v)= U M G M t V t 

where 

M =  1 3 - 6  3 
0 3 
4 1 

is the B-spline basis matrix for cubics, and 

FP,, P,2 P,3 P,4~ 
=]P2, P22 P23 a="l 

G i P31 P32 P33 P34 I 
LP4, P42 P43 P44_] 

(1) 

is the set of control points, which are arranged on a topolo- 
gically rectangular mesh according to their subscripts, and 

U = [ uau2u 1 ] and V= [V3V2V 1 ] 

are the primitive basis vectors. 
We will consider just the subpatch of this patch corres- 

ponding to 0 < u,v <~. The other subpatches need not be 
considered due to the symmetry of the B-spline basis. This 
is the subpatch 5(ul,  vl), where ul =u/2 and vl =v/2. Sub- 
stituting these two expressions into (1) 

S(ut, v I ) = U S M G M t S t V  t (2) 

is obtained, where [i00! 1 o ~ o 
s =  o 

0 0 

U = [u 3 u 2 u I ] 
and 

V = [v 3 v 2 v 1 ] 

This patch must still be a bicubic B-spline with its own 
control-point mesh G1, satisfying 

5(U, v) = U M G] M t V t 

Requiring that this expression be equal to (2), this will be 
true for arbitrary values of u and v if and only if 

M G1 Mt = S M G Mt S t 

Assuming that the basis matrix M is invertible, which is 
the case, it is found 

G=  [ M - '  S M  ] G [ M t S M  - t  ] 

= H I  G H  t 

where 

H1 = M  - 1 S M  

is called the splitting matrix. Carrying out the matrix 
multiplications, it is found 

6 1 0 
H i =  4 4 

1 6 

Hence the control point mesh corresponding to the 
subpatch in question is related to the old control point 
mesh by the expression 

G1 = H, G H t (3) 

Referring now to Figure 1, the new face point labelled 
q is the (1,1) element of G. Carrying out the algebra of 
(3) gives 

q l l  = (Pll +P12 +P21 +P22) (4) 
4 

Likewise, the point q12, a new edge point, is given by 
(C + D) + (PI2 ÷ P22) 

q12 = 2 2 (5) 

where 

q l l  = C =  

and 

q13 =O=  

(Pil +P12 +P21 +P22) 

(P12 +P13 +P22 +P23) 

The new vertex point, q==, is given by 

+ (61 

where 

(ql1 + q13 + q3! + q33) 
Q= 4 

and 

R= ~ (~_P22_ + P12)+ ( P 2 2 2  +P2')+(P222 +P32)+(P222 "2+1~3 t" 

It is easily verified that each of the elements of G satis- 
fies an expression similar to one of (4, 5, 6). Since these 
expressions were deduced from the standard B-spline basis, 
they generate a bicubic B-spline surface. 

ARBITRARY TOPOLOGY 
For the purposes of generalizing the expressions (4, 5, 6) 
to arbitrary topologies, i t  is convenient to express them 
as a set of rules which are dependent on the number of 
points around a face and on the number of edges incident 
to a vertex. Of course the rules must yield the expressions 
(4, 5, 6) when that number is four. The rules are: 

(A) New face points - the average of all of the old points 
defining the face. 

(B) New edge points - the average of the midpoints of 
the old edge with the average of the two new face 
points of the faces sharing the edge. 

(C) New vertex points - the average 

0 2R s(n-3)  
11 It n 

where 
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Figure 2. 
topology 
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Result of  applying rules to a simple nonrectangular 

Q = the average of the new face points of all faces 
adjacent to the old vertex point. 

R = the average of the midpoints of all old edges 
incident on the old vertex point. 

S = old vertex point. 
After these points have been computed, new edges are 

formed by 

• connecting each new face point to the new edge points 
of the edges defining the old face 

• connecting each new vertex point to the new edge points 
of all old edges incident on the old vertex point 

New faces are then defined as those enclosed by new edges. 
The results of applying these rules to a simple non- 

rectangular topology are shown in Figures 2(a,b,c,d). 
Figure 2a shows the original triangular region labelled A 
that will be approximated by a triangular surface patch. 
The other three regions around the perimeter of region 
A assist in defining the slope and curvature of the patch 
at its boundaries, as in a rectangular topology. 

Figure 2b shows the result of applying the rules one 
time. Note that all new faces have four sides. However, 
now four vertex points have only 3 edges incident upon 
them. These are the three new vertex points corresponding 

to the original old vertices ol  the region A plus the new 
face point for the region. Following a suggestion by 
Coons, we refer to these points as extraordinary points 
because it is only at the final vertex points associated 
with these points that the resulting surface is not a 
standard B-spline surface. 

Application of the rules once again yields Figure 2c. 
In this figure, six faces have emerged that have associated 
with them a set of 16 points that lie on a rectangular 
topology, as with the standard B-spline. Each of these 
faces has been shaded for clarity. Since the rules being 
applied generate a standard bicubic B-spline patch for points 
having this topology, these regions generate B-spline patches. 
Hence, a portion of the final triangular surface is now 
defined, and since bicubic B-splines that share vertices 
in this way are continuous in position, tangent and curv- 
ature, this portion of the surface is similarly continuous. 

Applying the rules a third time results in further defini- 
tion of B-spline surface patches near the extraordinary 
points, as shown in Figure 2d. The cross-hatched regions 
indicate where the new surface patches emerge with this 
application of the rules. Each of these new patches joins 
to the appropriate patches of Figure 2c with standard 
bicubic B-spline continuity. This is evident if we also 
subdivide the patches generated at that level; the points 
in common between patches dictate the continuity. How- 
ever, since it is computationally more efficient to render 
standard patches by another algorithm, each time a 
standard B-spline patch is generated it is passed to a 
standard rendering algorithm. 

It is clear that further application of the rules to the 
regions surrounding the extraordinary points will generate 
more standard patches near these points. In the limiting 
case, the entire triangular region, excluding the extraor- 
dinary points, is covered by a B-spline surface Therefore, 
the triangular region is approximated by a surface that is 
continuous, except possibly at the extraordinary points. 
Since the rules hold for arbitrary topologies, the shape of 
the regions need not be simple triangles. Any number of 
sides will generate a B-spline surface except at the 
extraordinary points. 

It should be noted that after one iteration all faces are 
four-sided, hence all new vertices created subsequently 
will have four incident edges. Therefore after one iteration 
the number of extraordinary points on the surface remains 
constant. 

Figure 3. Surface generated from a tetrahedron 
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At the suggestion of M Sabin a net of points taken from 
the saddle z = xy has been made. The centre polygon has 
eight sides. Figure 7 shows an orthogonal view along the 
z axis. After one iteration of the algorithm there is a 
vertex in the centre with 8 edges attached to it (Figures 
8, 9). A shaded picture of the saddle shows that with a 
large number of edges around a saddle, the centre is not 
well behaved (Figure 10). The saddle demonstrates that 
the authors have not found the best set of rules. 

BIQUADRATIC SURFACES 
The method can also be applied to biquadratic B-splines. 
The subdivided net is generated by creating a new face 
for each face, edge. and vertex of the original net. In 
Figure 11 the heavy lines are the original net and the light 
lines are the new net. The rule for finding each new point 
is dependent on the corner it is near. After analysing the 
biquadratic subdivision in a manner similar to that des- 
cribed above it can be seen that in Figure 11 

(9P11 + 3P12 + 3P21 + P22) 
ql l  = 16 

Figure 4. Original tetrahedron used to generate Figure 3 
with line drawing of  the generated surface 

The authors would like to know the behaviour of the 
surface at the extraordinary points. At the present time 
they have not made an analytical proof of the continuity 
at these points. However, the pictures of the surfaces 
generated by these rules suggest that the surface is at least 
continuous in tangent everywhere. 

Figure 3 shows a view of a surface generated using 
as a starting shape a tetrahedron, which is the smallest 
volume element that does not have a rectangular grid of 
control points. The surface is closed and has 8 extraordinary 
points, one for each original degree 3 vertex of the 
tetrahedron and one for each face, since each face yields 
a degree 3 vertex after the first application of the rules. 
The original tetrahedron used to generate Figure 3 is 
shown in Figure 4, along with a line drawing of the 
generated surface. It is evident from Figure 3 that the 
surface is continuous in tangent at the final vertex points 
corresponding to the original vertices of the 
tetrahedron. 

Another grid of points is shown in Figure 5. This grid 
generates the closed volume shown in Figure 6. 

The set of rules presented above is somewhat arbitrary. 
In fact initially a different rule was tried for (C). The new 
vertex point was 

(C) (alternate) (2 R 5 ~+~*~ 

The results using that rule were unsatisfactory in that the 
surface became too pointy for the tetrahedron. The 
pictures made using that rule motivated us to find a better 
set of rules, the best of which was presented above. A 
better set of rules, indeed, a better criterion for judging 
the rules than the qualitative appearance of a picture, 
is yet to be devised. Figure 5. 

Fronl and bock 
foce nonplonor 

Grid of  points 
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Figure 6. Closed volume generated from grid in Figure 5 

Figure 8. View of  Figure 7 after one iteration 

Figure 7. Orthogonal view along z axis of  z=xy 

This can be rewritten as a rule to find a new vertex q near 
an old vertex p 

_ F ~f  P(n--3) 
q - n  + w  + n 

where 

n = number of vertices in the face 
F = the average of the vertices in the face 
E = the average of the two edges incident on P 

This rule can likewise be applied to any topology. In this 
case, after one iteration the number of non-four faces 
remains constant while all vertices have four incident-edges. 

CONCLUSIONS 
The methods presented in this paper generate B-spline 
surfaces on arbitrary meshes that are continuous except 
at a small number of extraordinary points. The pictures 
generated indicate that the surface is also continuous 
at these points, although no analytical proof of con- 
t inuity is given. 

Figure 9. View of  Figure 7 after many iterations 

Figure I O. Shaded picture of  the saddle 

Other methods have been developed for approximating 
non-rectangular control-point meshes. For example, Lane 
and Riesenfeld 3 have presented an approach that is for- 
mulated in terms of a generalized basis function of two 
parametric variables. Also, Barnhill 4 describes a triangular 
patch approximation scheme. Neither of these approaches 
is the same as the method described in this paper. 
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Figure I 1. Biquadmtlc B-spline 

In addition to the need for a proof of continuity at the 
extraordinary points of these surfaces, there is also a need 
for a coherent mathematical treatment of approximation 
schema on arbitrary topological meshes; such a treat- 
ment should encompass all of these approaches. It is 
hoped that this paper might stimulate such investigations. 
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