FINAL EXAM

Your Name: ____________________________ Your Class Computer Account: ____________

Row: ______ Seat: ______ Your student ID #: ____________________

INSTRUCTIONS (Read carefully!) ----- DO NOT OPEN UNTIL TOLD TO DO SO!

TIME LIMIT: 170 minutes. Maximum number of points: 236.

CLEAN DESKS: No books; no calculators or other electronic devices; only writing implements and TWO double-sided sheets of size 8.5 by 11 inches of your own personal notes.

NO QUESTIONS! (They are typically unnecessary and disturb the other students.) If any question on the exam appears unclear to you, write down what the difficulty is and what assumptions you made to try to solve the problem the way you understood it.

DO ALL WORK TO BE GRADED ON THESE SHEETS OR THEIR BACKFACES.

NO PEEKING; NO COLLABORATION OF ANY KIND!

I HAVE UNDERSTOOD THESE RULES:

Your Signature: ____________________________________

Problem #0 — Please give us some feedback (2 pts.)

What concept discussed in CS 184 did you find most difficult to understand?
Problem # 1 — Short Questions (30 pts.)

(5) Given the choices (voxels | B-rep mesh | CSG | sweep | instantiation), which is the preferred way to model:

A tapered, twisted airplane wing: ___________ A regular, modular spiral staircase: ___________

A geometrical sculpture made of interpenetrating spheres and cylindrical holes: ___________

(3) A colored light has the RGB components (0.9 0.4 1.0). Circle the term that best describes its perceptual color:

pink medium_grey magenta light_purple bright_orange light_brown blue_cyan

(6) A cubic Bézier segment with a cusp at \(t = 0.5 \) is subdivided into two parts at parameter value \(t = 0.25 \) (using deCasteljau). Circle all types of continuity that exist at the junction:

\[
\begin{array}{cccccccc}
G0 & C0 & G1 & C1 & G2 & C2 & G3 & C3 & G4 & C4 \\
\end{array}
\]

Circle all the types of continuity that hold for the larger of the two subdivided curve pieces:

\[
\begin{array}{cccccccc}
G0 & C0 & G1 & C1 & G2 & C2 & G3 & C3 & G4 & C4 \\
\end{array}
\]

(3) Given a perspective projection with the eye at \(z = 0 \), the image plane at \(z = -1 \), and a 3D scene object centered at \(z = -100 \), how does the perspective image change, if all world coordinates \((x,y,z)\) are doubled, so that the image plane is now at \(z = -2 \), and the scene object is centered at \(z = -200 \)? The transformation experienced by the image is (circle all that apply):

stays_same, uniform scaling, non-uniform scaling, sheared, none_of_the_previous

(3) How many DOF (degrees of freedom) are associated with all possible lines in 4D-space \((x,y,z,t)\)? ______________

(3) How many DOF are associated with all possible configurations of a 4-bar loop in \(\mathbb{R}^3 \)? The 4-bar loop is constructed from 4 rigid, thin line-segments connected by 4 ball-joints. ______________

(3) How many DOF (degrees of freedom) are associated with the planar mechanism in \(\mathbb{R}^2 \) shown at right? ______________

(4) Mr. Phong has introduced an illumination model that renders partially reflective surfaces. What is the other contribution that Mr. Phong has made to the field of computer graphics:
(4) What are the minimum and maximum number of vanishing points that can be obtained in a perspective projection of a scene containing two independently rotating cubes?

MIN: ___________ MAX: ___________

(4) What are the minimum and maximum number of vanishing points that can be obtained from a perspective projection of the picture frame made from 4 square, mitred dowels? (All enhanced edges count, including the diagonals).

MIN: ___________ MAX: ___________

(4) Modify one of the four directional vector diagrams below to represent the perceived brightness observed in the directions opposite to the small arrows for an idealized Phong surface, illuminated with a directional light coming from the upper right (fat arrow); the relevant surface characteristics are $kd=0.3$, $ks=0.7$, Phong exponent=50.

(4) Two of Grassman’s Laws state that perceptual color space is 3-dimensional and continuous. Write down the third law:

(4) Which of the following effects can be done with the type of ray-tracing renderer that you used in AS#5 and #6? (Check all that can be done).

- [] Phong highlights on a glossy surface
- [] Specular reflections of other objects in the scene
- [] Caustic lines
- [] Image enlargement seen through a convex glass lens
- [] Color-bleeding from one diffuse surface onto another diffuse surface
- [] Total internal reflection on a glass/air interface

(4) What is the key difference between ray-tracing and ray-casting? (Do NOT mention common features!).

(6) Give a parametric vector description for all points in the triangle (ABC) where A, B, C are its corner locations in \mathbb{R}^3.

Page max =
Problem #2 — CSG (10 pts.)
Given the 2-dimensional shape below and a 2-D computer graphics CSG system with only the primitives unit-square and unit-circle, draw a simple CSG tree that will model this shape. Use a minimal number of elements and of Boolean operations. Ignore transformations. Also show the transformed, instantiated leaf objects overlaid on the depicted shape.

Problem #3 — Bézier Curve (10 pts.)
(A) Draw the cubic Bézier segments defined by the control polygon below; locate its mid-point and its tangent direction using the deCasteljau method.
(B) Now add a second cubic Bézier segment so that the composition of the two segments form a C1-continuous, closed, figure-8 curve. Also construct the mid-point and its tangent direction for the second Bézier segment using the deCasteljau method.

Problem #4 — Polygon-fill (8 pts.)
Paint all “inside” areas according to the POSITIVE WINDING NUMBER model.
Problem # 5: — Polygon Clipping (8 points)

Show the polygon contour(s) including the spurious double segments on the Window frame that will be output from the Sutherland-Hodgman polygon clipping algorithm for the polygons shown below. Assume that the clipping sequence is: c, d, a, b. Do your draft on the left, and show the final result in the right figure by strongly tracing out all output line segments.

Problem # 6 — Phong Shading (12 pts.)

You are processing the Phong surface shown in profile below with Phong interpolation. The computed dot-products between the averaged vertex normals and the directional light of strength 1.0 are as indicated. At the indicated points A, B, C, and D, compute the resulting brightness values for an observer looking form the light direction, assuming $ka = kd = 0.3; \ k_s = 0.5; \ k_{sp} = 50$.

Brightness @ A = ______

Brightness @ B = ______

Brightness @ C = ______

Brightness @ D = ______
Problem # 7 — Circle the correct answer (10 pts.; −2 each wrong)

TRUE	FALSE	Translations in R3 are commutative.
TRUE	FALSE	Any R3 combination of translations and rotations is an affine transformation.
TRUE	FALSE	In R3, any number of non-uniform scalings and a single mirroring operation on a main coordinate plane can be applied in arbitrary order to get same the result.
TRUE	FALSE	In R3, asymmetrical 4x4 matrices can be used to describe translations of points represented by homogeneous coordinates.
TRUE	FALSE	In a perspective projection, the midpoint of a straight line segment will be mapped to the middle of the projected line segment.
TRUE	FALSE	The oblique parallel projection of a line segment AB (without clipping) is identical to the line segment between the parallel projections of the endpoints A and B.
TRUE	FALSE	A piece of surface will have the same perceptual color regardless of which of two metamers is used to illuminate it.
TRUE	FALSE	A spherical Lambert emitter will look like a disk of uniform brightness when looked at from any direction.
TRUE	FALSE	The Gouraud shading technique produces a planar \(a*x + b*y + c \) brightness distribution on planar faces of a convex polyhedral object.
TRUE	FALSE	Using the Frenet frame to define the orientation of the cross section swept along an arbitrary, smooth, closed space curve with no points of zero curvature anywhere, will guarantee that the cross sections will smoothly match up where the two curve ends join to close the loop.

Problem # 8: Polygon Rasterization (10 pts)

Using the rasterization paradigm discussed in class (lower left pixel-corner sampling), mark with a strong dot all the sample points that fall onto the polygon border and that “belong” to the polygon, and thus would turn on the corresponding pixel. (Apparent coincidences are meant to be exact coincidences).
Problem # 9 — Illumination (18 pts.)

Draw observed brightness B (to indicated scale), as seen from camera eye at (0, 10, 0), along real face F (Phong model, $K_{amb} = K_{diff} = 0.3$, $K_{spec} = 0.6$, $N_{phong} = 50$), illuminated by lights P, D & S. Point light P is of intensity 50, located at (-10, 5, 0). Directional light D is of intensity 1 and shines from direction (1000, 1000, 0). Spotlight S is of intensity 10 and shines from point (20, 10, 0) in direction (-1, 0, 0); its angular falloff is 4.

At what x-values does “eye” observe a peak in Lambert reflection? $x = \underline{\hspace{2cm}}$

At what x-values does “eye” observe a peak in Phong reflection? $x = \underline{\hspace{2cm}}$

Problem # 10 — Refraction and Reflection (12 pts.)

Two rays enter a square glass prism (refractive index $n = 1.5$) with a square evacuated cut-out as shown.

Ray-trace each of the two rays through the interactions with the first 3 glass surfaces encountered (but not further), and show the directions of the emerging rays after that.
Problem # 11 — Reflection & Filtering (10 pts)

For the set-up illustrated below, in which two lights (A & B) shine on painted canvas C, which is observed through Filter (that passes color F), -- specify what OBSERVER sees (Fill in the table !):

<table>
<thead>
<tr>
<th>Light A</th>
<th>Light B</th>
<th>Painting</th>
<th>Filter F</th>
<th>OBSERVED</th>
</tr>
</thead>
<tbody>
<tr>
<td>none</td>
<td>Magenta</td>
<td>Cyan</td>
<td>Blue</td>
<td></td>
</tr>
<tr>
<td>Blue</td>
<td>Green</td>
<td>Yellow</td>
<td>Blue</td>
<td></td>
</tr>
<tr>
<td>Cyan</td>
<td>Red</td>
<td>Magenta</td>
<td>Yellow</td>
<td></td>
</tr>
</tbody>
</table>

Problem # 12 — Color Spaces (12 pts.)

For each of the diagrams of a color space:
(A) Name the perceptual color indicated by: * = ?
(B) Represent the requested color in the diagram (SHOW: “color”) with “*”.

SHOW: light, unsaturated orange
SHOW: light, unsaturated cyan
SHOW: whiteish magenta
SHOW: dark cyan
Problem # 13 — Texture Mapping (8 pts.)

Use the texture map below and apply it to the rectangular surface on the right, carefully observing the given texture coordinates (u,v).

(0, 0) (1, 0) (0, 0.25) (0.5, 0) (0.5, 1) (1, 0.75) (1, 1)

Problem # 14 — Perspective Warp (10 pts.)

A bundle of lines intersects at location (x, y, f) in the VRCS in 3-space. Where do they intersect after the {Shirley} perspective transform? (Here is the relevant homogeneous matrix):

\[M_p = \begin{bmatrix} n & 0 & 0 & 0 \\ 0 & n & 0 & 0 \\ 0 & 0 & n + f & -fn \\ 0 & 0 & 1 & 0 \end{bmatrix} \]

\[x = \underline{} \quad y = \underline{} \quad z = \underline{} \]

Problem # 15 — Inverse Kinematics (10 pts.)

Write out the (numerical entries in the) Jacobian for the 3-link articulated arm with respect to the distance D of its end-effector E from the center of the sphere S, based on the three actuator angles \(\theta_1, \theta_2, \theta_3 \) (measured in radians). \{ \sin 30^\circ = \cos 60^\circ = 0.5; \ \sin 60^\circ = \cos 30^\circ = 0.866 \}
Problem # 16 — Fill in the blanks with an appropriate answer (10 pts.)

The ________________ of an orthonormal matrix is equal to its transpose.

The BRDF of a general, natural surface has _____ argument(s);
the BRDF of an ideal Lambert surface has _____ argument(s) (variables).

The assignment of color to individual faces starts at ________________ of the scene hierarchy.

The Cohen-Sutherland line clipping algorithm relies on the ________________ of the end-points.

Problem # 17 — Ambient Occlusion (8 pts.)

In the silhouette below mark the locations with maximum (“* max”) and minimum (“* min”) ambient occlusion. Assume a simple hemispherical sky model with no distance penalty.

Problem # 18 — Catmull-Clark Subdivision (8 pts.)

Draw the result of applying one iteration of Catmull-Clark subdivision to the mesh below. Then circle strongly all vertices (both original and new ones created) that are extraordinary.