CS294 Scribe Notes

Chris Wilkens, Scribe

1/27/2010

1 Recap: Interpretation of SDPs

Last time, we saw two important interpretations of

$$
X \succeq 0
$$

i.e. the statement that X is PSD:

1. X is an inner product matrix, i.e. $X_{i j}=v_{i}^{T} v_{j}$ for vectors v.
2. X is a density matrix corresponding to a distribution over vectors, e.g.

$$
X=E\left[z z^{T}\right]
$$

where $z D$ and D is a distribution of vectors on the $n-1$ sphere.
We elaborate on the second interpretation. First, we can construct a density matrix for any distribution D of vectors x over the $n-1$ sphere. Let $p_{x} D$ be the probability of vector x. Then we have

$$
X=E_{D}\left[x x^{T}\right]=\sum_{x} p_{x} x x^{T}
$$

$x x^{T}$ is PSD and p_{x} is positive, so $E_{D}\left[x x^{T}\right]$ is also PSD. Additionally, we note that the trace of X must be 1 . We have

$$
\operatorname{Tr}(X)=\sum_{x} p_{x} \operatorname{Tr}\left(x x^{T}\right)=\sum_{x} p_{x}\|x\| .
$$

Since x is on the unit sphere, $\|x\|=1$. Thus,

$$
\operatorname{Tr}(X)=\sum_{x} p_{x}=1
$$

because p_{x} is a probability distribution.
Second, any PSD matrix $X \succeq 0$ with $\operatorname{Tr}(X)=1$ may be interpreted as such an expectation. Consider the eigendecomposition

$$
X=\sum_{i} \lambda_{i} v_{i} v_{i}^{T} .
$$

Since $\operatorname{Tr}(X)=\sum_{i} \lambda_{i}=1$ and X is PSD (so $\lambda_{i} \geq 0$), it follows that the λ_{i} represent a valid probability distribution over the vectors v_{i}.

Finally, we consider the Frobenius product in this context. What is the meaning of $A \bullet X$ when X is PSD? Interpreting X as a distribution over vectors we have

$$
A \bullet X=\sum_{x} p_{x}\left(A \bullet x x^{T}\right) .
$$

Using the definition of the Frobenius product, this is equivalent to $\sum_{x} p_{x}\left(x^{T} A x\right)$ which gives

$$
A \bullet X=\sum_{x} p_{x}\left(x^{T} A x\right)=E_{D}\left[x^{T} A x\right] .
$$

2 Interpretations of the MAXCUT SDP

The MAXCUT problem: given a graph $G=(V, E)$, find a set of vertices $S \subset V$ such that the number of edges from S to $\bar{S}=V \backslash S$ is maximized, i.e. we maximize $|E(S, \bar{S})|$. The problem is NP-hard; however, a trivial randomized approximation algorithm achieves an approximation ratio of 0.5 .

An Integer Program

We can write the MAXCUT problem as the following integer program:

$$
\begin{gathered}
\max \frac{1}{4} \sum_{(i, j) \in E}\left(x_{i}-x_{j}\right)^{2} \\
x_{i} \in\{-1,1\} .
\end{gathered}
$$

Our next task is to relax the integer program.

Relaxation 1

As a first pass, we try the following vector formulation

$$
\begin{gathered}
\max \frac{1}{4} \sum_{(i, j) \in E}\left\|v_{i}-v_{j}\right\|^{2} \\
\sum_{i \in V} d_{i}\left\|v_{i}\right\|^{2}=2|E|
\end{gathered}
$$

The matrix form of this SDP is

$$
\begin{aligned}
& \max \frac{1}{4} L \bullet X \\
& D \bullet X=2|E|
\end{aligned}
$$

where $L=D \bullet A$ is the Lagrangian of the graph, D is the degree matrix, and A is the adjacency matrix. This may be rephrased as a generalized eigenvalue problem

$$
\max \lambda
$$

$$
A x=\lambda D x
$$

or equivalently

$$
\begin{gathered}
\max \lambda \\
\frac{1}{4} L-\lambda D \preceq 0
\end{gathered}
$$

Trevisan (roughly) used this SDP to get a 0.531 approximation.

Relaxation 2

The more well-known relaxation due to Goemens and Williamson merely replaces the vector normalization constraints. The vector form is

$$
\begin{gathered}
\max \frac{1}{4} \sum_{(i, j) \in E}\left\|v_{i}-v_{j}\right\|^{2} \\
\forall i \in V:\left\|v_{i}\right\|^{2}=1 .
\end{gathered}
$$

In essence, all vectors v_{i} must lie on the unit sphere. The matrix form is

$$
\begin{aligned}
& \max \frac{1}{4} L \bullet X \\
& \forall i: \quad X_{i i}=1
\end{aligned}
$$

$$
X \succeq 0
$$

Considering X to be a distribution of vectors gives the interpretation

$$
\begin{gathered}
\max \frac{1}{4} E_{D}\left[x^{T} L x\right] \\
E\left[x_{i}^{2}\right]=1
\end{gathered}
$$

where the maximization problem is over distributions D.
The dual also admits an interesting interpretation. The dual SDP is

$$
\begin{gathered}
\min \sum_{i \in V} \beta_{i} \\
\frac{1}{4} L-\sum_{i \in V} \beta_{i}\left(e_{i} e_{i}^{T}\right) \preceq 0 .
\end{gathered}
$$

The matrix $e_{i} e_{i}^{T}$ corresponds to the graph of a star centered at i. It is not immediately clear why the star should appear here.

Rounding Relaxation 2

We think about rounding as an embedding problem. As noted earlier, the vectors in the SDP are embedded on the unit sphere. They are rounded by choosing a random hyperplane through the center of the sphere.

The probability that two vectors lie on opposite sides of the hyperplane is $\frac{\theta}{\pi}$ where θ is the angle between the two vectors, i.e. $\theta=\frac{\arccos \left(v_{i}^{T} v_{j}\right)}{\pi}$ for vectors v_{i} and v_{j}. Thus, the expected number of edges cut is

$$
E[\# \text { of edges cut }]=\sum_{(i, j) \in E} \frac{\arccos \left(v_{i}^{T} v_{j}\right)}{\pi} .
$$

The approximation ratio of this algorithm can be established by relating $\arccos \left(v_{i}^{T} v_{j}\right)$ to $v_{i}^{T} v_{j}$.

