8.1 Matrix Multiplicative Updates to Solve SDPs

We continue our discussion on using the matrix multiplicative update rule to solve SDPs. The matrix multiplicative update game features two players, A and B. In each round, A plays a density matrix ρ, and B plays a measurement matrix M such that $0 \leq M \leq I$. The loss to A at round t is given by $\rho_t \cdot M_t$.

$$
\begin{array}{cc}
A & B \\
\rho_1 & M_1 \\
\rho_2 & M_2 \\
\vdots & \vdots \\
\rho_T & M_T \\
\end{array}
$$

The adaptive cost of A’s play is $\sum_{j=1}^{T} \rho_j \cdot M_j$, as compared to the optimum of $\lambda_{\min}(\sum_{j=1}^{T} M_j) = \min_{|x\rangle} \langle x| \sum_{j=1}^{T} M_j |x\rangle$.

Theorem 8.1 A can play such that the adaptive cost satisfies $\sum_{j=1}^{T} \rho_j \cdot M_j \leq (1 + \epsilon/2)\lambda_{\min}(\sum_{j=1}^{T} M_j) + \ln n/\epsilon$.

Proof: A’s strategy to achieve this bound is to define, at each round t, a weight matrix $W^{(t)}$ and a corresponding density matrix $\rho^{(t)}$. The first round has $W^{(1)} = I$ and $\rho^{(1)} = W^{(1)}/\text{Tr}(W^{(1)}) = I/n$, with

$$
W^{(t+1)} = (1 - \epsilon)\sum_{j=1}^{t} M^{(j)}, \quad \rho^{(t+1)} = \frac{W^{(t+1)}}{\text{Tr}(W^{t+1})}.
$$

Consider now the SDP $\sum y_i A_i - B \succeq 0$, with each A_i and B n by n matrices. The goal is to find y_i such that for all $|x\rangle$, $\langle x| \sum y_i A_i - B |x\rangle \geq 0$, or equivalently such that for all $X \succeq 0$, $X \cdot (\sum y_i A_i - B) \geq 0$. Let $L_y = \sum y_i A_i - B$, and suppose $\|L_y\|_2 \leq \alpha$. Define $M_y = \frac{L_y + \alpha I}{2\alpha}$, so that $0 \preceq M_y \preceq I$.

An analogy with the LP example we’ve seen earlier is finding x such that $f_1(x) - b_1 \leq 0, f_2(x) - b_2 \leq 0, \ldots, f_n(x) - b_n \leq 0$. Pick w_1, w_2, \ldots, w_n. Then an oracle takes w_1, w_2, \ldots, w_n and gives an x such that $\sum w_i f_i(x) - b_i \leq 0$.

For our SDP problem, we have an oracle which, given X, produces y such that $L_y \cdot X \succeq \delta(I \cdot X) = \delta \text{Tr}(X)$ (recall that $X \cdot (\sum y_i A_i - B) \geq 0$ is equivalent to $\sum y_i X \cdot A_i - B \cdot X \geq 0$). Update X by the matrix multiplicative update rule. Our loss $\sum_{t=1}^{T} X^{(t)} \cdot M^{(t)} = \sum_{t=1}^{T} X^{(t)} \cdot \frac{(L^{(t)} + \alpha I)}{2\alpha}$ is at least $(\frac{\delta}{2\alpha} + \frac{1}{2})T$, which implies

$$
(1 + \frac{\epsilon}{2})\lambda_{\min}(\sum_{t=1}^{T} \frac{L^{(t)} + I}{2\alpha}) + \frac{\ln n}{\epsilon} \geq (\frac{\delta}{2\alpha} + \frac{1}{2})T.
$$

8-1
We want to show that $\frac{1}{T} \sum_{t=1}^{T} L_y = \frac{1}{T} \sum y_i A_i - B \succeq 0$ for sufficiently large T. We have that

\[
(1 + \frac{\epsilon}{2}) \lambda_{\min} \left(\sum_{t=1}^{T} \frac{L^{(t)}}{2\alpha} \right) + \frac{T}{2} (1 + \frac{\epsilon}{2}) + \frac{\ln n}{\epsilon} \geq \frac{\delta T}{2\alpha} + \frac{T}{2}
\]

\[
\Rightarrow (1 + \frac{\epsilon}{2}) \lambda_{\min} \left(\sum_{t=1}^{T} \frac{L^{(t)}}{2\alpha} \right) \geq T \left(\frac{\delta}{2\alpha} - \frac{\epsilon}{4} - \frac{\ln n}{\epsilon} \right)
\]

\[
\Rightarrow \lambda_{\min} \left(\frac{1}{T} \sum_{t=1}^{T} L^{(t)} \right) \geq \frac{2\alpha}{1 + \epsilon/2} \left(\frac{\delta}{2\alpha} - \frac{\epsilon}{4} - \frac{\ln n}{\epsilon T} \right).
\]

We need to choose T to be large enough that the right-hand side is at least zero. $T = \frac{8\alpha^2 \ln n}{\sigma^2}$ with $\epsilon \leq \frac{\delta}{2\alpha}$ is sufficient.

8.2 An application

We’ll now see an application of the matrix multiplicative update rule. Consider the SDP of choosing X to maximize $C \cdot X$ subject to $A \cdot X \leq b$ and $X \succeq 0$. Its dual is choosing y to minimize by subject to $\sum A_j y_j \geq C$ and $y_j \geq 0$. Set $A_1 = I$, $b_1 = R$, and $\text{Tr}(X) = R$. Let ρ be such that $\|\sum A_j y_j - C\|_2 \leq \rho$, and set $\alpha = C \cdot X$. Then $y = \frac{1}{T} \sum y^{(t)} + \frac{\rho}{n^2} e_1$ is a feasible objective, with $T = \theta(\frac{\rho^2 R^2 \ln(n)}{\delta \alpha^2})$. Our oracle takes as input the matrix X, and returns a y such that $by \leq \alpha$ and $(\sum A_j y_j - C) \cdot X \geq 0$.

We’ll use this framework to solve the max-cut problem. Given a graph, we wish to partition the vertices to maximize $\sum_{i < j} ||v_i - v_j||^2$, where the summation is taken over edges crossing the partition. Clearly $||v_i||^2 \leq 1$ for all i. If X is the $n \times n$ matrix of dot products, we can write this as maximizing $C \cdot X$, with $X_{ii} \leq 1$ for all i. Here $C = dI - A$, with A the adjacency matrix of our graph.

The dual of this program is to minimize $\sum y_i$ with $\text{diag}(y_i) \geq C$ and $y_i \geq 0$ for all i. Intuitively, one way to solve this is the following procedure:

1. Push apart the vectors by moving them away from their neighbors.
2. Push back onto the unit sphere.
3. Repeat.

We work with graphs of degree d, and $nd \leq \alpha \leq 3nd$ with $0 \leq C \leq 2dI$. Our update rule sets $M^{(t)} = (\sum_i A_i y_i - C + \rho I) / 2\rho$, $W^{(t)} = e^{-\epsilon} \sum_i M^{(t)}$, and $X = \frac{RW^{(t)}}{\text{Tr}(W^{(t)})}$. Observe that $\text{Tr}(X) = n$ and $y_i = O(\frac{\rho}{n}) = O(d)$.

Returning to the SDP, we are given X and desire y_i such that $\sum y_i \leq \alpha$. We get $X \cdot \text{diag}(y_i) - C \cdot X \geq 0 \Rightarrow \sum y_i X_{ii} - C \cdot X \geq 0$, and $||\text{diag}(y) - C|| \leq O(d) = \rho$. Note the expansion $\exp(-\epsilon \sum M^{(t)}) \approx \sum_{k} \frac{1}{k!} \prod_{\sigma \in S_k} \epsilon^{M^{(t)}(\sigma)}$.

To build an oracle, we have two cases. The first is $C \cdot X < \alpha$. Then $y_i = \frac{\alpha}{n}$, and $M^{(t)} = (\text{diag}(\frac{n}{\alpha}) - C + \rho I) / 2\rho$. The second is $C \cdot X \geq \alpha$. Then $C \cdot X = \lambda \alpha$, with $\lambda \geq 1$.
