
The multiplicative weights framework.

Experts framework.

n experts.

Every day, each offers a prediction.

“Rain” or “Shine.”
Day 1 Day 2 Day 3 · · · Day T

Expert 1

Shine Rain Shine

· · ·
Expert 2

Shine Shine Shine

· · ·
Expert 3

Rain Rain Rain

· · ·
...

...
... Shine

· · ·
Rained! Shined! Shined! · · ·
Whose advice do you follow?

“The one who is correct most often.”

Sort of.

How well do you do?

Experts framework.

n experts.

Every day, each offers a prediction.

“Rain” or “Shine.”
Day 1 Day 2 Day 3 · · · Day T

Expert 1

Shine Rain Shine

· · ·
Expert 2

Shine Shine Shine

· · ·
Expert 3

Rain Rain Rain

· · ·
...

...
... Shine

· · ·
Rained! Shined! Shined! · · ·
Whose advice do you follow?

“The one who is correct most often.”

Sort of.

How well do you do?

Experts framework.

n experts.

Every day, each offers a prediction.

“Rain” or “Shine.”

Day 1 Day 2 Day 3 · · · Day T
Expert 1

Shine Rain Shine

· · ·
Expert 2

Shine Shine Shine

· · ·
Expert 3

Rain Rain Rain

· · ·
...

...
... Shine

· · ·
Rained! Shined! Shined! · · ·
Whose advice do you follow?

“The one who is correct most often.”

Sort of.

How well do you do?

Experts framework.

n experts.

Every day, each offers a prediction.

“Rain” or “Shine.”
Day 1 Day 2 Day 3 · · · Day T

Expert 1

Shine Rain Shine

· · ·
Expert 2

Shine Shine Shine

· · ·
Expert 3

Rain Rain Rain

· · ·
...

...
... Shine

· · ·

Rained! Shined! Shined! · · ·
Whose advice do you follow?

“The one who is correct most often.”

Sort of.

How well do you do?

Experts framework.

n experts.

Every day, each offers a prediction.

“Rain” or “Shine.”
Day 1 Day 2 Day 3 · · · Day T

Expert 1 Shine

Rain Shine

· · ·
Expert 2 Shine

Shine Shine

· · ·
Expert 3 Rain

Rain Rain

· · ·
...

...

... Shine

· · ·
Rained!

Shined! Shined! · · ·
Whose advice do you follow?

“The one who is correct most often.”

Sort of.

How well do you do?

Experts framework.

n experts.

Every day, each offers a prediction.

“Rain” or “Shine.”
Day 1 Day 2 Day 3 · · · Day T

Expert 1 Shine Rain

Shine

· · ·
Expert 2 Shine Shine

Shine

· · ·
Expert 3 Rain Rain

Rain

· · ·
...

...
...

Shine

· · ·
Rained! Shined!

Shined! · · ·
Whose advice do you follow?

“The one who is correct most often.”

Sort of.

How well do you do?

Experts framework.

n experts.

Every day, each offers a prediction.

“Rain” or “Shine.”
Day 1 Day 2 Day 3 · · · Day T

Expert 1 Shine Rain Shine · · ·
Expert 2 Shine Shine Shine · · ·
Expert 3 Rain Rain Rain · · ·

...
...

... Shine · · ·
Rained! Shined! Shined!

· · ·
Whose advice do you follow?

“The one who is correct most often.”

Sort of.

How well do you do?

Experts framework.

n experts.

Every day, each offers a prediction.

“Rain” or “Shine.”
Day 1 Day 2 Day 3 · · · Day T

Expert 1 Shine Rain Shine · · ·
Expert 2 Shine Shine Shine · · ·
Expert 3 Rain Rain Rain · · ·

...
...

... Shine · · ·
Rained! Shined! Shined! · · ·

Whose advice do you follow?

“The one who is correct most often.”

Sort of.

How well do you do?

Experts framework.

n experts.

Every day, each offers a prediction.

“Rain” or “Shine.”
Day 1 Day 2 Day 3 · · · Day T

Expert 1 Shine Rain Shine · · ·
Expert 2 Shine Shine Shine · · ·
Expert 3 Rain Rain Rain · · ·

...
...

... Shine · · ·
Rained! Shined! Shined! · · ·
Whose advice do you follow?

“The one who is correct most often.”

Sort of.

How well do you do?

Experts framework.

n experts.

Every day, each offers a prediction.

“Rain” or “Shine.”
Day 1 Day 2 Day 3 · · · Day T

Expert 1 Shine Rain Shine · · ·
Expert 2 Shine Shine Shine · · ·
Expert 3 Rain Rain Rain · · ·

...
...

... Shine · · ·
Rained! Shined! Shined! · · ·
Whose advice do you follow?

“The one who is correct most often.”

Sort of.

How well do you do?

Experts framework.

n experts.

Every day, each offers a prediction.

“Rain” or “Shine.”
Day 1 Day 2 Day 3 · · · Day T

Expert 1 Shine Rain Shine · · ·
Expert 2 Shine Shine Shine · · ·
Expert 3 Rain Rain Rain · · ·

...
...

... Shine · · ·
Rained! Shined! Shined! · · ·
Whose advice do you follow?

“The one who is correct most often.”

Sort of.

How well do you do?

Experts framework.

n experts.

Every day, each offers a prediction.

“Rain” or “Shine.”
Day 1 Day 2 Day 3 · · · Day T

Expert 1 Shine Rain Shine · · ·
Expert 2 Shine Shine Shine · · ·
Expert 3 Rain Rain Rain · · ·

...
...

... Shine · · ·
Rained! Shined! Shined! · · ·
Whose advice do you follow?

“The one who is correct most often.”

Sort of.

How well do you do?

Infallible expert.
One of the experts is infallible!

Your strategy?

Choose any expert that has not made a mistake!

How long to find perfect expert?

Maybe..never! Never see a mistake.

Better model?

How many mistakes could you make? Mistake Bound.

(A) 1

(B) 2

(C) logn

(D) n−1

Adversary designs setup to watch who you choose, and make that
expert make a mistake.

n−1!

Infallible expert.
One of the experts is infallible!

Your strategy?

Choose any expert that has not made a mistake!

How long to find perfect expert?

Maybe..never! Never see a mistake.

Better model?

How many mistakes could you make? Mistake Bound.

(A) 1

(B) 2

(C) logn

(D) n−1

Adversary designs setup to watch who you choose, and make that
expert make a mistake.

n−1!

Infallible expert.
One of the experts is infallible!

Your strategy?

Choose any expert that has not made a mistake!

How long to find perfect expert?

Maybe..never! Never see a mistake.

Better model?

How many mistakes could you make? Mistake Bound.

(A) 1

(B) 2

(C) logn

(D) n−1

Adversary designs setup to watch who you choose, and make that
expert make a mistake.

n−1!

Infallible expert.
One of the experts is infallible!

Your strategy?

Choose any expert that has not made a mistake!

How long to find perfect expert?

Maybe..never! Never see a mistake.

Better model?

How many mistakes could you make? Mistake Bound.

(A) 1

(B) 2

(C) logn

(D) n−1

Adversary designs setup to watch who you choose, and make that
expert make a mistake.

n−1!

Infallible expert.
One of the experts is infallible!

Your strategy?

Choose any expert that has not made a mistake!

How long to find perfect expert?

Maybe..

never! Never see a mistake.

Better model?

How many mistakes could you make? Mistake Bound.

(A) 1

(B) 2

(C) logn

(D) n−1

Adversary designs setup to watch who you choose, and make that
expert make a mistake.

n−1!

Infallible expert.
One of the experts is infallible!

Your strategy?

Choose any expert that has not made a mistake!

How long to find perfect expert?

Maybe..never!

Never see a mistake.

Better model?

How many mistakes could you make? Mistake Bound.

(A) 1

(B) 2

(C) logn

(D) n−1

Adversary designs setup to watch who you choose, and make that
expert make a mistake.

n−1!

Infallible expert.
One of the experts is infallible!

Your strategy?

Choose any expert that has not made a mistake!

How long to find perfect expert?

Maybe..never! Never see a mistake.

Better model?

How many mistakes could you make? Mistake Bound.

(A) 1

(B) 2

(C) logn

(D) n−1

Adversary designs setup to watch who you choose, and make that
expert make a mistake.

n−1!

Infallible expert.
One of the experts is infallible!

Your strategy?

Choose any expert that has not made a mistake!

How long to find perfect expert?

Maybe..never! Never see a mistake.

Better model?

How many mistakes could you make? Mistake Bound.

(A) 1

(B) 2

(C) logn

(D) n−1

Adversary designs setup to watch who you choose, and make that
expert make a mistake.

n−1!

Infallible expert.
One of the experts is infallible!

Your strategy?

Choose any expert that has not made a mistake!

How long to find perfect expert?

Maybe..never! Never see a mistake.

Better model?

How many mistakes could you make?

Mistake Bound.

(A) 1

(B) 2

(C) logn

(D) n−1

Adversary designs setup to watch who you choose, and make that
expert make a mistake.

n−1!

Infallible expert.
One of the experts is infallible!

Your strategy?

Choose any expert that has not made a mistake!

How long to find perfect expert?

Maybe..never! Never see a mistake.

Better model?

How many mistakes could you make? Mistake Bound.

(A) 1

(B) 2

(C) logn

(D) n−1

Adversary designs setup to watch who you choose, and make that
expert make a mistake.

n−1!

Infallible expert.
One of the experts is infallible!

Your strategy?

Choose any expert that has not made a mistake!

How long to find perfect expert?

Maybe..never! Never see a mistake.

Better model?

How many mistakes could you make? Mistake Bound.

(A) 1

(B) 2

(C) logn

(D) n−1

Adversary designs setup to watch who you choose, and make that
expert make a mistake.

n−1!

Infallible expert.
One of the experts is infallible!

Your strategy?

Choose any expert that has not made a mistake!

How long to find perfect expert?

Maybe..never! Never see a mistake.

Better model?

How many mistakes could you make? Mistake Bound.

(A) 1

(B) 2

(C) logn

(D) n−1

Adversary designs setup to watch who you choose, and make that
expert make a mistake.

n−1!

Concept Alert.

Note.

Adversary:
makes you want to look bad.
”You could have done so well”...
but you didn’t! ha..ha!

Analysis of Algorithms: do as well as possible!

Concept Alert.

Note.

Adversary:

makes you want to look bad.
”You could have done so well”...
but you didn’t! ha..ha!

Analysis of Algorithms: do as well as possible!

Concept Alert.

Note.

Adversary:
makes you want to look bad.

”You could have done so well”...
but you didn’t! ha..ha!

Analysis of Algorithms: do as well as possible!

Concept Alert.

Note.

Adversary:
makes you want to look bad.
”You could have done so well”...

but you didn’t! ha..ha!

Analysis of Algorithms: do as well as possible!

Concept Alert.

Note.

Adversary:
makes you want to look bad.
”You could have done so well”...

but you didn’t!

ha..ha!

Analysis of Algorithms: do as well as possible!

Concept Alert.

Note.

Adversary:
makes you want to look bad.
”You could have done so well”...

but you didn’t! ha..

ha!

Analysis of Algorithms: do as well as possible!

Concept Alert.

Note.

Adversary:
makes you want to look bad.
”You could have done so well”...

but you didn’t! ha..ha!

Analysis of Algorithms: do as well as possible!

Concept Alert.

Note.

Adversary:
makes you want to look bad.
”You could have done so well”...

but you didn’t! ha..ha!

Analysis of Algorithms: do as well as possible!

Back to mistake bound.

Infallible Experts.

Alg: Choose one of the perfect experts.

Mistake Bound: n−1
Lower bound: adversary argument.
Upper bound: every mistake finds fallible expert.

Better Algorithm?

Making decision, not trying to find expert!

Algorithm: Go with the majority of previously correct experts.

What you would do anyway!

Back to mistake bound.

Infallible Experts.

Alg: Choose one of the perfect experts.

Mistake Bound: n−1
Lower bound: adversary argument.
Upper bound: every mistake finds fallible expert.

Better Algorithm?

Making decision, not trying to find expert!

Algorithm: Go with the majority of previously correct experts.

What you would do anyway!

Back to mistake bound.

Infallible Experts.

Alg: Choose one of the perfect experts.

Mistake Bound: n−1

Lower bound: adversary argument.
Upper bound: every mistake finds fallible expert.

Better Algorithm?

Making decision, not trying to find expert!

Algorithm: Go with the majority of previously correct experts.

What you would do anyway!

Back to mistake bound.

Infallible Experts.

Alg: Choose one of the perfect experts.

Mistake Bound: n−1
Lower bound: adversary argument.

Upper bound: every mistake finds fallible expert.

Better Algorithm?

Making decision, not trying to find expert!

Algorithm: Go with the majority of previously correct experts.

What you would do anyway!

Back to mistake bound.

Infallible Experts.

Alg: Choose one of the perfect experts.

Mistake Bound: n−1
Lower bound: adversary argument.
Upper bound:

every mistake finds fallible expert.

Better Algorithm?

Making decision, not trying to find expert!

Algorithm: Go with the majority of previously correct experts.

What you would do anyway!

Back to mistake bound.

Infallible Experts.

Alg: Choose one of the perfect experts.

Mistake Bound: n−1
Lower bound: adversary argument.
Upper bound: every mistake finds fallible expert.

Better Algorithm?

Making decision, not trying to find expert!

Algorithm: Go with the majority of previously correct experts.

What you would do anyway!

Back to mistake bound.

Infallible Experts.

Alg: Choose one of the perfect experts.

Mistake Bound: n−1
Lower bound: adversary argument.
Upper bound: every mistake finds fallible expert.

Better Algorithm?

Making decision, not trying to find expert!

Algorithm: Go with the majority of previously correct experts.

What you would do anyway!

Back to mistake bound.

Infallible Experts.

Alg: Choose one of the perfect experts.

Mistake Bound: n−1
Lower bound: adversary argument.
Upper bound: every mistake finds fallible expert.

Better Algorithm?

Making decision, not trying to find expert!

Algorithm: Go with the majority of previously correct experts.

What you would do anyway!

Back to mistake bound.

Infallible Experts.

Alg: Choose one of the perfect experts.

Mistake Bound: n−1
Lower bound: adversary argument.
Upper bound: every mistake finds fallible expert.

Better Algorithm?

Making decision, not trying to find expert!

Algorithm: Go with the majority of previously correct experts.

What you would do anyway!

Back to mistake bound.

Infallible Experts.

Alg: Choose one of the perfect experts.

Mistake Bound: n−1
Lower bound: adversary argument.
Upper bound: every mistake finds fallible expert.

Better Algorithm?

Making decision, not trying to find expert!

Algorithm: Go with the majority of previously correct experts.

What you would do anyway!

Alg 2: find majority of the perfect

How many mistakes could you make?

(A) 1

(B) 2

(C) logn

(D) n−1

At most logn!

When alg makes a mistake,
|“perfect” experts| drops by a factor of two.

Initially n perfect experts
mistake→ ≤ n/2 perfect experts
mistake→ ≤ n/4 perfect experts

...
mistake→ ≤ 1 perfect expert

≥ 1 perfect expert→ at most logn mistakes!

Alg 2: find majority of the perfect

How many mistakes could you make?

(A) 1

(B) 2

(C) logn

(D) n−1

At most logn!

When alg makes a mistake,
|“perfect” experts| drops by a factor of two.

Initially n perfect experts
mistake→ ≤ n/2 perfect experts
mistake→ ≤ n/4 perfect experts

...
mistake→ ≤ 1 perfect expert

≥ 1 perfect expert→ at most logn mistakes!

Alg 2: find majority of the perfect

How many mistakes could you make?

(A) 1

(B) 2

(C) logn

(D) n−1

At most logn!

When alg makes a mistake,
|“perfect” experts| drops by a factor of two.

Initially n perfect experts
mistake→ ≤ n/2 perfect experts
mistake→ ≤ n/4 perfect experts

...
mistake→ ≤ 1 perfect expert

≥ 1 perfect expert→ at most logn mistakes!

Alg 2: find majority of the perfect

How many mistakes could you make?

(A) 1

(B) 2

(C) logn

(D) n−1

At most logn!

When alg makes a mistake,
|“perfect” experts| drops by a factor of two.

Initially n perfect experts
mistake→ ≤ n/2 perfect experts
mistake→ ≤ n/4 perfect experts

...
mistake→ ≤ 1 perfect expert

≥ 1 perfect expert→ at most logn mistakes!

Alg 2: find majority of the perfect

How many mistakes could you make?

(A) 1

(B) 2

(C) logn

(D) n−1

At most logn!

When alg makes a mistake,
|“perfect” experts| drops by a factor of two.

Initially n perfect experts

mistake→ ≤ n/2 perfect experts
mistake→ ≤ n/4 perfect experts

...
mistake→ ≤ 1 perfect expert

≥ 1 perfect expert→ at most logn mistakes!

Alg 2: find majority of the perfect

How many mistakes could you make?

(A) 1

(B) 2

(C) logn

(D) n−1

At most logn!

When alg makes a mistake,
|“perfect” experts| drops by a factor of two.

Initially n perfect experts
mistake→ ≤ n/2 perfect experts

mistake→ ≤ n/4 perfect experts
...

mistake→ ≤ 1 perfect expert

≥ 1 perfect expert→ at most logn mistakes!

Alg 2: find majority of the perfect

How many mistakes could you make?

(A) 1

(B) 2

(C) logn

(D) n−1

At most logn!

When alg makes a mistake,
|“perfect” experts| drops by a factor of two.

Initially n perfect experts
mistake→ ≤ n/2 perfect experts
mistake→ ≤ n/4 perfect experts

...
mistake→ ≤ 1 perfect expert

≥ 1 perfect expert→ at most logn mistakes!

Alg 2: find majority of the perfect

How many mistakes could you make?

(A) 1

(B) 2

(C) logn

(D) n−1

At most logn!

When alg makes a mistake,
|“perfect” experts| drops by a factor of two.

Initially n perfect experts
mistake→ ≤ n/2 perfect experts
mistake→ ≤ n/4 perfect experts

...

mistake→ ≤ 1 perfect expert

≥ 1 perfect expert→ at most logn mistakes!

Alg 2: find majority of the perfect

How many mistakes could you make?

(A) 1

(B) 2

(C) logn

(D) n−1

At most logn!

When alg makes a mistake,
|“perfect” experts| drops by a factor of two.

Initially n perfect experts
mistake→ ≤ n/2 perfect experts
mistake→ ≤ n/4 perfect experts

...
mistake→ ≤ 1 perfect expert

≥ 1 perfect expert→ at most logn mistakes!

Alg 2: find majority of the perfect

How many mistakes could you make?

(A) 1

(B) 2

(C) logn

(D) n−1

At most logn!

When alg makes a mistake,
|“perfect” experts| drops by a factor of two.

Initially n perfect experts
mistake→ ≤ n/2 perfect experts
mistake→ ≤ n/4 perfect experts

...
mistake→ ≤ 1 perfect expert

≥ 1 perfect expert→ at most logn mistakes!

Alg 2: find majority of the perfect

How many mistakes could you make?

(A) 1

(B) 2

(C) logn

(D) n−1

At most logn!

When alg makes a mistake,
|“perfect” experts| drops by a factor of two.

Initially n perfect experts
mistake→ ≤ n/2 perfect experts
mistake→ ≤ n/4 perfect experts

...
mistake→ ≤ 1 perfect expert

≥ 1 perfect expert

→ at most logn mistakes!

Alg 2: find majority of the perfect

How many mistakes could you make?

(A) 1

(B) 2

(C) logn

(D) n−1

At most logn!

When alg makes a mistake,
|“perfect” experts| drops by a factor of two.

Initially n perfect experts
mistake→ ≤ n/2 perfect experts
mistake→ ≤ n/4 perfect experts

...
mistake→ ≤ 1 perfect expert

≥ 1 perfect expert→ at most logn mistakes!

Imperfect Experts

Goal?

Do as well as the best expert!

Algorithm. Suggestions?

Go with majority?

Penalize inaccurate experts?

Best expert is penalized the least.

1. Initially: wi = 1.

2. Predict with weighted majority of experts.

3. wi → wi/2 if wrong.

Imperfect Experts

Goal?

Do as well as the best expert!

Algorithm. Suggestions?

Go with majority?

Penalize inaccurate experts?

Best expert is penalized the least.

1. Initially: wi = 1.

2. Predict with weighted majority of experts.

3. wi → wi/2 if wrong.

Imperfect Experts

Goal?

Do as well as the best expert!

Algorithm.

Suggestions?

Go with majority?

Penalize inaccurate experts?

Best expert is penalized the least.

1. Initially: wi = 1.

2. Predict with weighted majority of experts.

3. wi → wi/2 if wrong.

Imperfect Experts

Goal?

Do as well as the best expert!

Algorithm. Suggestions?

Go with majority?

Penalize inaccurate experts?

Best expert is penalized the least.

1. Initially: wi = 1.

2. Predict with weighted majority of experts.

3. wi → wi/2 if wrong.

Imperfect Experts

Goal?

Do as well as the best expert!

Algorithm. Suggestions?

Go with majority?

Penalize inaccurate experts?

Best expert is penalized the least.

1. Initially: wi = 1.

2. Predict with weighted majority of experts.

3. wi → wi/2 if wrong.

Imperfect Experts

Goal?

Do as well as the best expert!

Algorithm. Suggestions?

Go with majority?

Penalize inaccurate experts?

Best expert is penalized the least.

1. Initially: wi = 1.

2. Predict with weighted majority of experts.

3. wi → wi/2 if wrong.

Imperfect Experts

Goal?

Do as well as the best expert!

Algorithm. Suggestions?

Go with majority?

Penalize inaccurate experts?

Best expert is penalized the least.

1. Initially: wi = 1.

2. Predict with weighted majority of experts.

3. wi → wi/2 if wrong.

Imperfect Experts

Goal?

Do as well as the best expert!

Algorithm. Suggestions?

Go with majority?

Penalize inaccurate experts?

Best expert is penalized the least.

1. Initially: wi = 1.

2. Predict with weighted majority of experts.

3. wi → wi/2 if wrong.

Imperfect Experts

Goal?

Do as well as the best expert!

Algorithm. Suggestions?

Go with majority?

Penalize inaccurate experts?

Best expert is penalized the least.

1. Initially: wi = 1.

2. Predict with weighted majority of experts.

3. wi → wi/2 if wrong.

Imperfect Experts

Goal?

Do as well as the best expert!

Algorithm. Suggestions?

Go with majority?

Penalize inaccurate experts?

Best expert is penalized the least.

1. Initially: wi = 1.

2. Predict with weighted majority of experts.

3. wi → wi/2 if wrong.

Imperfect Experts

Goal?

Do as well as the best expert!

Algorithm. Suggestions?

Go with majority?

Penalize inaccurate experts?

Best expert is penalized the least.

1. Initially: wi = 1.

2. Predict with weighted majority of experts.

3. wi → wi/2 if wrong.

Analysis: weighted majority

1. Initially: wi = 1.

2. Predict with
weighted
majority of
experts.

3. wi → wi/2 if
wrong.

Goal: Best expert makes m mistakes.

Potential function: ∑i wi . Initially n.

For best expert, b, wb ≥ 1
2m .

Each mistake:
total weight of incorrect experts reduced by
−1? −2? factor of 1

2?
each incorrect expert weight multiplied by 1

2 !
total weight decreases by

factor of 1
2? factor of 3

4?
mistake→ ≥ half weight with incorrect experts
(≥ 1

2 total.

Mistake→ potential function decreased by 3
4 .

=⇒ for M is number of mistakes that:

1
2m ≤∑

i
wi ≤

(
3
4

)M

n.

Analysis: weighted majority

1. Initially: wi = 1.

2. Predict with
weighted
majority of
experts.

3. wi → wi/2 if
wrong.

Goal: Best expert makes m mistakes.

Potential function: ∑i wi . Initially n.

For best expert, b, wb ≥ 1
2m .

Each mistake:
total weight of incorrect experts reduced by
−1? −2? factor of 1

2?
each incorrect expert weight multiplied by 1

2 !
total weight decreases by

factor of 1
2? factor of 3

4?
mistake→ ≥ half weight with incorrect experts
(≥ 1

2 total.

Mistake→ potential function decreased by 3
4 .

=⇒ for M is number of mistakes that:

1
2m ≤∑

i
wi ≤

(
3
4

)M

n.

Analysis: weighted majority

1. Initially: wi = 1.

2. Predict with
weighted
majority of
experts.

3. wi → wi/2 if
wrong.

Goal: Best expert makes m mistakes.

Potential function: ∑i wi . Initially n.

For best expert, b, wb ≥ 1
2m .

Each mistake:
total weight of incorrect experts reduced by
−1? −2? factor of 1

2?
each incorrect expert weight multiplied by 1

2 !
total weight decreases by

factor of 1
2? factor of 3

4?
mistake→ ≥ half weight with incorrect experts
(≥ 1

2 total.

Mistake→ potential function decreased by 3
4 .

=⇒ for M is number of mistakes that:

1
2m ≤∑

i
wi ≤

(
3
4

)M

n.

Analysis: weighted majority

1. Initially: wi = 1.

2. Predict with
weighted
majority of
experts.

3. wi → wi/2 if
wrong.

Goal: Best expert makes m mistakes.

Potential function:

∑i wi . Initially n.

For best expert, b, wb ≥ 1
2m .

Each mistake:
total weight of incorrect experts reduced by
−1? −2? factor of 1

2?
each incorrect expert weight multiplied by 1

2 !
total weight decreases by

factor of 1
2? factor of 3

4?
mistake→ ≥ half weight with incorrect experts
(≥ 1

2 total.

Mistake→ potential function decreased by 3
4 .

=⇒ for M is number of mistakes that:

1
2m ≤∑

i
wi ≤

(
3
4

)M

n.

Analysis: weighted majority

1. Initially: wi = 1.

2. Predict with
weighted
majority of
experts.

3. wi → wi/2 if
wrong.

Goal: Best expert makes m mistakes.

Potential function: ∑i wi .

Initially n.

For best expert, b, wb ≥ 1
2m .

Each mistake:
total weight of incorrect experts reduced by
−1? −2? factor of 1

2?
each incorrect expert weight multiplied by 1

2 !
total weight decreases by

factor of 1
2? factor of 3

4?
mistake→ ≥ half weight with incorrect experts
(≥ 1

2 total.

Mistake→ potential function decreased by 3
4 .

=⇒ for M is number of mistakes that:

1
2m ≤∑

i
wi ≤

(
3
4

)M

n.

Analysis: weighted majority

1. Initially: wi = 1.

2. Predict with
weighted
majority of
experts.

3. wi → wi/2 if
wrong.

Goal: Best expert makes m mistakes.

Potential function: ∑i wi . Initially n.

For best expert, b, wb ≥ 1
2m .

Each mistake:
total weight of incorrect experts reduced by
−1? −2? factor of 1

2?
each incorrect expert weight multiplied by 1

2 !
total weight decreases by

factor of 1
2? factor of 3

4?
mistake→ ≥ half weight with incorrect experts
(≥ 1

2 total.

Mistake→ potential function decreased by 3
4 .

=⇒ for M is number of mistakes that:

1
2m ≤∑

i
wi ≤

(
3
4

)M

n.

Analysis: weighted majority

1. Initially: wi = 1.

2. Predict with
weighted
majority of
experts.

3. wi → wi/2 if
wrong.

Goal: Best expert makes m mistakes.

Potential function: ∑i wi . Initially n.

For best expert, b, wb ≥ 1
2m .

Each mistake:
total weight of incorrect experts reduced by
−1? −2? factor of 1

2?
each incorrect expert weight multiplied by 1

2 !
total weight decreases by

factor of 1
2? factor of 3

4?
mistake→ ≥ half weight with incorrect experts
(≥ 1

2 total.

Mistake→ potential function decreased by 3
4 .

=⇒ for M is number of mistakes that:

1
2m ≤∑

i
wi ≤

(
3
4

)M

n.

Analysis: weighted majority

1. Initially: wi = 1.

2. Predict with
weighted
majority of
experts.

3. wi → wi/2 if
wrong.

Goal: Best expert makes m mistakes.

Potential function: ∑i wi . Initially n.

For best expert, b, wb ≥ 1
2m .

Each mistake:

total weight of incorrect experts reduced by
−1? −2? factor of 1

2?
each incorrect expert weight multiplied by 1

2 !
total weight decreases by

factor of 1
2? factor of 3

4?
mistake→ ≥ half weight with incorrect experts
(≥ 1

2 total.

Mistake→ potential function decreased by 3
4 .

=⇒ for M is number of mistakes that:

1
2m ≤∑

i
wi ≤

(
3
4

)M

n.

Analysis: weighted majority

1. Initially: wi = 1.

2. Predict with
weighted
majority of
experts.

3. wi → wi/2 if
wrong.

Goal: Best expert makes m mistakes.

Potential function: ∑i wi . Initially n.

For best expert, b, wb ≥ 1
2m .

Each mistake:
total weight of incorrect experts reduced by

−1? −2? factor of 1
2?

each incorrect expert weight multiplied by 1
2 !

total weight decreases by
factor of 1

2? factor of 3
4?

mistake→ ≥ half weight with incorrect experts
(≥ 1

2 total.

Mistake→ potential function decreased by 3
4 .

=⇒ for M is number of mistakes that:

1
2m ≤∑

i
wi ≤

(
3
4

)M

n.

Analysis: weighted majority

1. Initially: wi = 1.

2. Predict with
weighted
majority of
experts.

3. wi → wi/2 if
wrong.

Goal: Best expert makes m mistakes.

Potential function: ∑i wi . Initially n.

For best expert, b, wb ≥ 1
2m .

Each mistake:
total weight of incorrect experts reduced by
−1?

−2? factor of 1
2?

each incorrect expert weight multiplied by 1
2 !

total weight decreases by
factor of 1

2? factor of 3
4?

mistake→ ≥ half weight with incorrect experts
(≥ 1

2 total.

Mistake→ potential function decreased by 3
4 .

=⇒ for M is number of mistakes that:

1
2m ≤∑

i
wi ≤

(
3
4

)M

n.

Analysis: weighted majority

1. Initially: wi = 1.

2. Predict with
weighted
majority of
experts.

3. wi → wi/2 if
wrong.

Goal: Best expert makes m mistakes.

Potential function: ∑i wi . Initially n.

For best expert, b, wb ≥ 1
2m .

Each mistake:
total weight of incorrect experts reduced by
−1? −2?

factor of 1
2?

each incorrect expert weight multiplied by 1
2 !

total weight decreases by
factor of 1

2? factor of 3
4?

mistake→ ≥ half weight with incorrect experts
(≥ 1

2 total.

Mistake→ potential function decreased by 3
4 .

=⇒ for M is number of mistakes that:

1
2m ≤∑

i
wi ≤

(
3
4

)M

n.

Analysis: weighted majority

1. Initially: wi = 1.

2. Predict with
weighted
majority of
experts.

3. wi → wi/2 if
wrong.

Goal: Best expert makes m mistakes.

Potential function: ∑i wi . Initially n.

For best expert, b, wb ≥ 1
2m .

Each mistake:
total weight of incorrect experts reduced by
−1? −2? factor of 1

2?

each incorrect expert weight multiplied by 1
2 !

total weight decreases by
factor of 1

2? factor of 3
4?

mistake→ ≥ half weight with incorrect experts
(≥ 1

2 total.

Mistake→ potential function decreased by 3
4 .

=⇒ for M is number of mistakes that:

1
2m ≤∑

i
wi ≤

(
3
4

)M

n.

Analysis: weighted majority

1. Initially: wi = 1.

2. Predict with
weighted
majority of
experts.

3. wi → wi/2 if
wrong.

Goal: Best expert makes m mistakes.

Potential function: ∑i wi . Initially n.

For best expert, b, wb ≥ 1
2m .

Each mistake:
total weight of incorrect experts reduced by
−1? −2? factor of 1

2?
each incorrect expert weight multiplied by 1

2 !

total weight decreases by
factor of 1

2? factor of 3
4?

mistake→ ≥ half weight with incorrect experts
(≥ 1

2 total.

Mistake→ potential function decreased by 3
4 .

=⇒ for M is number of mistakes that:

1
2m ≤∑

i
wi ≤

(
3
4

)M

n.

Analysis: weighted majority

1. Initially: wi = 1.

2. Predict with
weighted
majority of
experts.

3. wi → wi/2 if
wrong.

Goal: Best expert makes m mistakes.

Potential function: ∑i wi . Initially n.

For best expert, b, wb ≥ 1
2m .

Each mistake:
total weight of incorrect experts reduced by
−1? −2? factor of 1

2?
each incorrect expert weight multiplied by 1

2 !
total weight decreases by

factor of 1
2? factor of 3

4?
mistake→ ≥ half weight with incorrect experts
(≥ 1

2 total.

Mistake→ potential function decreased by 3
4 .

=⇒ for M is number of mistakes that:

1
2m ≤∑

i
wi ≤

(
3
4

)M

n.

Analysis: weighted majority

1. Initially: wi = 1.

2. Predict with
weighted
majority of
experts.

3. wi → wi/2 if
wrong.

Goal: Best expert makes m mistakes.

Potential function: ∑i wi . Initially n.

For best expert, b, wb ≥ 1
2m .

Each mistake:
total weight of incorrect experts reduced by
−1? −2? factor of 1

2?
each incorrect expert weight multiplied by 1

2 !
total weight decreases by

factor of 1
2? factor of 3

4?

mistake→ ≥ half weight with incorrect experts
(≥ 1

2 total.

Mistake→ potential function decreased by 3
4 .

=⇒ for M is number of mistakes that:

1
2m ≤∑

i
wi ≤

(
3
4

)M

n.

Analysis: weighted majority

1. Initially: wi = 1.

2. Predict with
weighted
majority of
experts.

3. wi → wi/2 if
wrong.

Goal: Best expert makes m mistakes.

Potential function: ∑i wi . Initially n.

For best expert, b, wb ≥ 1
2m .

Each mistake:
total weight of incorrect experts reduced by
−1? −2? factor of 1

2?
each incorrect expert weight multiplied by 1

2 !
total weight decreases by

factor of 1
2? factor of 3

4?
mistake→ ≥ half weight with incorrect experts
(≥ 1

2 total.

Mistake→ potential function decreased by 3
4 .

=⇒ for M is number of mistakes that:

1
2m ≤∑

i
wi ≤

(
3
4

)M

n.

Analysis: weighted majority

1. Initially: wi = 1.

2. Predict with
weighted
majority of
experts.

3. wi → wi/2 if
wrong.

Goal: Best expert makes m mistakes.

Potential function: ∑i wi . Initially n.

For best expert, b, wb ≥ 1
2m .

Each mistake:
total weight of incorrect experts reduced by
−1? −2? factor of 1

2?
each incorrect expert weight multiplied by 1

2 !
total weight decreases by

factor of 1
2? factor of 3

4?
mistake→ ≥ half weight with incorrect experts
(≥ 1

2 total.

Mistake→ potential function decreased by 3
4 .

=⇒ for M is number of mistakes that:

1
2m ≤∑

i
wi ≤

(
3
4

)M

n.

Analysis: continued.

1
2m ≤ ∑i wi ≤

(3
4

)M
n.

m - best expert mistakes M algorithm mistakes.

1
2m ≤

(3
4

)M
n.

Take log of both sides.

−m ≤−M log(4/3)+ logn.

Solve for M.
M ≤ (m+logn)/ log(4/3)≤ 2.4(m+logn)

Multiple by 1− ε for incorrect experts...

(1− ε)m ≤
(
1− ε

2

)M n.

Massage...

M ≤ 2(1+ ε)m+ 2 lnn
ε

Approaches a factor of two of best expert performance!

Analysis: continued.

1
2m ≤ ∑i wi ≤

(3
4

)M
n.

m - best expert mistakes

M algorithm mistakes.

1
2m ≤

(3
4

)M
n.

Take log of both sides.

−m ≤−M log(4/3)+ logn.

Solve for M.
M ≤ (m+logn)/ log(4/3)≤ 2.4(m+logn)

Multiple by 1− ε for incorrect experts...

(1− ε)m ≤
(
1− ε

2

)M n.

Massage...

M ≤ 2(1+ ε)m+ 2 lnn
ε

Approaches a factor of two of best expert performance!

Analysis: continued.

1
2m ≤ ∑i wi ≤

(3
4

)M
n.

m - best expert mistakes M algorithm mistakes.

1
2m ≤

(3
4

)M
n.

Take log of both sides.

−m ≤−M log(4/3)+ logn.

Solve for M.
M ≤ (m+logn)/ log(4/3)≤ 2.4(m+logn)

Multiple by 1− ε for incorrect experts...

(1− ε)m ≤
(
1− ε

2

)M n.

Massage...

M ≤ 2(1+ ε)m+ 2 lnn
ε

Approaches a factor of two of best expert performance!

Analysis: continued.

1
2m ≤ ∑i wi ≤

(3
4

)M
n.

m - best expert mistakes M algorithm mistakes.

1
2m ≤

(3
4

)M
n.

Take log of both sides.

−m ≤−M log(4/3)+ logn.

Solve for M.
M ≤ (m+logn)/ log(4/3)≤ 2.4(m+logn)

Multiple by 1− ε for incorrect experts...

(1− ε)m ≤
(
1− ε

2

)M n.

Massage...

M ≤ 2(1+ ε)m+ 2 lnn
ε

Approaches a factor of two of best expert performance!

Analysis: continued.

1
2m ≤ ∑i wi ≤

(3
4

)M
n.

m - best expert mistakes M algorithm mistakes.

1
2m ≤

(3
4

)M
n.

Take log of both sides.

−m ≤−M log(4/3)+ logn.

Solve for M.
M ≤ (m+logn)/ log(4/3)≤ 2.4(m+logn)

Multiple by 1− ε for incorrect experts...

(1− ε)m ≤
(
1− ε

2

)M n.

Massage...

M ≤ 2(1+ ε)m+ 2 lnn
ε

Approaches a factor of two of best expert performance!

Analysis: continued.

1
2m ≤ ∑i wi ≤

(3
4

)M
n.

m - best expert mistakes M algorithm mistakes.

1
2m ≤

(3
4

)M
n.

Take log of both sides.

−m ≤−M log(4/3)+ logn.

Solve for M.
M ≤ (m+logn)/ log(4/3)≤ 2.4(m+logn)

Multiple by 1− ε for incorrect experts...

(1− ε)m ≤
(
1− ε

2

)M n.

Massage...

M ≤ 2(1+ ε)m+ 2 lnn
ε

Approaches a factor of two of best expert performance!

Analysis: continued.

1
2m ≤ ∑i wi ≤

(3
4

)M
n.

m - best expert mistakes M algorithm mistakes.

1
2m ≤

(3
4

)M
n.

Take log of both sides.

−m ≤−M log(4/3)+ logn.

Solve for M.
M ≤ (m+logn)/ log(4/3)

≤ 2.4(m+logn)

Multiple by 1− ε for incorrect experts...

(1− ε)m ≤
(
1− ε

2

)M n.

Massage...

M ≤ 2(1+ ε)m+ 2 lnn
ε

Approaches a factor of two of best expert performance!

Analysis: continued.

1
2m ≤ ∑i wi ≤

(3
4

)M
n.

m - best expert mistakes M algorithm mistakes.

1
2m ≤

(3
4

)M
n.

Take log of both sides.

−m ≤−M log(4/3)+ logn.

Solve for M.
M ≤ (m+logn)/ log(4/3)≤ 2.4(m+logn)

Multiple by 1− ε for incorrect experts...

(1− ε)m ≤
(
1− ε

2

)M n.

Massage...

M ≤ 2(1+ ε)m+ 2 lnn
ε

Approaches a factor of two of best expert performance!

Analysis: continued.

1
2m ≤ ∑i wi ≤

(3
4

)M
n.

m - best expert mistakes M algorithm mistakes.

1
2m ≤

(3
4

)M
n.

Take log of both sides.

−m ≤−M log(4/3)+ logn.

Solve for M.
M ≤ (m+logn)/ log(4/3)≤ 2.4(m+logn)

Multiple by 1− ε for incorrect experts...

(1− ε)m ≤
(
1− ε

2

)M n.

Massage...

M ≤ 2(1+ ε)m+ 2 lnn
ε

Approaches a factor of two of best expert performance!

Analysis: continued.

1
2m ≤ ∑i wi ≤

(3
4

)M
n.

m - best expert mistakes M algorithm mistakes.

1
2m ≤

(3
4

)M
n.

Take log of both sides.

−m ≤−M log(4/3)+ logn.

Solve for M.
M ≤ (m+logn)/ log(4/3)≤ 2.4(m+logn)

Multiple by 1− ε for incorrect experts...

(1− ε)m ≤
(
1− ε

2

)M n.

Massage...

M ≤ 2(1+ ε)m+ 2 lnn
ε

Approaches a factor of two of best expert performance!

Analysis: continued.

1
2m ≤ ∑i wi ≤

(3
4

)M
n.

m - best expert mistakes M algorithm mistakes.

1
2m ≤

(3
4

)M
n.

Take log of both sides.

−m ≤−M log(4/3)+ logn.

Solve for M.
M ≤ (m+logn)/ log(4/3)≤ 2.4(m+logn)

Multiple by 1− ε for incorrect experts...

(1− ε)m ≤
(
1− ε

2

)M n.

Massage...

M ≤ 2(1+ ε)m+ 2 lnn
ε

Approaches a factor of two of best expert performance!

Analysis: continued.

1
2m ≤ ∑i wi ≤

(3
4

)M
n.

m - best expert mistakes M algorithm mistakes.

1
2m ≤

(3
4

)M
n.

Take log of both sides.

−m ≤−M log(4/3)+ logn.

Solve for M.
M ≤ (m+logn)/ log(4/3)≤ 2.4(m+logn)

Multiple by 1− ε for incorrect experts...

(1− ε)m ≤
(
1− ε

2

)M n.

Massage...

M ≤ 2(1+ ε)m+ 2 lnn
ε

Approaches a factor of two of best expert performance!

Analysis: continued.

1
2m ≤ ∑i wi ≤

(3
4

)M
n.

m - best expert mistakes M algorithm mistakes.

1
2m ≤

(3
4

)M
n.

Take log of both sides.

−m ≤−M log(4/3)+ logn.

Solve for M.
M ≤ (m+logn)/ log(4/3)≤ 2.4(m+logn)

Multiple by 1− ε for incorrect experts...

(1− ε)m ≤
(
1− ε

2

)M n.

Massage...

M ≤ 2(1+ ε)m+ 2 lnn
ε

Approaches a factor of two of best expert performance!

Best Analysis?

Consider two experts: A,B

Bad example?

Which is worse?

(A) A correct even days, B correct odd days

(B) A correct first half of days, B correct second

Best expert peformance: T/2 mistakes.

Pattern (A): T −1 mistakes.

Factor of (almost) two worse!

Best Analysis?

Consider two experts: A,B

Bad example?

Which is worse?

(A) A correct even days, B correct odd days

(B) A correct first half of days, B correct second

Best expert peformance: T/2 mistakes.

Pattern (A): T −1 mistakes.

Factor of (almost) two worse!

Best Analysis?

Consider two experts: A,B

Bad example?

Which is worse?

(A) A correct even days, B correct odd days

(B) A correct first half of days, B correct second

Best expert peformance: T/2 mistakes.

Pattern (A): T −1 mistakes.

Factor of (almost) two worse!

Best Analysis?

Consider two experts: A,B

Bad example?

Which is worse?

(A) A correct even days, B correct odd days

(B) A correct first half of days, B correct second

Best expert peformance: T/2 mistakes.

Pattern (A): T −1 mistakes.

Factor of (almost) two worse!

Best Analysis?

Consider two experts: A,B

Bad example?

Which is worse?

(A) A correct even days, B correct odd days

(B) A correct first half of days, B correct second

Best expert peformance: T/2 mistakes.

Pattern (A): T −1 mistakes.

Factor of (almost) two worse!

Best Analysis?

Consider two experts: A,B

Bad example?

Which is worse?

(A) A correct even days, B correct odd days

(B) A correct first half of days, B correct second

Best expert peformance: T/2 mistakes.

Pattern (A): T −1 mistakes.

Factor of (almost) two worse!

Best Analysis?

Consider two experts: A,B

Bad example?

Which is worse?

(A) A correct even days, B correct odd days

(B) A correct first half of days, B correct second

Best expert peformance: T/2 mistakes.

Pattern (A): T −1 mistakes.

Factor of (almost) two worse!

Randomization

!!!!

Better approach?

Use?

Randomization!

That is, choose expert i with prob ∝ wi

Bad example: A,B,A,B,A...

After a bit, A and B make nearly the same number of mistakes.

Choose each with approximately the same probabilty.

Make a mistake around 1/2 of the time.

Best expert makes T/2 mistakes.

Roughly optimal!

Randomization

!!!!

Better approach?

Use?

Randomization!

That is, choose expert i with prob ∝ wi

Bad example: A,B,A,B,A...

After a bit, A and B make nearly the same number of mistakes.

Choose each with approximately the same probabilty.

Make a mistake around 1/2 of the time.

Best expert makes T/2 mistakes.

Roughly optimal!

Randomization!!!!

Better approach?

Use?

Randomization!

That is, choose expert i with prob ∝ wi

Bad example: A,B,A,B,A...

After a bit, A and B make nearly the same number of mistakes.

Choose each with approximately the same probabilty.

Make a mistake around 1/2 of the time.

Best expert makes T/2 mistakes.

Roughly optimal!

Randomization!!!!

Better approach?

Use?

Randomization!

That is, choose expert i with prob ∝ wi

Bad example: A,B,A,B,A...

After a bit, A and B make nearly the same number of mistakes.

Choose each with approximately the same probabilty.

Make a mistake around 1/2 of the time.

Best expert makes T/2 mistakes.

Roughly optimal!

Randomization!!!!

Better approach?

Use?

Randomization!

That is, choose expert i with prob ∝ wi

Bad example: A,B,A,B,A...

After a bit, A and B make nearly the same number of mistakes.

Choose each with approximately the same probabilty.

Make a mistake around 1/2 of the time.

Best expert makes T/2 mistakes.

Roughly optimal!

Randomization!!!!

Better approach?

Use?

Randomization!

That is, choose expert i with prob ∝ wi

Bad example: A,B,A,B,A...

After a bit, A and B make nearly the same number of mistakes.

Choose each with approximately the same probabilty.

Make a mistake around 1/2 of the time.

Best expert makes T/2 mistakes.

Roughly optimal!

Randomization!!!!

Better approach?

Use?

Randomization!

That is, choose expert i with prob ∝ wi

Bad example: A,B,A,B,A...

After a bit, A and B make nearly the same number of mistakes.

Choose each with approximately the same probabilty.

Make a mistake around 1/2 of the time.

Best expert makes T/2 mistakes.

Roughly optimal!

Randomization!!!!

Better approach?

Use?

Randomization!

That is, choose expert i with prob ∝ wi

Bad example: A,B,A,B,A...

After a bit, A and B make nearly the same number of mistakes.

Choose each with approximately the same probabilty.

Make a mistake around 1/2 of the time.

Best expert makes T/2 mistakes.

Roughly optimal!

Randomization!!!!

Better approach?

Use?

Randomization!

That is, choose expert i with prob ∝ wi

Bad example: A,B,A,B,A...

After a bit, A and B make nearly the same number of mistakes.

Choose each with approximately the same probabilty.

Make a mistake around 1/2 of the time.

Best expert makes T/2 mistakes.

Roughly optimal!

Randomization!!!!

Better approach?

Use?

Randomization!

That is, choose expert i with prob ∝ wi

Bad example: A,B,A,B,A...

After a bit, A and B make nearly the same number of mistakes.

Choose each with approximately the same probabilty.

Make a mistake around 1/2 of the time.

Best expert makes T/2 mistakes.

Roughly

optimal!

Randomization!!!!

Better approach?

Use?

Randomization!

That is, choose expert i with prob ∝ wi

Bad example: A,B,A,B,A...

After a bit, A and B make nearly the same number of mistakes.

Choose each with approximately the same probabilty.

Make a mistake around 1/2 of the time.

Best expert makes T/2 mistakes.

Roughly optimal!

Randomized analysis.

Some formulas:

For ε ≤ 1
2 ,x ∈ [0,1],

(1− ε)x ≤ (1− εx)

For ε ∈ [0, 1
2],

−ε− ε2 ≤ ln(1− ε)≤−ε

ε− ε2 ≤ ln(1+ ε)≤ ε

Proof Idea: ln(1+x) = x− x2

2 + x3

3 −·· ·

Randomized analysis.

Some formulas:

For ε ≤ 1
2 ,x ∈ [0,1],

(1− ε)x ≤ (1− εx)

For ε ∈ [0, 1
2],

−ε− ε2 ≤ ln(1− ε)≤−ε

ε− ε2 ≤ ln(1+ ε)≤ ε

Proof Idea: ln(1+x) = x− x2

2 + x3

3 −·· ·

Randomized analysis.

Some formulas:

For ε ≤ 1
2 ,x ∈ [0,1],

(1− ε)x ≤ (1− εx)

For ε ∈ [0, 1
2],

−ε− ε2 ≤ ln(1− ε)≤−ε

ε− ε2 ≤ ln(1+ ε)≤ ε

Proof Idea: ln(1+x) = x− x2

2 + x3

3 −·· ·

Randomized analysis.

Some formulas:

For ε ≤ 1
2 ,x ∈ [0,1],

(1− ε)x ≤ (1− εx)

For ε ∈ [0, 1
2],

−ε− ε2 ≤ ln(1− ε)≤−ε

ε− ε2 ≤ ln(1+ ε)≤ ε

Proof Idea: ln(1+x) = x− x2

2 + x3

3 −·· ·

Randomized analysis.

Some formulas:

For ε ≤ 1
2 ,x ∈ [0,1],

(1− ε)x ≤ (1− εx)

For ε ∈ [0, 1
2],

−ε− ε2 ≤ ln(1− ε)≤−ε

ε− ε2 ≤ ln(1+ ε)≤ ε

Proof Idea: ln(1+x) = x− x2

2 + x3

3 −·· ·

Randomized analysis.

Some formulas:

For ε ≤ 1
2 ,x ∈ [0,1],

(1− ε)x ≤ (1− εx)

For ε ∈ [0, 1
2],

−ε− ε2 ≤ ln(1− ε)≤−ε

ε− ε2 ≤ ln(1+ ε)≤ ε

Proof Idea: ln(1+x) = x− x2

2 + x3

3 −·· ·

Randomized algorithm
Expert i loses ℓt

i ∈ [0,1] in round t.

1. Initially wi = 1 for expert i .

2. Choose expert i with prob wi
W , W = ∑i wi .

3. wi ← wi(1− ε)ℓ
t
i

W (t) sum of wi at time t . W (0) = n

Best expert, b, loses L∗ total. →W (T)≥ wb ≥ (1− ε)L∗ .

Lt = ∑i
wi ℓ

t
i

W expected loss of alg. in time t .

Claim: W (t +1)≤W (t)(1− εLt) Loss→ weight loss.

Proof:
W (t +1) = ∑

i
(1− ε)ℓ

t
i wi ≤∑

i
(1− εℓt

i)wi = ∑
i

wi − ε ∑
i

wiℓ
t
i

= ∑
i

wi

(
1− ε

∑i wiℓ
t
i

∑i wi

)
= W (t)(1− εLt)

Randomized algorithm
Expert i loses ℓt

i ∈ [0,1] in round t.

1. Initially wi = 1 for expert i .

2. Choose expert i with prob wi
W , W = ∑i wi .

3. wi ← wi(1− ε)ℓ
t
i

W (t) sum of wi at time t . W (0) = n

Best expert, b, loses L∗ total. →W (T)≥ wb ≥ (1− ε)L∗ .

Lt = ∑i
wi ℓ

t
i

W expected loss of alg. in time t .

Claim: W (t +1)≤W (t)(1− εLt) Loss→ weight loss.

Proof:
W (t +1) = ∑

i
(1− ε)ℓ

t
i wi ≤∑

i
(1− εℓt

i)wi = ∑
i

wi − ε ∑
i

wiℓ
t
i

= ∑
i

wi

(
1− ε

∑i wiℓ
t
i

∑i wi

)
= W (t)(1− εLt)

Randomized algorithm
Expert i loses ℓt

i ∈ [0,1] in round t.

1. Initially wi = 1 for expert i .

2. Choose expert i with prob wi
W , W = ∑i wi .

3. wi ← wi(1− ε)ℓ
t
i

W (t) sum of wi at time t . W (0) = n

Best expert, b, loses L∗ total. →W (T)≥ wb ≥ (1− ε)L∗ .

Lt = ∑i
wi ℓ

t
i

W expected loss of alg. in time t .

Claim: W (t +1)≤W (t)(1− εLt) Loss→ weight loss.

Proof:
W (t +1) = ∑

i
(1− ε)ℓ

t
i wi ≤∑

i
(1− εℓt

i)wi = ∑
i

wi − ε ∑
i

wiℓ
t
i

= ∑
i

wi

(
1− ε

∑i wiℓ
t
i

∑i wi

)
= W (t)(1− εLt)

Randomized algorithm
Expert i loses ℓt

i ∈ [0,1] in round t.

1. Initially wi = 1 for expert i .

2. Choose expert i with prob wi
W , W = ∑i wi .

3. wi ← wi(1− ε)ℓ
t
i

W (t) sum of wi at time t . W (0) = n

Best expert, b, loses L∗ total. →W (T)≥ wb ≥ (1− ε)L∗ .

Lt = ∑i
wi ℓ

t
i

W expected loss of alg. in time t .

Claim: W (t +1)≤W (t)(1− εLt) Loss→ weight loss.

Proof:
W (t +1) = ∑

i
(1− ε)ℓ

t
i wi ≤∑

i
(1− εℓt

i)wi = ∑
i

wi − ε ∑
i

wiℓ
t
i

= ∑
i

wi

(
1− ε

∑i wiℓ
t
i

∑i wi

)
= W (t)(1− εLt)

Randomized algorithm
Expert i loses ℓt

i ∈ [0,1] in round t.

1. Initially wi = 1 for expert i .

2. Choose expert i with prob wi
W , W = ∑i wi .

3. wi ← wi(1− ε)ℓ
t
i

W (t) sum of wi at time t .

W (0) = n

Best expert, b, loses L∗ total. →W (T)≥ wb ≥ (1− ε)L∗ .

Lt = ∑i
wi ℓ

t
i

W expected loss of alg. in time t .

Claim: W (t +1)≤W (t)(1− εLt) Loss→ weight loss.

Proof:
W (t +1) = ∑

i
(1− ε)ℓ

t
i wi ≤∑

i
(1− εℓt

i)wi = ∑
i

wi − ε ∑
i

wiℓ
t
i

= ∑
i

wi

(
1− ε

∑i wiℓ
t
i

∑i wi

)
= W (t)(1− εLt)

Randomized algorithm
Expert i loses ℓt

i ∈ [0,1] in round t.

1. Initially wi = 1 for expert i .

2. Choose expert i with prob wi
W , W = ∑i wi .

3. wi ← wi(1− ε)ℓ
t
i

W (t) sum of wi at time t . W (0) =

n

Best expert, b, loses L∗ total. →W (T)≥ wb ≥ (1− ε)L∗ .

Lt = ∑i
wi ℓ

t
i

W expected loss of alg. in time t .

Claim: W (t +1)≤W (t)(1− εLt) Loss→ weight loss.

Proof:
W (t +1) = ∑

i
(1− ε)ℓ

t
i wi ≤∑

i
(1− εℓt

i)wi = ∑
i

wi − ε ∑
i

wiℓ
t
i

= ∑
i

wi

(
1− ε

∑i wiℓ
t
i

∑i wi

)
= W (t)(1− εLt)

Randomized algorithm
Expert i loses ℓt

i ∈ [0,1] in round t.

1. Initially wi = 1 for expert i .

2. Choose expert i with prob wi
W , W = ∑i wi .

3. wi ← wi(1− ε)ℓ
t
i

W (t) sum of wi at time t . W (0) = n

Best expert, b, loses L∗ total. →W (T)≥ wb ≥ (1− ε)L∗ .

Lt = ∑i
wi ℓ

t
i

W expected loss of alg. in time t .

Claim: W (t +1)≤W (t)(1− εLt) Loss→ weight loss.

Proof:
W (t +1) = ∑

i
(1− ε)ℓ

t
i wi ≤∑

i
(1− εℓt

i)wi = ∑
i

wi − ε ∑
i

wiℓ
t
i

= ∑
i

wi

(
1− ε

∑i wiℓ
t
i

∑i wi

)
= W (t)(1− εLt)

Randomized algorithm
Expert i loses ℓt

i ∈ [0,1] in round t.

1. Initially wi = 1 for expert i .

2. Choose expert i with prob wi
W , W = ∑i wi .

3. wi ← wi(1− ε)ℓ
t
i

W (t) sum of wi at time t . W (0) = n

Best expert, b, loses L∗ total.

→W (T)≥ wb ≥ (1− ε)L∗ .

Lt = ∑i
wi ℓ

t
i

W expected loss of alg. in time t .

Claim: W (t +1)≤W (t)(1− εLt) Loss→ weight loss.

Proof:
W (t +1) = ∑

i
(1− ε)ℓ

t
i wi ≤∑

i
(1− εℓt

i)wi = ∑
i

wi − ε ∑
i

wiℓ
t
i

= ∑
i

wi

(
1− ε

∑i wiℓ
t
i

∑i wi

)
= W (t)(1− εLt)

Randomized algorithm
Expert i loses ℓt

i ∈ [0,1] in round t.

1. Initially wi = 1 for expert i .

2. Choose expert i with prob wi
W , W = ∑i wi .

3. wi ← wi(1− ε)ℓ
t
i

W (t) sum of wi at time t . W (0) = n

Best expert, b, loses L∗ total. →W (T)≥ wb ≥ (1− ε)L∗ .

Lt = ∑i
wi ℓ

t
i

W expected loss of alg. in time t .

Claim: W (t +1)≤W (t)(1− εLt) Loss→ weight loss.

Proof:
W (t +1) = ∑

i
(1− ε)ℓ

t
i wi ≤∑

i
(1− εℓt

i)wi = ∑
i

wi − ε ∑
i

wiℓ
t
i

= ∑
i

wi

(
1− ε

∑i wiℓ
t
i

∑i wi

)
= W (t)(1− εLt)

Randomized algorithm
Expert i loses ℓt

i ∈ [0,1] in round t.

1. Initially wi = 1 for expert i .

2. Choose expert i with prob wi
W , W = ∑i wi .

3. wi ← wi(1− ε)ℓ
t
i

W (t) sum of wi at time t . W (0) = n

Best expert, b, loses L∗ total. →W (T)≥ wb ≥ (1− ε)L∗ .

Lt = ∑i
wi ℓ

t
i

W expected loss of alg. in time t .

Claim: W (t +1)≤W (t)(1− εLt) Loss→ weight loss.

Proof:
W (t +1) = ∑

i
(1− ε)ℓ

t
i wi ≤∑

i
(1− εℓt

i)wi = ∑
i

wi − ε ∑
i

wiℓ
t
i

= ∑
i

wi

(
1− ε

∑i wiℓ
t
i

∑i wi

)
= W (t)(1− εLt)

Randomized algorithm
Expert i loses ℓt

i ∈ [0,1] in round t.

1. Initially wi = 1 for expert i .

2. Choose expert i with prob wi
W , W = ∑i wi .

3. wi ← wi(1− ε)ℓ
t
i

W (t) sum of wi at time t . W (0) = n

Best expert, b, loses L∗ total. →W (T)≥ wb ≥ (1− ε)L∗ .

Lt = ∑i
wi ℓ

t
i

W expected loss of alg. in time t .

Claim: W (t +1)≤W (t)(1− εLt)

Loss→ weight loss.

Proof:
W (t +1) = ∑

i
(1− ε)ℓ

t
i wi ≤∑

i
(1− εℓt

i)wi = ∑
i

wi − ε ∑
i

wiℓ
t
i

= ∑
i

wi

(
1− ε

∑i wiℓ
t
i

∑i wi

)
= W (t)(1− εLt)

Randomized algorithm
Expert i loses ℓt

i ∈ [0,1] in round t.

1. Initially wi = 1 for expert i .

2. Choose expert i with prob wi
W , W = ∑i wi .

3. wi ← wi(1− ε)ℓ
t
i

W (t) sum of wi at time t . W (0) = n

Best expert, b, loses L∗ total. →W (T)≥ wb ≥ (1− ε)L∗ .

Lt = ∑i
wi ℓ

t
i

W expected loss of alg. in time t .

Claim: W (t +1)≤W (t)(1− εLt) Loss→ weight loss.

Proof:
W (t +1) = ∑

i
(1− ε)ℓ

t
i wi ≤∑

i
(1− εℓt

i)wi = ∑
i

wi − ε ∑
i

wiℓ
t
i

= ∑
i

wi

(
1− ε

∑i wiℓ
t
i

∑i wi

)
= W (t)(1− εLt)

Randomized algorithm
Expert i loses ℓt

i ∈ [0,1] in round t.

1. Initially wi = 1 for expert i .

2. Choose expert i with prob wi
W , W = ∑i wi .

3. wi ← wi(1− ε)ℓ
t
i

W (t) sum of wi at time t . W (0) = n

Best expert, b, loses L∗ total. →W (T)≥ wb ≥ (1− ε)L∗ .

Lt = ∑i
wi ℓ

t
i

W expected loss of alg. in time t .

Claim: W (t +1)≤W (t)(1− εLt) Loss→ weight loss.

Proof:

W (t +1) = ∑
i
(1− ε)ℓ

t
i wi ≤∑

i
(1− εℓt

i)wi = ∑
i

wi − ε ∑
i

wiℓ
t
i

= ∑
i

wi

(
1− ε

∑i wiℓ
t
i

∑i wi

)
= W (t)(1− εLt)

Randomized algorithm
Expert i loses ℓt

i ∈ [0,1] in round t.

1. Initially wi = 1 for expert i .

2. Choose expert i with prob wi
W , W = ∑i wi .

3. wi ← wi(1− ε)ℓ
t
i

W (t) sum of wi at time t . W (0) = n

Best expert, b, loses L∗ total. →W (T)≥ wb ≥ (1− ε)L∗ .

Lt = ∑i
wi ℓ

t
i

W expected loss of alg. in time t .

Claim: W (t +1)≤W (t)(1− εLt) Loss→ weight loss.

Proof:
W (t +1) = ∑

i
(1− ε)ℓ

t
i wi

≤∑
i
(1− εℓt

i)wi = ∑
i

wi − ε ∑
i

wiℓ
t
i

= ∑
i

wi

(
1− ε

∑i wiℓ
t
i

∑i wi

)
= W (t)(1− εLt)

Randomized algorithm
Expert i loses ℓt

i ∈ [0,1] in round t.

1. Initially wi = 1 for expert i .

2. Choose expert i with prob wi
W , W = ∑i wi .

3. wi ← wi(1− ε)ℓ
t
i

W (t) sum of wi at time t . W (0) = n

Best expert, b, loses L∗ total. →W (T)≥ wb ≥ (1− ε)L∗ .

Lt = ∑i
wi ℓ

t
i

W expected loss of alg. in time t .

Claim: W (t +1)≤W (t)(1− εLt) Loss→ weight loss.

Proof:
W (t +1) = ∑

i
(1− ε)ℓ

t
i wi ≤∑

i
(1− εℓt

i)wi

= ∑
i

wi − ε ∑
i

wiℓ
t
i

= ∑
i

wi

(
1− ε

∑i wiℓ
t
i

∑i wi

)
= W (t)(1− εLt)

Randomized algorithm
Expert i loses ℓt

i ∈ [0,1] in round t.

1. Initially wi = 1 for expert i .

2. Choose expert i with prob wi
W , W = ∑i wi .

3. wi ← wi(1− ε)ℓ
t
i

W (t) sum of wi at time t . W (0) = n

Best expert, b, loses L∗ total. →W (T)≥ wb ≥ (1− ε)L∗ .

Lt = ∑i
wi ℓ

t
i

W expected loss of alg. in time t .

Claim: W (t +1)≤W (t)(1− εLt) Loss→ weight loss.

Proof:
W (t +1) = ∑

i
(1− ε)ℓ

t
i wi ≤∑

i
(1− εℓt

i)wi = ∑
i

wi − ε ∑
i

wiℓ
t
i

= ∑
i

wi

(
1− ε

∑i wiℓ
t
i

∑i wi

)
= W (t)(1− εLt)

Randomized algorithm
Expert i loses ℓt

i ∈ [0,1] in round t.

1. Initially wi = 1 for expert i .

2. Choose expert i with prob wi
W , W = ∑i wi .

3. wi ← wi(1− ε)ℓ
t
i

W (t) sum of wi at time t . W (0) = n

Best expert, b, loses L∗ total. →W (T)≥ wb ≥ (1− ε)L∗ .

Lt = ∑i
wi ℓ

t
i

W expected loss of alg. in time t .

Claim: W (t +1)≤W (t)(1− εLt) Loss→ weight loss.

Proof:
W (t +1) = ∑

i
(1− ε)ℓ

t
i wi ≤∑

i
(1− εℓt

i)wi = ∑
i

wi − ε ∑
i

wiℓ
t
i

= ∑
i

wi

(
1− ε

∑i wiℓ
t
i

∑i wi

)

= W (t)(1− εLt)

Randomized algorithm
Expert i loses ℓt

i ∈ [0,1] in round t.

1. Initially wi = 1 for expert i .

2. Choose expert i with prob wi
W , W = ∑i wi .

3. wi ← wi(1− ε)ℓ
t
i

W (t) sum of wi at time t . W (0) = n

Best expert, b, loses L∗ total. →W (T)≥ wb ≥ (1− ε)L∗ .

Lt = ∑i
wi ℓ

t
i

W expected loss of alg. in time t .

Claim: W (t +1)≤W (t)(1− εLt) Loss→ weight loss.

Proof:
W (t +1) = ∑

i
(1− ε)ℓ

t
i wi ≤∑

i
(1− εℓt

i)wi = ∑
i

wi − ε ∑
i

wiℓ
t
i

= ∑
i

wi

(
1− ε

∑i wiℓ
t
i

∑i wi

)
= W (t)(1− εLt)

Analysis

(1− ε)L∗ ≤W (T)≤ n ∏t(1− εLt)

Take logs
(L∗) ln(1− ε)≤ lnn+∑ ln(1− εLt)

Use −ε− ε2 ≤ ln(1− ε)≤−ε

−(L∗)(ε + ε2)≤ lnn− ε ∑Lt

And

∑t Lt ≤ (1+ ε)L∗+ lnn
ε

.

∑t Lt is total expected loss of algorithm.

Within (1+ ε) ish of the best expert!

No factor of 2 loss!

Analysis

(1− ε)L∗ ≤W (T)≤ n ∏t(1− εLt)

Take logs
(L∗) ln(1− ε)≤ lnn+∑ ln(1− εLt)

Use −ε− ε2 ≤ ln(1− ε)≤−ε

−(L∗)(ε + ε2)≤ lnn− ε ∑Lt

And

∑t Lt ≤ (1+ ε)L∗+ lnn
ε

.

∑t Lt is total expected loss of algorithm.

Within (1+ ε) ish of the best expert!

No factor of 2 loss!

Analysis

(1− ε)L∗ ≤W (T)≤ n ∏t(1− εLt)

Take logs
(L∗) ln(1− ε)≤ lnn+∑ ln(1− εLt)

Use −ε− ε2 ≤ ln(1− ε)≤−ε

−(L∗)(ε + ε2)≤ lnn− ε ∑Lt

And

∑t Lt ≤ (1+ ε)L∗+ lnn
ε

.

∑t Lt is total expected loss of algorithm.

Within (1+ ε) ish of the best expert!

No factor of 2 loss!

Analysis

(1− ε)L∗ ≤W (T)≤ n ∏t(1− εLt)

Take logs
(L∗) ln(1− ε)≤ lnn+∑ ln(1− εLt)

Use −ε− ε2 ≤ ln(1− ε)≤−ε

−(L∗)(ε + ε2)≤ lnn− ε ∑Lt

And

∑t Lt ≤ (1+ ε)L∗+ lnn
ε

.

∑t Lt is total expected loss of algorithm.

Within (1+ ε) ish of the best expert!

No factor of 2 loss!

Analysis

(1− ε)L∗ ≤W (T)≤ n ∏t(1− εLt)

Take logs
(L∗) ln(1− ε)≤ lnn+∑ ln(1− εLt)

Use −ε− ε2 ≤ ln(1− ε)≤−ε

−(L∗)(ε + ε2)≤ lnn− ε ∑Lt

And

∑t Lt ≤ (1+ ε)L∗+ lnn
ε

.

∑t Lt is total expected loss of algorithm.

Within (1+ ε) ish of the best expert!

No factor of 2 loss!

Analysis

(1− ε)L∗ ≤W (T)≤ n ∏t(1− εLt)

Take logs
(L∗) ln(1− ε)≤ lnn+∑ ln(1− εLt)

Use −ε− ε2 ≤ ln(1− ε)≤−ε

−(L∗)(ε + ε2)≤ lnn− ε ∑Lt

And

∑t Lt ≤ (1+ ε)L∗+ lnn
ε

.

∑t Lt is total expected loss of algorithm.

Within (1+ ε) ish of the best expert!

No factor of 2 loss!

Analysis

(1− ε)L∗ ≤W (T)≤ n ∏t(1− εLt)

Take logs
(L∗) ln(1− ε)≤ lnn+∑ ln(1− εLt)

Use −ε− ε2 ≤ ln(1− ε)≤−ε

−(L∗)(ε + ε2)≤ lnn− ε ∑Lt

And

∑t Lt ≤ (1+ ε)L∗+ lnn
ε

.

∑t Lt is total expected loss of algorithm.

Within (1+ ε) ish of the best expert!

No factor of 2 loss!

Analysis

(1− ε)L∗ ≤W (T)≤ n ∏t(1− εLt)

Take logs
(L∗) ln(1− ε)≤ lnn+∑ ln(1− εLt)

Use −ε− ε2 ≤ ln(1− ε)≤−ε

−(L∗)(ε + ε2)≤ lnn− ε ∑Lt

And

∑t Lt ≤ (1+ ε)L∗+ lnn
ε

.

∑t Lt is total expected loss of algorithm.

Within (1+ ε)

ish of the best expert!

No factor of 2 loss!

Analysis

(1− ε)L∗ ≤W (T)≤ n ∏t(1− εLt)

Take logs
(L∗) ln(1− ε)≤ lnn+∑ ln(1− εLt)

Use −ε− ε2 ≤ ln(1− ε)≤−ε

−(L∗)(ε + ε2)≤ lnn− ε ∑Lt

And

∑t Lt ≤ (1+ ε)L∗+ lnn
ε

.

∑t Lt is total expected loss of algorithm.

Within (1+ ε) ish

of the best expert!

No factor of 2 loss!

Analysis

(1− ε)L∗ ≤W (T)≤ n ∏t(1− εLt)

Take logs
(L∗) ln(1− ε)≤ lnn+∑ ln(1− εLt)

Use −ε− ε2 ≤ ln(1− ε)≤−ε

−(L∗)(ε + ε2)≤ lnn− ε ∑Lt

And

∑t Lt ≤ (1+ ε)L∗+ lnn
ε

.

∑t Lt is total expected loss of algorithm.

Within (1+ ε) ish of the best expert!

No factor of 2 loss!

Analysis

(1− ε)L∗ ≤W (T)≤ n ∏t(1− εLt)

Take logs
(L∗) ln(1− ε)≤ lnn+∑ ln(1− εLt)

Use −ε− ε2 ≤ ln(1− ε)≤−ε

−(L∗)(ε + ε2)≤ lnn− ε ∑Lt

And

∑t Lt ≤ (1+ ε)L∗+ lnn
ε

.

∑t Lt is total expected loss of algorithm.

Within (1+ ε) ish of the best expert!

No factor of 2 loss!

Gains.

Why so negative?

Each day, each expert gives gain in [0,1].

Multiplicative weights with (1+ ε)gt
i .

G ≥ (1− ε)G∗− logn
ε

where G∗ is payoff of best expert.

Scaling:

Not [0,1], say [0,ρ].

L≤ (1+ ε)L∗+
ρ logn

ε

Gains.

Why so negative?

Each day, each expert gives gain in [0,1].

Multiplicative weights with (1+ ε)gt
i .

G ≥ (1− ε)G∗− logn
ε

where G∗ is payoff of best expert.

Scaling:

Not [0,1], say [0,ρ].

L≤ (1+ ε)L∗+
ρ logn

ε

Gains.

Why so negative?

Each day, each expert gives gain in [0,1].

Multiplicative weights with (1+ ε)gt
i .

G ≥ (1− ε)G∗− logn
ε

where G∗ is payoff of best expert.

Scaling:

Not [0,1], say [0,ρ].

L≤ (1+ ε)L∗+
ρ logn

ε

Gains.

Why so negative?

Each day, each expert gives gain in [0,1].

Multiplicative weights with (1+ ε)gt
i .

G ≥ (1− ε)G∗− logn
ε

where G∗ is payoff of best expert.

Scaling:

Not [0,1], say [0,ρ].

L≤ (1+ ε)L∗+
ρ logn

ε

Gains.

Why so negative?

Each day, each expert gives gain in [0,1].

Multiplicative weights with (1+ ε)gt
i .

G ≥ (1− ε)G∗− logn
ε

where G∗ is payoff of best expert.

Scaling:

Not [0,1], say [0,ρ].

L≤ (1+ ε)L∗+
ρ logn

ε

Gains.

Why so negative?

Each day, each expert gives gain in [0,1].

Multiplicative weights with (1+ ε)gt
i .

G ≥ (1− ε)G∗− logn
ε

where G∗ is payoff of best expert.

Scaling:

Not [0,1], say [0,ρ].

L≤ (1+ ε)L∗+
ρ logn

ε

Gains.

Why so negative?

Each day, each expert gives gain in [0,1].

Multiplicative weights with (1+ ε)gt
i .

G ≥ (1− ε)G∗− logn
ε

where G∗ is payoff of best expert.

Scaling:

Not [0,1], say [0,ρ].

L≤ (1+ ε)L∗+
ρ logn

ε

Summary: multiplicative weights.

Framework: n experts, each loses different amount every day.

Perfect Expert: logn mistakes.

Imperfect Expert: best makes m mistakes.

Deterministic Strategy: 2(1+ ε)m+ logn
ε

Real numbered losses: Best loses L∗ total.

Randomized Strategy: (1+ ε)L∗+ logn
ε

Strategy:
Choose proportional to weights

multiply weight by (1− ε)loss.

Multiplicative weights framework!

Applications next!

Summary: multiplicative weights.

Framework: n experts, each loses different amount every day.

Perfect Expert: logn mistakes.

Imperfect Expert: best makes m mistakes.

Deterministic Strategy: 2(1+ ε)m+ logn
ε

Real numbered losses: Best loses L∗ total.

Randomized Strategy: (1+ ε)L∗+ logn
ε

Strategy:
Choose proportional to weights

multiply weight by (1− ε)loss.

Multiplicative weights framework!

Applications next!

Summary: multiplicative weights.

Framework: n experts, each loses different amount every day.

Perfect Expert: logn mistakes.

Imperfect Expert: best makes m mistakes.

Deterministic Strategy: 2(1+ ε)m+ logn
ε

Real numbered losses: Best loses L∗ total.

Randomized Strategy: (1+ ε)L∗+ logn
ε

Strategy:
Choose proportional to weights

multiply weight by (1− ε)loss.

Multiplicative weights framework!

Applications next!

Summary: multiplicative weights.

Framework: n experts, each loses different amount every day.

Perfect Expert: logn mistakes.

Imperfect Expert: best makes m mistakes.

Deterministic Strategy: 2(1+ ε)m+ logn
ε

Real numbered losses: Best loses L∗ total.

Randomized Strategy: (1+ ε)L∗+ logn
ε

Strategy:
Choose proportional to weights

multiply weight by (1− ε)loss.

Multiplicative weights framework!

Applications next!

Summary: multiplicative weights.

Framework: n experts, each loses different amount every day.

Perfect Expert: logn mistakes.

Imperfect Expert: best makes m mistakes.

Deterministic Strategy: 2(1+ ε)m+ logn
ε

Real numbered losses: Best loses L∗ total.

Randomized Strategy: (1+ ε)L∗+ logn
ε

Strategy:
Choose proportional to weights

multiply weight by (1− ε)loss.

Multiplicative weights framework!

Applications next!

Summary: multiplicative weights.

Framework: n experts, each loses different amount every day.

Perfect Expert: logn mistakes.

Imperfect Expert: best makes m mistakes.

Deterministic Strategy: 2(1+ ε)m+ logn
ε

Real numbered losses: Best loses L∗ total.

Randomized Strategy: (1+ ε)L∗+ logn
ε

Strategy:
Choose proportional to weights

multiply weight by (1− ε)loss.

Multiplicative weights framework!

Applications next!

Summary: multiplicative weights.

Framework: n experts, each loses different amount every day.

Perfect Expert: logn mistakes.

Imperfect Expert: best makes m mistakes.

Deterministic Strategy: 2(1+ ε)m+ logn
ε

Real numbered losses: Best loses L∗ total.

Randomized Strategy: (1+ ε)L∗+ logn
ε

Strategy:
Choose proportional to weights

multiply weight by (1− ε)loss.

Multiplicative weights framework!

Applications next!

Summary: multiplicative weights.

Framework: n experts, each loses different amount every day.

Perfect Expert: logn mistakes.

Imperfect Expert: best makes m mistakes.

Deterministic Strategy: 2(1+ ε)m+ logn
ε

Real numbered losses: Best loses L∗ total.

Randomized Strategy: (1+ ε)L∗+ logn
ε

Strategy:

Choose proportional to weights
multiply weight by (1− ε)loss.

Multiplicative weights framework!

Applications next!

Summary: multiplicative weights.

Framework: n experts, each loses different amount every day.

Perfect Expert: logn mistakes.

Imperfect Expert: best makes m mistakes.

Deterministic Strategy: 2(1+ ε)m+ logn
ε

Real numbered losses: Best loses L∗ total.

Randomized Strategy: (1+ ε)L∗+ logn
ε

Strategy:
Choose proportional to weights

multiply weight by (1− ε)loss.

Multiplicative weights framework!

Applications next!

Summary: multiplicative weights.

Framework: n experts, each loses different amount every day.

Perfect Expert: logn mistakes.

Imperfect Expert: best makes m mistakes.

Deterministic Strategy: 2(1+ ε)m+ logn
ε

Real numbered losses: Best loses L∗ total.

Randomized Strategy: (1+ ε)L∗+ logn
ε

Strategy:
Choose proportional to weights

multiply weight by (1− ε)loss.

Multiplicative weights framework!

Applications next!

Summary: multiplicative weights.

Framework: n experts, each loses different amount every day.

Perfect Expert: logn mistakes.

Imperfect Expert: best makes m mistakes.

Deterministic Strategy: 2(1+ ε)m+ logn
ε

Real numbered losses: Best loses L∗ total.

Randomized Strategy: (1+ ε)L∗+ logn
ε

Strategy:
Choose proportional to weights

multiply weight by (1− ε)loss.

Multiplicative weights framework!

Applications next!

Summary: multiplicative weights.

Framework: n experts, each loses different amount every day.

Perfect Expert: logn mistakes.

Imperfect Expert: best makes m mistakes.

Deterministic Strategy: 2(1+ ε)m+ logn
ε

Real numbered losses: Best loses L∗ total.

Randomized Strategy: (1+ ε)L∗+ logn
ε

Strategy:
Choose proportional to weights

multiply weight by (1− ε)loss.

Multiplicative weights framework!

Applications next!

Strategic Games.

N players.

Each player has strategy set. {S1, . . . ,SN}.
Vector valued payoff function: u(s1, . . . ,sn) (e.g., ∈ℜN).

Example:

2 players

Player 1: { Defect, Cooperate }.
Player 2: { Defect, Cooperate }.
Payoff:

C D
C (3,3) (0,5)
D (5,0) (1,1)

Strategic Games.

N players.

Each player has strategy set. {S1, . . . ,SN}.

Vector valued payoff function: u(s1, . . . ,sn) (e.g., ∈ℜN).

Example:

2 players

Player 1: { Defect, Cooperate }.
Player 2: { Defect, Cooperate }.
Payoff:

C D
C (3,3) (0,5)
D (5,0) (1,1)

Strategic Games.

N players.

Each player has strategy set. {S1, . . . ,SN}.
Vector valued payoff function: u(s1, . . . ,sn) (e.g., ∈ℜN).

Example:

2 players

Player 1: { Defect, Cooperate }.
Player 2: { Defect, Cooperate }.
Payoff:

C D
C (3,3) (0,5)
D (5,0) (1,1)

Strategic Games.

N players.

Each player has strategy set. {S1, . . . ,SN}.
Vector valued payoff function: u(s1, . . . ,sn) (e.g., ∈ℜN).

Example:

2 players

Player 1: { Defect, Cooperate }.
Player 2: { Defect, Cooperate }.
Payoff:

C D
C (3,3) (0,5)
D (5,0) (1,1)

Strategic Games.

N players.

Each player has strategy set. {S1, . . . ,SN}.
Vector valued payoff function: u(s1, . . . ,sn) (e.g., ∈ℜN).

Example:

2 players

Player 1: { Defect, Cooperate }.
Player 2: { Defect, Cooperate }.
Payoff:

C D
C (3,3) (0,5)
D (5,0) (1,1)

Strategic Games.

N players.

Each player has strategy set. {S1, . . . ,SN}.
Vector valued payoff function: u(s1, . . . ,sn) (e.g., ∈ℜN).

Example:

2 players

Player 1: { Defect, Cooperate }.
Player 2: { Defect, Cooperate }.

Payoff:

C D
C (3,3) (0,5)
D (5,0) (1,1)

Strategic Games.

N players.

Each player has strategy set. {S1, . . . ,SN}.
Vector valued payoff function: u(s1, . . . ,sn) (e.g., ∈ℜN).

Example:

2 players

Player 1: { Defect, Cooperate }.
Player 2: { Defect, Cooperate }.
Payoff:

C D
C (3,3) (0,5)
D (5,0) (1,1)

Strategic Games.

N players.

Each player has strategy set. {S1, . . . ,SN}.
Vector valued payoff function: u(s1, . . . ,sn) (e.g., ∈ℜN).

Example:

2 players

Player 1: { Defect, Cooperate }.
Player 2: { Defect, Cooperate }.
Payoff:

C D
C (3,3) (0,5)
D (5,0) (1,1)

Famous because?

C D
C (3,3) (0,5)
D (5,0) (.1.1)

What is the best thing for the players to do?

Both cooperate. Payoff (3,3).

If player 1 wants to do better, what do they do?

Defects! Payoff (5,0)

What does player 2 do now?

Defects! Payoff (.1, .1).

Stable now!

Nash Equilibrium: neither player has incentive to change strategy.

Famous because?

C D
C (3,3) (0,5)
D (5,0) (.1.1)

What is the best thing for the players to do?

Both cooperate. Payoff (3,3).

If player 1 wants to do better, what do they do?

Defects! Payoff (5,0)

What does player 2 do now?

Defects! Payoff (.1, .1).

Stable now!

Nash Equilibrium: neither player has incentive to change strategy.

Famous because?

C D
C (3,3) (0,5)
D (5,0) (.1.1)

What is the best thing for the players to do?

Both cooperate. Payoff (3,3).

If player 1 wants to do better, what do they do?

Defects! Payoff (5,0)

What does player 2 do now?

Defects! Payoff (.1, .1).

Stable now!

Nash Equilibrium: neither player has incentive to change strategy.

Famous because?

C D
C (3,3) (0,5)
D (5,0) (.1.1)

What is the best thing for the players to do?

Both cooperate. Payoff (3,3).

If player 1 wants to do better, what do they do?

Defects! Payoff (5,0)

What does player 2 do now?

Defects! Payoff (.1, .1).

Stable now!

Nash Equilibrium: neither player has incentive to change strategy.

Famous because?

C D
C (3,3) (0,5)
D (5,0) (.1.1)

What is the best thing for the players to do?

Both cooperate. Payoff (3,3).

If player 1 wants to do better, what do they do?

Defects! Payoff (5,0)

What does player 2 do now?

Defects! Payoff (.1, .1).

Stable now!

Nash Equilibrium: neither player has incentive to change strategy.

Famous because?

C D
C (3,3) (0,5)
D (5,0) (.1.1)

What is the best thing for the players to do?

Both cooperate. Payoff (3,3).

If player 1 wants to do better, what do they do?

Defects! Payoff (5,0)

What does player 2 do now?

Defects! Payoff (.1, .1).

Stable now!

Nash Equilibrium: neither player has incentive to change strategy.

Famous because?

C D
C (3,3) (0,5)
D (5,0) (.1.1)

What is the best thing for the players to do?

Both cooperate. Payoff (3,3).

If player 1 wants to do better, what do they do?

Defects! Payoff (5,0)

What does player 2 do now?

Defects! Payoff (.1, .1).

Stable now!

Nash Equilibrium: neither player has incentive to change strategy.

Famous because?

C D
C (3,3) (0,5)
D (5,0) (.1.1)

What is the best thing for the players to do?

Both cooperate. Payoff (3,3).

If player 1 wants to do better, what do they do?

Defects! Payoff (5,0)

What does player 2 do now?

Defects! Payoff (.1, .1).

Stable now!

Nash Equilibrium: neither player has incentive to change strategy.

Digression..

What situations?

Prisoner’s dilemma:
Two prisoners separated by jailors and asked to betray partner.

Basis of the free market.
Companies compete, don’t cooperate.
No Monopoly:
E.G., OPEC, Airlines, .
Should defect.
Why don’t they?
Free market economics ...not so much?
More sophisticated models ,e.g, iterated dominance, coalitions,
complexity..
Lots of interesting Game Theory!

This class(today): simpler version.

Digression..

What situations?

Prisoner’s dilemma:

Two prisoners separated by jailors and asked to betray partner.

Basis of the free market.
Companies compete, don’t cooperate.
No Monopoly:
E.G., OPEC, Airlines, .
Should defect.
Why don’t they?
Free market economics ...not so much?
More sophisticated models ,e.g, iterated dominance, coalitions,
complexity..
Lots of interesting Game Theory!

This class(today): simpler version.

Digression..

What situations?

Prisoner’s dilemma:
Two prisoners separated by jailors and asked to betray partner.

Basis of the free market.
Companies compete, don’t cooperate.
No Monopoly:
E.G., OPEC, Airlines, .
Should defect.
Why don’t they?
Free market economics ...not so much?
More sophisticated models ,e.g, iterated dominance, coalitions,
complexity..
Lots of interesting Game Theory!

This class(today): simpler version.

Digression..

What situations?

Prisoner’s dilemma:
Two prisoners separated by jailors and asked to betray partner.

Basis of the free market.

Companies compete, don’t cooperate.
No Monopoly:
E.G., OPEC, Airlines, .
Should defect.
Why don’t they?
Free market economics ...not so much?
More sophisticated models ,e.g, iterated dominance, coalitions,
complexity..
Lots of interesting Game Theory!

This class(today): simpler version.

Digression..

What situations?

Prisoner’s dilemma:
Two prisoners separated by jailors and asked to betray partner.

Basis of the free market.
Companies compete, don’t cooperate.

No Monopoly:
E.G., OPEC, Airlines, .
Should defect.
Why don’t they?
Free market economics ...not so much?
More sophisticated models ,e.g, iterated dominance, coalitions,
complexity..
Lots of interesting Game Theory!

This class(today): simpler version.

Digression..

What situations?

Prisoner’s dilemma:
Two prisoners separated by jailors and asked to betray partner.

Basis of the free market.
Companies compete, don’t cooperate.
No Monopoly:

E.G., OPEC, Airlines, .
Should defect.
Why don’t they?
Free market economics ...not so much?
More sophisticated models ,e.g, iterated dominance, coalitions,
complexity..
Lots of interesting Game Theory!

This class(today): simpler version.

Digression..

What situations?

Prisoner’s dilemma:
Two prisoners separated by jailors and asked to betray partner.

Basis of the free market.
Companies compete, don’t cooperate.
No Monopoly:
E.G., OPEC, Airlines, .

Should defect.
Why don’t they?
Free market economics ...not so much?
More sophisticated models ,e.g, iterated dominance, coalitions,
complexity..
Lots of interesting Game Theory!

This class(today): simpler version.

Digression..

What situations?

Prisoner’s dilemma:
Two prisoners separated by jailors and asked to betray partner.

Basis of the free market.
Companies compete, don’t cooperate.
No Monopoly:
E.G., OPEC, Airlines, .
Should defect.

Why don’t they?
Free market economics ...not so much?
More sophisticated models ,e.g, iterated dominance, coalitions,
complexity..
Lots of interesting Game Theory!

This class(today): simpler version.

Digression..

What situations?

Prisoner’s dilemma:
Two prisoners separated by jailors and asked to betray partner.

Basis of the free market.
Companies compete, don’t cooperate.
No Monopoly:
E.G., OPEC, Airlines, .
Should defect.
Why don’t they?

Free market economics ...not so much?
More sophisticated models ,e.g, iterated dominance, coalitions,
complexity..
Lots of interesting Game Theory!

This class(today): simpler version.

Digression..

What situations?

Prisoner’s dilemma:
Two prisoners separated by jailors and asked to betray partner.

Basis of the free market.
Companies compete, don’t cooperate.
No Monopoly:
E.G., OPEC, Airlines, .
Should defect.
Why don’t they?
Free market economics ...

not so much?
More sophisticated models ,e.g, iterated dominance, coalitions,
complexity..
Lots of interesting Game Theory!

This class(today): simpler version.

Digression..

What situations?

Prisoner’s dilemma:
Two prisoners separated by jailors and asked to betray partner.

Basis of the free market.
Companies compete, don’t cooperate.
No Monopoly:
E.G., OPEC, Airlines, .
Should defect.
Why don’t they?
Free market economics ...not so much?

More sophisticated models ,e.g, iterated dominance, coalitions,
complexity..
Lots of interesting Game Theory!

This class(today): simpler version.

Digression..

What situations?

Prisoner’s dilemma:
Two prisoners separated by jailors and asked to betray partner.

Basis of the free market.
Companies compete, don’t cooperate.
No Monopoly:
E.G., OPEC, Airlines, .
Should defect.
Why don’t they?
Free market economics ...not so much?
More sophisticated models

,e.g, iterated dominance, coalitions,
complexity..
Lots of interesting Game Theory!

This class(today): simpler version.

Digression..

What situations?

Prisoner’s dilemma:
Two prisoners separated by jailors and asked to betray partner.

Basis of the free market.
Companies compete, don’t cooperate.
No Monopoly:
E.G., OPEC, Airlines, .
Should defect.
Why don’t they?
Free market economics ...not so much?
More sophisticated models ,e.g, iterated dominance,

coalitions,
complexity..
Lots of interesting Game Theory!

This class(today): simpler version.

Digression..

What situations?

Prisoner’s dilemma:
Two prisoners separated by jailors and asked to betray partner.

Basis of the free market.
Companies compete, don’t cooperate.
No Monopoly:
E.G., OPEC, Airlines, .
Should defect.
Why don’t they?
Free market economics ...not so much?
More sophisticated models ,e.g, iterated dominance, coalitions,

complexity..
Lots of interesting Game Theory!

This class(today): simpler version.

Digression..

What situations?

Prisoner’s dilemma:
Two prisoners separated by jailors and asked to betray partner.

Basis of the free market.
Companies compete, don’t cooperate.
No Monopoly:
E.G., OPEC, Airlines, .
Should defect.
Why don’t they?
Free market economics ...not so much?
More sophisticated models ,e.g, iterated dominance, coalitions,
complexity..

Lots of interesting Game Theory!

This class(today): simpler version.

Digression..

What situations?

Prisoner’s dilemma:
Two prisoners separated by jailors and asked to betray partner.

Basis of the free market.
Companies compete, don’t cooperate.
No Monopoly:
E.G., OPEC, Airlines, .
Should defect.
Why don’t they?
Free market economics ...not so much?
More sophisticated models ,e.g, iterated dominance, coalitions,
complexity..
Lots of interesting Game Theory!

This class(today): simpler version.

Digression..

What situations?

Prisoner’s dilemma:
Two prisoners separated by jailors and asked to betray partner.

Basis of the free market.
Companies compete, don’t cooperate.
No Monopoly:
E.G., OPEC, Airlines, .
Should defect.
Why don’t they?
Free market economics ...not so much?
More sophisticated models ,e.g, iterated dominance, coalitions,
complexity..
Lots of interesting Game Theory!

This class(today): simpler version.

Two Person Zero Sum Games

2 players.

Each player has strategy set:
m strategies for player 1 n strategies for player 2

Payoff function: u(i , j) = (−a,a) (or just a).
“Player 1 pays a to player 2.”

Zero Sum: Payoff for any pair of strategies sums to 0.

Payoffs by m by n matrix: A.
Row player minimizes, column player maximizes.

Roshambo: rock,paper, scissors.
R P S

R 0 1 -1
P -1 0 1
S 1 -1 0

Any Nash Equilibrium?

(R,R)? no. (R,P)? no. (R,S)? no.

Two Person Zero Sum Games

2 players.

Each player has strategy set:
m strategies for player 1 n strategies for player 2

Payoff function: u(i , j) = (−a,a) (or just a).
“Player 1 pays a to player 2.”

Zero Sum: Payoff for any pair of strategies sums to 0.

Payoffs by m by n matrix: A.
Row player minimizes, column player maximizes.

Roshambo: rock,paper, scissors.
R P S

R 0 1 -1
P -1 0 1
S 1 -1 0

Any Nash Equilibrium?

(R,R)? no. (R,P)? no. (R,S)? no.

Two Person Zero Sum Games

2 players.

Each player has strategy set:
m strategies for player 1 n strategies for player 2

Payoff function: u(i , j) = (−a,a) (or just a).
“Player 1 pays a to player 2.”

Zero Sum: Payoff for any pair of strategies sums to 0.

Payoffs by m by n matrix: A.
Row player minimizes, column player maximizes.

Roshambo: rock,paper, scissors.
R P S

R 0 1 -1
P -1 0 1
S 1 -1 0

Any Nash Equilibrium?

(R,R)? no. (R,P)? no. (R,S)? no.

Two Person Zero Sum Games

2 players.

Each player has strategy set:
m strategies for player 1 n strategies for player 2

Payoff function: u(i , j) = (−a,a) (or just a).
“Player 1 pays a to player 2.”

Zero Sum: Payoff for any pair of strategies sums to 0.

Payoffs by m by n matrix: A.
Row player minimizes, column player maximizes.

Roshambo: rock,paper, scissors.
R P S

R 0 1 -1
P -1 0 1
S 1 -1 0

Any Nash Equilibrium?

(R,R)? no. (R,P)? no. (R,S)? no.

Two Person Zero Sum Games

2 players.

Each player has strategy set:
m strategies for player 1 n strategies for player 2

Payoff function: u(i , j) = (−a,a) (or just a).
“Player 1 pays a to player 2.”

Zero Sum: Payoff for any pair of strategies sums to 0.

Payoffs by m by n matrix: A.

Row player minimizes, column player maximizes.

Roshambo: rock,paper, scissors.
R P S

R 0 1 -1
P -1 0 1
S 1 -1 0

Any Nash Equilibrium?

(R,R)? no. (R,P)? no. (R,S)? no.

Two Person Zero Sum Games

2 players.

Each player has strategy set:
m strategies for player 1 n strategies for player 2

Payoff function: u(i , j) = (−a,a) (or just a).
“Player 1 pays a to player 2.”

Zero Sum: Payoff for any pair of strategies sums to 0.

Payoffs by m by n matrix: A.
Row player minimizes, column player maximizes.

Roshambo: rock,paper, scissors.
R P S

R 0 1 -1
P -1 0 1
S 1 -1 0

Any Nash Equilibrium?

(R,R)? no. (R,P)? no. (R,S)? no.

Two Person Zero Sum Games

2 players.

Each player has strategy set:
m strategies for player 1 n strategies for player 2

Payoff function: u(i , j) = (−a,a) (or just a).
“Player 1 pays a to player 2.”

Zero Sum: Payoff for any pair of strategies sums to 0.

Payoffs by m by n matrix: A.
Row player minimizes, column player maximizes.

Roshambo: rock,paper, scissors.
R P S

R 0 1 -1
P -1 0 1
S 1 -1 0

Any Nash Equilibrium?

(R,R)? no. (R,P)? no. (R,S)? no.

Two Person Zero Sum Games

2 players.

Each player has strategy set:
m strategies for player 1 n strategies for player 2

Payoff function: u(i , j) = (−a,a) (or just a).
“Player 1 pays a to player 2.”

Zero Sum: Payoff for any pair of strategies sums to 0.

Payoffs by m by n matrix: A.
Row player minimizes, column player maximizes.

Roshambo: rock,paper, scissors.
R P S

R 0 1 -1
P -1 0 1
S 1 -1 0

Any Nash Equilibrium?

(R,R)? no. (R,P)? no. (R,S)? no.

Two Person Zero Sum Games

2 players.

Each player has strategy set:
m strategies for player 1 n strategies for player 2

Payoff function: u(i , j) = (−a,a) (or just a).
“Player 1 pays a to player 2.”

Zero Sum: Payoff for any pair of strategies sums to 0.

Payoffs by m by n matrix: A.
Row player minimizes, column player maximizes.

Roshambo: rock,paper, scissors.
R P S

R 0 1 -1
P -1 0 1
S 1 -1 0

Any Nash Equilibrium?

(R,R)?

no. (R,P)? no. (R,S)? no.

Two Person Zero Sum Games

2 players.

Each player has strategy set:
m strategies for player 1 n strategies for player 2

Payoff function: u(i , j) = (−a,a) (or just a).
“Player 1 pays a to player 2.”

Zero Sum: Payoff for any pair of strategies sums to 0.

Payoffs by m by n matrix: A.
Row player minimizes, column player maximizes.

Roshambo: rock,paper, scissors.
R P S

R 0 1 -1
P -1 0 1
S 1 -1 0

Any Nash Equilibrium?

(R,R)? no.

(R,P)? no. (R,S)? no.

Two Person Zero Sum Games

2 players.

Each player has strategy set:
m strategies for player 1 n strategies for player 2

Payoff function: u(i , j) = (−a,a) (or just a).
“Player 1 pays a to player 2.”

Zero Sum: Payoff for any pair of strategies sums to 0.

Payoffs by m by n matrix: A.
Row player minimizes, column player maximizes.

Roshambo: rock,paper, scissors.
R P S

R 0 1 -1
P -1 0 1
S 1 -1 0

Any Nash Equilibrium?

(R,R)? no. (R,P)?

no. (R,S)? no.

Two Person Zero Sum Games

2 players.

Each player has strategy set:
m strategies for player 1 n strategies for player 2

Payoff function: u(i , j) = (−a,a) (or just a).
“Player 1 pays a to player 2.”

Zero Sum: Payoff for any pair of strategies sums to 0.

Payoffs by m by n matrix: A.
Row player minimizes, column player maximizes.

Roshambo: rock,paper, scissors.
R P S

R 0 1 -1
P -1 0 1
S 1 -1 0

Any Nash Equilibrium?

(R,R)? no. (R,P)? no.

(R,S)? no.

Two Person Zero Sum Games

2 players.

Each player has strategy set:
m strategies for player 1 n strategies for player 2

Payoff function: u(i , j) = (−a,a) (or just a).
“Player 1 pays a to player 2.”

Zero Sum: Payoff for any pair of strategies sums to 0.

Payoffs by m by n matrix: A.
Row player minimizes, column player maximizes.

Roshambo: rock,paper, scissors.
R P S

R 0 1 -1
P -1 0 1
S 1 -1 0

Any Nash Equilibrium?

(R,R)? no. (R,P)? no. (R,S)?

no.

Two Person Zero Sum Games

2 players.

Each player has strategy set:
m strategies for player 1 n strategies for player 2

Payoff function: u(i , j) = (−a,a) (or just a).
“Player 1 pays a to player 2.”

Zero Sum: Payoff for any pair of strategies sums to 0.

Payoffs by m by n matrix: A.
Row player minimizes, column player maximizes.

Roshambo: rock,paper, scissors.
R P S

R 0 1 -1
P -1 0 1
S 1 -1 0

Any Nash Equilibrium?

(R,R)? no. (R,P)? no. (R,S)? no.

Two Person Zero Sum Games

2 players.

Each player has strategy set:
m strategies for player 1 n strategies for player 2

Payoff function: u(i , j) = (−a,a) (or just a).
“Player 1 pays a to player 2.”

Zero Sum: Payoff for any pair of strategies sums to 0.

Payoffs by m by n matrix: A.
Row player minimizes, column player maximizes.

Roshambo: rock,paper, scissors.
R P S

R 0 1 -1
P -1 0 1
S 1 -1 0

Any Nash Equilibrium?

(R,R)? no. (R,P)? no. (R,S)? no.

Mixed Strategies.

R P S

.33 .33 .33

R

.33

0 1 -1
P

.33

-1 0 1
S

.33

1 -1 0
How do you play?

Player 1: play each strategy with equal probability.
Player 2: play each strategy with equal probability.

Definitions.

Mixed strategies: Each player plays distribution over strategies.

Pure strategies: Each player plays single strategy.

Mixed Strategies.

R P S

.33 .33 .33

R .33 0 1 -1
P .33 -1 0 1
S .33 1 -1 0

How do you play?

Player 1: play each strategy with equal probability.

Player 2: play each strategy with equal probability.

Definitions.

Mixed strategies: Each player plays distribution over strategies.

Pure strategies: Each player plays single strategy.

Mixed Strategies.

R P S
.33 .33 .33

R .33 0 1 -1
P .33 -1 0 1
S .33 1 -1 0

How do you play?

Player 1: play each strategy with equal probability.
Player 2: play each strategy with equal probability.

Definitions.

Mixed strategies: Each player plays distribution over strategies.

Pure strategies: Each player plays single strategy.

Mixed Strategies.

R P S
.33 .33 .33

R .33 0 1 -1
P .33 -1 0 1
S .33 1 -1 0

How do you play?

Player 1: play each strategy with equal probability.
Player 2: play each strategy with equal probability.

Definitions.

Mixed strategies: Each player plays distribution over strategies.

Pure strategies: Each player plays single strategy.

Mixed Strategies.

R P S
.33 .33 .33

R .33 0 1 -1
P .33 -1 0 1
S .33 1 -1 0

How do you play?

Player 1: play each strategy with equal probability.
Player 2: play each strategy with equal probability.

Definitions.

Mixed strategies: Each player plays distribution over strategies.

Pure strategies: Each player plays single strategy.

Mixed Strategies.

R P S
.33 .33 .33

R .33 0 1 -1
P .33 -1 0 1
S .33 1 -1 0

How do you play?

Player 1: play each strategy with equal probability.
Player 2: play each strategy with equal probability.

Definitions.

Mixed strategies: Each player plays distribution over strategies.

Pure strategies: Each player plays single strategy.

Payoffs: Equilibrium.
R P S
.33 .33 .33

R .33 0 1 -1
P .33 -1 0 1
S .33 1 -1 0

Payoffs?

Can’t just look it up in matrix!.

Average Payoff. Expected Payoff.

Sample space: Ω= {(i , j) : i , j ∈ [1, ..,3]}
Random variable X (payoff).

E [X] = ∑
(i ,j)

X (i , j)Pr [(i , j)].

Each player chooses independently:
Pr [(i , j)] = 1

3 ×
1
3 = 1

9 .

E [X] = 0.1

1Remember zero sum games have one payoff.

Payoffs: Equilibrium.
R P S
.33 .33 .33

R .33 0 1 -1
P .33 -1 0 1
S .33 1 -1 0

Payoffs? Can’t just look it up in matrix!.

Average Payoff. Expected Payoff.

Sample space: Ω= {(i , j) : i , j ∈ [1, ..,3]}
Random variable X (payoff).

E [X] = ∑
(i ,j)

X (i , j)Pr [(i , j)].

Each player chooses independently:
Pr [(i , j)] = 1

3 ×
1
3 = 1

9 .

E [X] = 0.1

1Remember zero sum games have one payoff.

Payoffs: Equilibrium.
R P S
.33 .33 .33

R .33 0 1 -1
P .33 -1 0 1
S .33 1 -1 0

Payoffs? Can’t just look it up in matrix!.

Average Payoff.

Expected Payoff.

Sample space: Ω= {(i , j) : i , j ∈ [1, ..,3]}
Random variable X (payoff).

E [X] = ∑
(i ,j)

X (i , j)Pr [(i , j)].

Each player chooses independently:
Pr [(i , j)] = 1

3 ×
1
3 = 1

9 .

E [X] = 0.1

1Remember zero sum games have one payoff.

Payoffs: Equilibrium.
R P S
.33 .33 .33

R .33 0 1 -1
P .33 -1 0 1
S .33 1 -1 0

Payoffs? Can’t just look it up in matrix!.

Average Payoff. Expected Payoff.

Sample space: Ω= {(i , j) : i , j ∈ [1, ..,3]}
Random variable X (payoff).

E [X] = ∑
(i ,j)

X (i , j)Pr [(i , j)].

Each player chooses independently:
Pr [(i , j)] = 1

3 ×
1
3 = 1

9 .

E [X] = 0.1

1Remember zero sum games have one payoff.

Payoffs: Equilibrium.
R P S
.33 .33 .33

R .33 0 1 -1
P .33 -1 0 1
S .33 1 -1 0

Payoffs? Can’t just look it up in matrix!.

Average Payoff. Expected Payoff.

Sample space: Ω= {(i , j) : i , j ∈ [1, ..,3]}

Random variable X (payoff).

E [X] = ∑
(i ,j)

X (i , j)Pr [(i , j)].

Each player chooses independently:
Pr [(i , j)] = 1

3 ×
1
3 = 1

9 .

E [X] = 0.1

1Remember zero sum games have one payoff.

Payoffs: Equilibrium.
R P S
.33 .33 .33

R .33 0 1 -1
P .33 -1 0 1
S .33 1 -1 0

Payoffs? Can’t just look it up in matrix!.

Average Payoff. Expected Payoff.

Sample space: Ω= {(i , j) : i , j ∈ [1, ..,3]}
Random variable X (payoff).

E [X] = ∑
(i ,j)

X (i , j)Pr [(i , j)].

Each player chooses independently:
Pr [(i , j)] = 1

3 ×
1
3 = 1

9 .

E [X] = 0.1

1Remember zero sum games have one payoff.

Payoffs: Equilibrium.
R P S
.33 .33 .33

R .33 0 1 -1
P .33 -1 0 1
S .33 1 -1 0

Payoffs? Can’t just look it up in matrix!.

Average Payoff. Expected Payoff.

Sample space: Ω= {(i , j) : i , j ∈ [1, ..,3]}
Random variable X (payoff).

E [X] = ∑
(i ,j)

X (i , j)Pr [(i , j)].

Each player chooses independently:
Pr [(i , j)] = 1

3 ×
1
3 = 1

9 .

E [X] = 0.1

1Remember zero sum games have one payoff.

Payoffs: Equilibrium.
R P S
.33 .33 .33

R .33 0 1 -1
P .33 -1 0 1
S .33 1 -1 0

Payoffs? Can’t just look it up in matrix!.

Average Payoff. Expected Payoff.

Sample space: Ω= {(i , j) : i , j ∈ [1, ..,3]}
Random variable X (payoff).

E [X] = ∑
(i ,j)

X (i , j)Pr [(i , j)].

Each player chooses independently:

Pr [(i , j)] = 1
3 ×

1
3 = 1

9 .

E [X] = 0.1

1Remember zero sum games have one payoff.

Payoffs: Equilibrium.
R P S
.33 .33 .33

R .33 0 1 -1
P .33 -1 0 1
S .33 1 -1 0

Payoffs? Can’t just look it up in matrix!.

Average Payoff. Expected Payoff.

Sample space: Ω= {(i , j) : i , j ∈ [1, ..,3]}
Random variable X (payoff).

E [X] = ∑
(i ,j)

X (i , j)Pr [(i , j)].

Each player chooses independently:
Pr [(i , j)] = 1

3 ×
1
3 = 1

9 .

E [X] = 0.1

1Remember zero sum games have one payoff.

Payoffs: Equilibrium.
R P S
.33 .33 .33

R .33 0 1 -1
P .33 -1 0 1
S .33 1 -1 0

Payoffs? Can’t just look it up in matrix!.

Average Payoff. Expected Payoff.

Sample space: Ω= {(i , j) : i , j ∈ [1, ..,3]}
Random variable X (payoff).

E [X] = ∑
(i ,j)

X (i , j)Pr [(i , j)].

Each player chooses independently:
Pr [(i , j)] = 1

3 ×
1
3 = 1

9 .

E [X] = 0.

1

1Remember zero sum games have one payoff.

Payoffs: Equilibrium.
R P S
.33 .33 .33

R .33 0 1 -1
P .33 -1 0 1
S .33 1 -1 0

Payoffs? Can’t just look it up in matrix!.

Average Payoff. Expected Payoff.

Sample space: Ω= {(i , j) : i , j ∈ [1, ..,3]}
Random variable X (payoff).

E [X] = ∑
(i ,j)

X (i , j)Pr [(i , j)].

Each player chooses independently:
Pr [(i , j)] = 1

3 ×
1
3 = 1

9 .

E [X] = 0.1

1Remember zero sum games have one payoff.

Equilibrium
R P S
.33 .33 .33

R .33 0 1 -1
P .33 -1 0 1
S .33 1 -1 0

Will Player 1 change strategy?

Mixed strategies uncountable!

Expected payoffs for pure strategies for player 1.

Expected payoff of Rock? 1
3 ×0+ 1

3 ×1+ 1
3 ×−1 = 0.

Expected payoff of Paper? 1
3 ×−1+ 1

3 ×0+ 1
3 ×1 = 0.

Expected payoff of Scissors? 1
3 ×1+ 1

3 ×−1+ 1
3 ×0 = 0.

No better pure strategy. =⇒ No better mixed strategy!

Mixed strat. payoff is weighted av. of payoffs of pure strats.

E [X] = ∑(i ,j)(Pr [i]×Pr [j])X (i , j) = ∑i Pr [i](∑j Pr [j]×X (i , j))

Mixed strategy can’t be better than the best pure strategy.

Player 1 has no incentive to change! Same for player 2.

Equilibrium!

Equilibrium
R P S
.33 .33 .33

R .33 0 1 -1
P .33 -1 0 1
S .33 1 -1 0

Will Player 1 change strategy? Mixed strategies uncountable!

Expected payoffs for pure strategies for player 1.

Expected payoff of Rock? 1
3 ×0+ 1

3 ×1+ 1
3 ×−1 = 0.

Expected payoff of Paper? 1
3 ×−1+ 1

3 ×0+ 1
3 ×1 = 0.

Expected payoff of Scissors? 1
3 ×1+ 1

3 ×−1+ 1
3 ×0 = 0.

No better pure strategy. =⇒ No better mixed strategy!

Mixed strat. payoff is weighted av. of payoffs of pure strats.

E [X] = ∑(i ,j)(Pr [i]×Pr [j])X (i , j) = ∑i Pr [i](∑j Pr [j]×X (i , j))

Mixed strategy can’t be better than the best pure strategy.

Player 1 has no incentive to change! Same for player 2.

Equilibrium!

Equilibrium
R P S
.33 .33 .33

R .33 0 1 -1
P .33 -1 0 1
S .33 1 -1 0

Will Player 1 change strategy? Mixed strategies uncountable!

Expected payoffs for pure strategies for player 1.

Expected payoff of Rock? 1
3 ×0+ 1

3 ×1+ 1
3 ×−1 = 0.

Expected payoff of Paper? 1
3 ×−1+ 1

3 ×0+ 1
3 ×1 = 0.

Expected payoff of Scissors? 1
3 ×1+ 1

3 ×−1+ 1
3 ×0 = 0.

No better pure strategy. =⇒ No better mixed strategy!

Mixed strat. payoff is weighted av. of payoffs of pure strats.

E [X] = ∑(i ,j)(Pr [i]×Pr [j])X (i , j) = ∑i Pr [i](∑j Pr [j]×X (i , j))

Mixed strategy can’t be better than the best pure strategy.

Player 1 has no incentive to change! Same for player 2.

Equilibrium!

Equilibrium
R P S
.33 .33 .33

R .33 0 1 -1
P .33 -1 0 1
S .33 1 -1 0

Will Player 1 change strategy? Mixed strategies uncountable!

Expected payoffs for pure strategies for player 1.

Expected payoff of Rock?

1
3 ×0+ 1

3 ×1+ 1
3 ×−1 = 0.

Expected payoff of Paper? 1
3 ×−1+ 1

3 ×0+ 1
3 ×1 = 0.

Expected payoff of Scissors? 1
3 ×1+ 1

3 ×−1+ 1
3 ×0 = 0.

No better pure strategy. =⇒ No better mixed strategy!

Mixed strat. payoff is weighted av. of payoffs of pure strats.

E [X] = ∑(i ,j)(Pr [i]×Pr [j])X (i , j) = ∑i Pr [i](∑j Pr [j]×X (i , j))

Mixed strategy can’t be better than the best pure strategy.

Player 1 has no incentive to change! Same for player 2.

Equilibrium!

Equilibrium
R P S
.33 .33 .33

R .33 0 1 -1
P .33 -1 0 1
S .33 1 -1 0

Will Player 1 change strategy? Mixed strategies uncountable!

Expected payoffs for pure strategies for player 1.

Expected payoff of Rock? 1
3 ×0+ 1

3 ×1+ 1
3 ×−1 = 0.

Expected payoff of Paper? 1
3 ×−1+ 1

3 ×0+ 1
3 ×1 = 0.

Expected payoff of Scissors? 1
3 ×1+ 1

3 ×−1+ 1
3 ×0 = 0.

No better pure strategy. =⇒ No better mixed strategy!

Mixed strat. payoff is weighted av. of payoffs of pure strats.

E [X] = ∑(i ,j)(Pr [i]×Pr [j])X (i , j) = ∑i Pr [i](∑j Pr [j]×X (i , j))

Mixed strategy can’t be better than the best pure strategy.

Player 1 has no incentive to change! Same for player 2.

Equilibrium!

Equilibrium
R P S
.33 .33 .33

R .33 0 1 -1
P .33 -1 0 1
S .33 1 -1 0

Will Player 1 change strategy? Mixed strategies uncountable!

Expected payoffs for pure strategies for player 1.

Expected payoff of Rock? 1
3 ×0+ 1

3 ×1+ 1
3 ×−1 = 0.

Expected payoff of Paper?

1
3 ×−1+ 1

3 ×0+ 1
3 ×1 = 0.

Expected payoff of Scissors? 1
3 ×1+ 1

3 ×−1+ 1
3 ×0 = 0.

No better pure strategy. =⇒ No better mixed strategy!

Mixed strat. payoff is weighted av. of payoffs of pure strats.

E [X] = ∑(i ,j)(Pr [i]×Pr [j])X (i , j) = ∑i Pr [i](∑j Pr [j]×X (i , j))

Mixed strategy can’t be better than the best pure strategy.

Player 1 has no incentive to change! Same for player 2.

Equilibrium!

Equilibrium
R P S
.33 .33 .33

R .33 0 1 -1
P .33 -1 0 1
S .33 1 -1 0

Will Player 1 change strategy? Mixed strategies uncountable!

Expected payoffs for pure strategies for player 1.

Expected payoff of Rock? 1
3 ×0+ 1

3 ×1+ 1
3 ×−1 = 0.

Expected payoff of Paper? 1
3 ×−1+ 1

3 ×0+ 1
3 ×1 = 0.

Expected payoff of Scissors? 1
3 ×1+ 1

3 ×−1+ 1
3 ×0 = 0.

No better pure strategy. =⇒ No better mixed strategy!

Mixed strat. payoff is weighted av. of payoffs of pure strats.

E [X] = ∑(i ,j)(Pr [i]×Pr [j])X (i , j) = ∑i Pr [i](∑j Pr [j]×X (i , j))

Mixed strategy can’t be better than the best pure strategy.

Player 1 has no incentive to change! Same for player 2.

Equilibrium!

Equilibrium
R P S
.33 .33 .33

R .33 0 1 -1
P .33 -1 0 1
S .33 1 -1 0

Will Player 1 change strategy? Mixed strategies uncountable!

Expected payoffs for pure strategies for player 1.

Expected payoff of Rock? 1
3 ×0+ 1

3 ×1+ 1
3 ×−1 = 0.

Expected payoff of Paper? 1
3 ×−1+ 1

3 ×0+ 1
3 ×1 = 0.

Expected payoff of Scissors?

1
3 ×1+ 1

3 ×−1+ 1
3 ×0 = 0.

No better pure strategy. =⇒ No better mixed strategy!

Mixed strat. payoff is weighted av. of payoffs of pure strats.

E [X] = ∑(i ,j)(Pr [i]×Pr [j])X (i , j) = ∑i Pr [i](∑j Pr [j]×X (i , j))

Mixed strategy can’t be better than the best pure strategy.

Player 1 has no incentive to change! Same for player 2.

Equilibrium!

Equilibrium
R P S
.33 .33 .33

R .33 0 1 -1
P .33 -1 0 1
S .33 1 -1 0

Will Player 1 change strategy? Mixed strategies uncountable!

Expected payoffs for pure strategies for player 1.

Expected payoff of Rock? 1
3 ×0+ 1

3 ×1+ 1
3 ×−1 = 0.

Expected payoff of Paper? 1
3 ×−1+ 1

3 ×0+ 1
3 ×1 = 0.

Expected payoff of Scissors? 1
3 ×1+ 1

3 ×−1+ 1
3 ×0 = 0.

No better pure strategy. =⇒ No better mixed strategy!

Mixed strat. payoff is weighted av. of payoffs of pure strats.

E [X] = ∑(i ,j)(Pr [i]×Pr [j])X (i , j) = ∑i Pr [i](∑j Pr [j]×X (i , j))

Mixed strategy can’t be better than the best pure strategy.

Player 1 has no incentive to change! Same for player 2.

Equilibrium!

Equilibrium
R P S
.33 .33 .33

R .33 0 1 -1
P .33 -1 0 1
S .33 1 -1 0

Will Player 1 change strategy? Mixed strategies uncountable!

Expected payoffs for pure strategies for player 1.

Expected payoff of Rock? 1
3 ×0+ 1

3 ×1+ 1
3 ×−1 = 0.

Expected payoff of Paper? 1
3 ×−1+ 1

3 ×0+ 1
3 ×1 = 0.

Expected payoff of Scissors? 1
3 ×1+ 1

3 ×−1+ 1
3 ×0 = 0.

No better pure strategy.

=⇒ No better mixed strategy!

Mixed strat. payoff is weighted av. of payoffs of pure strats.

E [X] = ∑(i ,j)(Pr [i]×Pr [j])X (i , j) = ∑i Pr [i](∑j Pr [j]×X (i , j))

Mixed strategy can’t be better than the best pure strategy.

Player 1 has no incentive to change! Same for player 2.

Equilibrium!

Equilibrium
R P S
.33 .33 .33

R .33 0 1 -1
P .33 -1 0 1
S .33 1 -1 0

Will Player 1 change strategy? Mixed strategies uncountable!

Expected payoffs for pure strategies for player 1.

Expected payoff of Rock? 1
3 ×0+ 1

3 ×1+ 1
3 ×−1 = 0.

Expected payoff of Paper? 1
3 ×−1+ 1

3 ×0+ 1
3 ×1 = 0.

Expected payoff of Scissors? 1
3 ×1+ 1

3 ×−1+ 1
3 ×0 = 0.

No better pure strategy. =⇒ No better mixed strategy!

Mixed strat. payoff is weighted av. of payoffs of pure strats.

E [X] = ∑(i ,j)(Pr [i]×Pr [j])X (i , j) = ∑i Pr [i](∑j Pr [j]×X (i , j))

Mixed strategy can’t be better than the best pure strategy.

Player 1 has no incentive to change! Same for player 2.

Equilibrium!

Equilibrium
R P S
.33 .33 .33

R .33 0 1 -1
P .33 -1 0 1
S .33 1 -1 0

Will Player 1 change strategy? Mixed strategies uncountable!

Expected payoffs for pure strategies for player 1.

Expected payoff of Rock? 1
3 ×0+ 1

3 ×1+ 1
3 ×−1 = 0.

Expected payoff of Paper? 1
3 ×−1+ 1

3 ×0+ 1
3 ×1 = 0.

Expected payoff of Scissors? 1
3 ×1+ 1

3 ×−1+ 1
3 ×0 = 0.

No better pure strategy. =⇒ No better mixed strategy!

Mixed strat. payoff is weighted av. of payoffs of pure strats.

E [X] = ∑(i ,j)(Pr [i]×Pr [j])X (i , j) = ∑i Pr [i](∑j Pr [j]×X (i , j))

Mixed strategy can’t be better than the best pure strategy.

Player 1 has no incentive to change! Same for player 2.

Equilibrium!

Equilibrium
R P S
.33 .33 .33

R .33 0 1 -1
P .33 -1 0 1
S .33 1 -1 0

Will Player 1 change strategy? Mixed strategies uncountable!

Expected payoffs for pure strategies for player 1.

Expected payoff of Rock? 1
3 ×0+ 1

3 ×1+ 1
3 ×−1 = 0.

Expected payoff of Paper? 1
3 ×−1+ 1

3 ×0+ 1
3 ×1 = 0.

Expected payoff of Scissors? 1
3 ×1+ 1

3 ×−1+ 1
3 ×0 = 0.

No better pure strategy. =⇒ No better mixed strategy!

Mixed strat. payoff is weighted av. of payoffs of pure strats.

E [X] = ∑(i ,j)(Pr [i]×Pr [j])X (i , j)

= ∑i Pr [i](∑j Pr [j]×X (i , j))

Mixed strategy can’t be better than the best pure strategy.

Player 1 has no incentive to change! Same for player 2.

Equilibrium!

Equilibrium
R P S
.33 .33 .33

R .33 0 1 -1
P .33 -1 0 1
S .33 1 -1 0

Will Player 1 change strategy? Mixed strategies uncountable!

Expected payoffs for pure strategies for player 1.

Expected payoff of Rock? 1
3 ×0+ 1

3 ×1+ 1
3 ×−1 = 0.

Expected payoff of Paper? 1
3 ×−1+ 1

3 ×0+ 1
3 ×1 = 0.

Expected payoff of Scissors? 1
3 ×1+ 1

3 ×−1+ 1
3 ×0 = 0.

No better pure strategy. =⇒ No better mixed strategy!

Mixed strat. payoff is weighted av. of payoffs of pure strats.

E [X] = ∑(i ,j)(Pr [i]×Pr [j])X (i , j) = ∑i Pr [i](∑j Pr [j]×X (i , j))

Mixed strategy can’t be better than the best pure strategy.

Player 1 has no incentive to change! Same for player 2.

Equilibrium!

Equilibrium
R P S
.33 .33 .33

R .33 0 1 -1
P .33 -1 0 1
S .33 1 -1 0

Will Player 1 change strategy? Mixed strategies uncountable!

Expected payoffs for pure strategies for player 1.

Expected payoff of Rock? 1
3 ×0+ 1

3 ×1+ 1
3 ×−1 = 0.

Expected payoff of Paper? 1
3 ×−1+ 1

3 ×0+ 1
3 ×1 = 0.

Expected payoff of Scissors? 1
3 ×1+ 1

3 ×−1+ 1
3 ×0 = 0.

No better pure strategy. =⇒ No better mixed strategy!

Mixed strat. payoff is weighted av. of payoffs of pure strats.

E [X] = ∑(i ,j)(Pr [i]×Pr [j])X (i , j) = ∑i Pr [i](∑j Pr [j]×X (i , j))

Mixed strategy can’t be better than the best pure strategy.

Player 1 has no incentive to change! Same for player 2.

Equilibrium!

Equilibrium
R P S
.33 .33 .33

R .33 0 1 -1
P .33 -1 0 1
S .33 1 -1 0

Will Player 1 change strategy? Mixed strategies uncountable!

Expected payoffs for pure strategies for player 1.

Expected payoff of Rock? 1
3 ×0+ 1

3 ×1+ 1
3 ×−1 = 0.

Expected payoff of Paper? 1
3 ×−1+ 1

3 ×0+ 1
3 ×1 = 0.

Expected payoff of Scissors? 1
3 ×1+ 1

3 ×−1+ 1
3 ×0 = 0.

No better pure strategy. =⇒ No better mixed strategy!

Mixed strat. payoff is weighted av. of payoffs of pure strats.

E [X] = ∑(i ,j)(Pr [i]×Pr [j])X (i , j) = ∑i Pr [i](∑j Pr [j]×X (i , j))

Mixed strategy can’t be better than the best pure strategy.

Player 1 has no incentive to change! Same for player 2.

Equilibrium!

Equilibrium
R P S
.33 .33 .33

R .33 0 1 -1
P .33 -1 0 1
S .33 1 -1 0

Will Player 1 change strategy? Mixed strategies uncountable!

Expected payoffs for pure strategies for player 1.

Expected payoff of Rock? 1
3 ×0+ 1

3 ×1+ 1
3 ×−1 = 0.

Expected payoff of Paper? 1
3 ×−1+ 1

3 ×0+ 1
3 ×1 = 0.

Expected payoff of Scissors? 1
3 ×1+ 1

3 ×−1+ 1
3 ×0 = 0.

No better pure strategy. =⇒ No better mixed strategy!

Mixed strat. payoff is weighted av. of payoffs of pure strats.

E [X] = ∑(i ,j)(Pr [i]×Pr [j])X (i , j) = ∑i Pr [i](∑j Pr [j]×X (i , j))

Mixed strategy can’t be better than the best pure strategy.

Player 1 has no incentive to change!

Same for player 2.

Equilibrium!

Equilibrium
R P S
.33 .33 .33

R .33 0 1 -1
P .33 -1 0 1
S .33 1 -1 0

Will Player 1 change strategy? Mixed strategies uncountable!

Expected payoffs for pure strategies for player 1.

Expected payoff of Rock? 1
3 ×0+ 1

3 ×1+ 1
3 ×−1 = 0.

Expected payoff of Paper? 1
3 ×−1+ 1

3 ×0+ 1
3 ×1 = 0.

Expected payoff of Scissors? 1
3 ×1+ 1

3 ×−1+ 1
3 ×0 = 0.

No better pure strategy. =⇒ No better mixed strategy!

Mixed strat. payoff is weighted av. of payoffs of pure strats.

E [X] = ∑(i ,j)(Pr [i]×Pr [j])X (i , j) = ∑i Pr [i](∑j Pr [j]×X (i , j))

Mixed strategy can’t be better than the best pure strategy.

Player 1 has no incentive to change! Same for player 2.

Equilibrium!

Equilibrium
R P S
.33 .33 .33

R .33 0 1 -1
P .33 -1 0 1
S .33 1 -1 0

Will Player 1 change strategy? Mixed strategies uncountable!

Expected payoffs for pure strategies for player 1.

Expected payoff of Rock? 1
3 ×0+ 1

3 ×1+ 1
3 ×−1 = 0.

Expected payoff of Paper? 1
3 ×−1+ 1

3 ×0+ 1
3 ×1 = 0.

Expected payoff of Scissors? 1
3 ×1+ 1

3 ×−1+ 1
3 ×0 = 0.

No better pure strategy. =⇒ No better mixed strategy!

Mixed strat. payoff is weighted av. of payoffs of pure strats.

E [X] = ∑(i ,j)(Pr [i]×Pr [j])X (i , j) = ∑i Pr [i](∑j Pr [j]×X (i , j))

Mixed strategy can’t be better than the best pure strategy.

Player 1 has no incentive to change! Same for player 2.

Equilibrium!

Another example plus notation.

Rock, Paper, Scissors, prEempt.

PreEmpt ties preEmpt, beats everything else.
Payoffs.

R P S E
R 0 1 -1 1
P -1 0 1 1
S 1 -1 0 1
E -1 -1 -1 0

Equilibrium? (E,E). Pure strategy equilibrium.
Notation: Rock is 1, Paper is 2, Scissors is 3, prEmpt is 4.
Payoff Matrix.

A =

0 1 −1 1
−1 0 1 1
1 −1 0 1
−1 −1 −1 0

Another example plus notation.

Rock, Paper, Scissors, prEempt.
PreEmpt ties preEmpt, beats everything else.

Payoffs.
R P S E

R 0 1 -1 1
P -1 0 1 1
S 1 -1 0 1
E -1 -1 -1 0

Equilibrium? (E,E). Pure strategy equilibrium.
Notation: Rock is 1, Paper is 2, Scissors is 3, prEmpt is 4.
Payoff Matrix.

A =

0 1 −1 1
−1 0 1 1
1 −1 0 1
−1 −1 −1 0

Another example plus notation.

Rock, Paper, Scissors, prEempt.
PreEmpt ties preEmpt, beats everything else.
Payoffs.

R P S E
R 0 1 -1 1
P -1 0 1 1
S 1 -1 0 1
E -1 -1 -1 0

Equilibrium? (E,E). Pure strategy equilibrium.
Notation: Rock is 1, Paper is 2, Scissors is 3, prEmpt is 4.
Payoff Matrix.

A =

0 1 −1 1
−1 0 1 1
1 −1 0 1
−1 −1 −1 0

Another example plus notation.

Rock, Paper, Scissors, prEempt.
PreEmpt ties preEmpt, beats everything else.
Payoffs.

R P S E
R 0 1 -1 1
P -1 0 1 1
S 1 -1 0 1
E -1 -1 -1 0

Equilibrium?

(E,E). Pure strategy equilibrium.
Notation: Rock is 1, Paper is 2, Scissors is 3, prEmpt is 4.
Payoff Matrix.

A =

0 1 −1 1
−1 0 1 1
1 −1 0 1
−1 −1 −1 0

Another example plus notation.

Rock, Paper, Scissors, prEempt.
PreEmpt ties preEmpt, beats everything else.
Payoffs.

R P S E
R 0 1 -1 1
P -1 0 1 1
S 1 -1 0 1
E -1 -1 -1 0

Equilibrium? (E,E).

Pure strategy equilibrium.
Notation: Rock is 1, Paper is 2, Scissors is 3, prEmpt is 4.
Payoff Matrix.

A =

0 1 −1 1
−1 0 1 1
1 −1 0 1
−1 −1 −1 0

Another example plus notation.

Rock, Paper, Scissors, prEempt.
PreEmpt ties preEmpt, beats everything else.
Payoffs.

R P S E
R 0 1 -1 1
P -1 0 1 1
S 1 -1 0 1
E -1 -1 -1 0

Equilibrium? (E,E). Pure strategy equilibrium.

Notation: Rock is 1, Paper is 2, Scissors is 3, prEmpt is 4.
Payoff Matrix.

A =

0 1 −1 1
−1 0 1 1
1 −1 0 1
−1 −1 −1 0

Another example plus notation.

Rock, Paper, Scissors, prEempt.
PreEmpt ties preEmpt, beats everything else.
Payoffs.

R P S E
R 0 1 -1 1
P -1 0 1 1
S 1 -1 0 1
E -1 -1 -1 0

Equilibrium? (E,E). Pure strategy equilibrium.
Notation:

Rock is 1, Paper is 2, Scissors is 3, prEmpt is 4.
Payoff Matrix.

A =

0 1 −1 1
−1 0 1 1
1 −1 0 1
−1 −1 −1 0

Another example plus notation.

Rock, Paper, Scissors, prEempt.
PreEmpt ties preEmpt, beats everything else.
Payoffs.

R P S E
R 0 1 -1 1
P -1 0 1 1
S 1 -1 0 1
E -1 -1 -1 0

Equilibrium? (E,E). Pure strategy equilibrium.
Notation: Rock is 1, Paper is 2, Scissors is 3, prEmpt is 4.

Payoff Matrix.

A =

0 1 −1 1
−1 0 1 1
1 −1 0 1
−1 −1 −1 0

Another example plus notation.

Rock, Paper, Scissors, prEempt.
PreEmpt ties preEmpt, beats everything else.
Payoffs.

R P S E
R 0 1 -1 1
P -1 0 1 1
S 1 -1 0 1
E -1 -1 -1 0

Equilibrium? (E,E). Pure strategy equilibrium.
Notation: Rock is 1, Paper is 2, Scissors is 3, prEmpt is 4.
Payoff Matrix.

A =

0 1 −1 1
−1 0 1 1
1 −1 0 1
−1 −1 −1 0

Playing the boss...

Row has extra strategy:Cheat.

Ties with Rock, Paper, beats scissors.
Payoff matrix:
Rock is strategy 1, Paper is 2, Scissors is 3, and Cheat is 4 (for row.)

A =

0 1 −1
−1 0 1
1 −1 0
0 0 −1

Note: column knows row cheats.
Why play?
Row is column’s advisor.
... boss.

Playing the boss...

Row has extra strategy:Cheat.
Ties with Rock, Paper, beats scissors.

Payoff matrix:
Rock is strategy 1, Paper is 2, Scissors is 3, and Cheat is 4 (for row.)

A =

0 1 −1
−1 0 1
1 −1 0
0 0 −1

Note: column knows row cheats.
Why play?
Row is column’s advisor.
... boss.

Playing the boss...

Row has extra strategy:Cheat.
Ties with Rock, Paper, beats scissors.
Payoff matrix:
Rock is strategy 1, Paper is 2, Scissors is 3, and Cheat is 4 (for row.)

A =

0 1 −1
−1 0 1
1 −1 0
0 0 −1

Note: column knows row cheats.
Why play?
Row is column’s advisor.
... boss.

Playing the boss...

Row has extra strategy:Cheat.
Ties with Rock, Paper, beats scissors.
Payoff matrix:
Rock is strategy 1, Paper is 2, Scissors is 3, and Cheat is 4 (for row.)

A =

0 1 −1
−1 0 1
1 −1 0
0 0 −1

Note: column knows row cheats.

Why play?
Row is column’s advisor.
... boss.

Playing the boss...

Row has extra strategy:Cheat.
Ties with Rock, Paper, beats scissors.
Payoff matrix:
Rock is strategy 1, Paper is 2, Scissors is 3, and Cheat is 4 (for row.)

A =

0 1 −1
−1 0 1
1 −1 0
0 0 −1

Note: column knows row cheats.
Why play?

Row is column’s advisor.
... boss.

Playing the boss...

Row has extra strategy:Cheat.
Ties with Rock, Paper, beats scissors.
Payoff matrix:
Rock is strategy 1, Paper is 2, Scissors is 3, and Cheat is 4 (for row.)

A =

0 1 −1
−1 0 1
1 −1 0
0 0 −1

Note: column knows row cheats.
Why play?
Row is column’s advisor.

... boss.

Playing the boss...

Row has extra strategy:Cheat.
Ties with Rock, Paper, beats scissors.
Payoff matrix:
Rock is strategy 1, Paper is 2, Scissors is 3, and Cheat is 4 (for row.)

A =

0 1 −1
−1 0 1
1 −1 0
0 0 −1

Note: column knows row cheats.
Why play?
Row is column’s advisor.
... boss.

Playing the boss...

Row has extra strategy:Cheat.
Ties with Rock, Paper, beats scissors.
Payoff matrix:
Rock is strategy 1, Paper is 2, Scissors is 3, and Cheat is 4 (for row.)

A =

0 1 −1
−1 0 1
1 −1 0
0 0 −1

Note: column knows row cheats.
Why play?
Row is column’s advisor.
... boss.

Equilibrium: play the boss...

A =

0 1 −1
−1 0 1
1 −1 0
0 0 −1

Equilibrium:

Row: (0, 1
3 ,

1
6 ,

1
2). Column: (1

3 ,
1
2 ,

1
6).

Payoff? Remember: weighted average of pure strategies.

Row Player.

Strategy 1: 1
3 ×0+ 1

2 ×1+ 1
6 ×−1 = 1

3
Strategy 2: 1

3 ×−1+ 1
2 ×0+ 1

6 ×1 =−1
6

Strategy 3: 1
3 ×1+ 1

2 ×−1+ 1
6 ×0 =−1

6
Strategy 4: 1

3 ×0+ 1
2 ×0+ 1

6 ×−1 =−1
6

Payoff is 0× 1
3 +

1
3 × (−1

6)+
1
6 × (−1

6)+
1
2 × (−1

6) =−
1
6

Column player: every column payoff is −1
6 .

Both only play optimal strategies! Complementary slackness.

Why not play just one? Change payoff for other player!

Equilibrium: play the boss...

A =

0 1 −1
−1 0 1
1 −1 0
0 0 −1

Equilibrium:
Row: (0, 1

3 ,
1
6 ,

1
2).

Column: (1
3 ,

1
2 ,

1
6).

Payoff? Remember: weighted average of pure strategies.

Row Player.

Strategy 1: 1
3 ×0+ 1

2 ×1+ 1
6 ×−1 = 1

3
Strategy 2: 1

3 ×−1+ 1
2 ×0+ 1

6 ×1 =−1
6

Strategy 3: 1
3 ×1+ 1

2 ×−1+ 1
6 ×0 =−1

6
Strategy 4: 1

3 ×0+ 1
2 ×0+ 1

6 ×−1 =−1
6

Payoff is 0× 1
3 +

1
3 × (−1

6)+
1
6 × (−1

6)+
1
2 × (−1

6) =−
1
6

Column player: every column payoff is −1
6 .

Both only play optimal strategies! Complementary slackness.

Why not play just one? Change payoff for other player!

Equilibrium: play the boss...

A =

0 1 −1
−1 0 1
1 −1 0
0 0 −1

Equilibrium:
Row: (0, 1

3 ,
1
6 ,

1
2). Column: (1

3 ,
1
2 ,

1
6).

Payoff? Remember: weighted average of pure strategies.

Row Player.

Strategy 1: 1
3 ×0+ 1

2 ×1+ 1
6 ×−1 = 1

3
Strategy 2: 1

3 ×−1+ 1
2 ×0+ 1

6 ×1 =−1
6

Strategy 3: 1
3 ×1+ 1

2 ×−1+ 1
6 ×0 =−1

6
Strategy 4: 1

3 ×0+ 1
2 ×0+ 1

6 ×−1 =−1
6

Payoff is 0× 1
3 +

1
3 × (−1

6)+
1
6 × (−1

6)+
1
2 × (−1

6) =−
1
6

Column player: every column payoff is −1
6 .

Both only play optimal strategies! Complementary slackness.

Why not play just one? Change payoff for other player!

Equilibrium: play the boss...

A =

0 1 −1
−1 0 1
1 −1 0
0 0 −1

Equilibrium:
Row: (0, 1

3 ,
1
6 ,

1
2). Column: (1

3 ,
1
2 ,

1
6).

Payoff?

Remember: weighted average of pure strategies.

Row Player.

Strategy 1: 1
3 ×0+ 1

2 ×1+ 1
6 ×−1 = 1

3
Strategy 2: 1

3 ×−1+ 1
2 ×0+ 1

6 ×1 =−1
6

Strategy 3: 1
3 ×1+ 1

2 ×−1+ 1
6 ×0 =−1

6
Strategy 4: 1

3 ×0+ 1
2 ×0+ 1

6 ×−1 =−1
6

Payoff is 0× 1
3 +

1
3 × (−1

6)+
1
6 × (−1

6)+
1
2 × (−1

6) =−
1
6

Column player: every column payoff is −1
6 .

Both only play optimal strategies! Complementary slackness.

Why not play just one? Change payoff for other player!

Equilibrium: play the boss...

A =

0 1 −1
−1 0 1
1 −1 0
0 0 −1

Equilibrium:
Row: (0, 1

3 ,
1
6 ,

1
2). Column: (1

3 ,
1
2 ,

1
6).

Payoff? Remember: weighted average of pure strategies.

Row Player.

Strategy 1: 1
3 ×0+ 1

2 ×1+ 1
6 ×−1 = 1

3
Strategy 2: 1

3 ×−1+ 1
2 ×0+ 1

6 ×1 =−1
6

Strategy 3: 1
3 ×1+ 1

2 ×−1+ 1
6 ×0 =−1

6
Strategy 4: 1

3 ×0+ 1
2 ×0+ 1

6 ×−1 =−1
6

Payoff is 0× 1
3 +

1
3 × (−1

6)+
1
6 × (−1

6)+
1
2 × (−1

6) =−
1
6

Column player: every column payoff is −1
6 .

Both only play optimal strategies! Complementary slackness.

Why not play just one? Change payoff for other player!

Equilibrium: play the boss...

A =

0 1 −1
−1 0 1
1 −1 0
0 0 −1

Equilibrium:
Row: (0, 1

3 ,
1
6 ,

1
2). Column: (1

3 ,
1
2 ,

1
6).

Payoff? Remember: weighted average of pure strategies.

Row Player.

Strategy 1: 1
3 ×0+ 1

2 ×1+ 1
6 ×−1 = 1

3
Strategy 2: 1

3 ×−1+ 1
2 ×0+ 1

6 ×1 =−1
6

Strategy 3: 1
3 ×1+ 1

2 ×−1+ 1
6 ×0 =−1

6
Strategy 4: 1

3 ×0+ 1
2 ×0+ 1

6 ×−1 =−1
6

Payoff is 0× 1
3 +

1
3 × (−1

6)+
1
6 × (−1

6)+
1
2 × (−1

6) =−
1
6

Column player: every column payoff is −1
6 .

Both only play optimal strategies! Complementary slackness.

Why not play just one? Change payoff for other player!

Equilibrium: play the boss...

A =

0 1 −1
−1 0 1
1 −1 0
0 0 −1

Equilibrium:
Row: (0, 1

3 ,
1
6 ,

1
2). Column: (1

3 ,
1
2 ,

1
6).

Payoff? Remember: weighted average of pure strategies.

Row Player.

Strategy 1: 1
3 ×0+ 1

2 ×1+ 1
6 ×−1

= 1
3

Strategy 2: 1
3 ×−1+ 1

2 ×0+ 1
6 ×1 =−1

6
Strategy 3: 1

3 ×1+ 1
2 ×−1+ 1

6 ×0 =−1
6

Strategy 4: 1
3 ×0+ 1

2 ×0+ 1
6 ×−1 =−1

6

Payoff is 0× 1
3 +

1
3 × (−1

6)+
1
6 × (−1

6)+
1
2 × (−1

6) =−
1
6

Column player: every column payoff is −1
6 .

Both only play optimal strategies! Complementary slackness.

Why not play just one? Change payoff for other player!

Equilibrium: play the boss...

A =

0 1 −1
−1 0 1
1 −1 0
0 0 −1

Equilibrium:
Row: (0, 1

3 ,
1
6 ,

1
2). Column: (1

3 ,
1
2 ,

1
6).

Payoff? Remember: weighted average of pure strategies.

Row Player.

Strategy 1: 1
3 ×0+ 1

2 ×1+ 1
6 ×−1 = 1

3

Strategy 2: 1
3 ×−1+ 1

2 ×0+ 1
6 ×1 =−1

6
Strategy 3: 1

3 ×1+ 1
2 ×−1+ 1

6 ×0 =−1
6

Strategy 4: 1
3 ×0+ 1

2 ×0+ 1
6 ×−1 =−1

6

Payoff is 0× 1
3 +

1
3 × (−1

6)+
1
6 × (−1

6)+
1
2 × (−1

6) =−
1
6

Column player: every column payoff is −1
6 .

Both only play optimal strategies! Complementary slackness.

Why not play just one? Change payoff for other player!

Equilibrium: play the boss...

A =

0 1 −1
−1 0 1
1 −1 0
0 0 −1

Equilibrium:
Row: (0, 1

3 ,
1
6 ,

1
2). Column: (1

3 ,
1
2 ,

1
6).

Payoff? Remember: weighted average of pure strategies.

Row Player.

Strategy 1: 1
3 ×0+ 1

2 ×1+ 1
6 ×−1 = 1

3
Strategy 2: 1

3 ×−1+ 1
2 ×0+ 1

6 ×1

=−1
6

Strategy 3: 1
3 ×1+ 1

2 ×−1+ 1
6 ×0 =−1

6
Strategy 4: 1

3 ×0+ 1
2 ×0+ 1

6 ×−1 =−1
6

Payoff is 0× 1
3 +

1
3 × (−1

6)+
1
6 × (−1

6)+
1
2 × (−1

6) =−
1
6

Column player: every column payoff is −1
6 .

Both only play optimal strategies! Complementary slackness.

Why not play just one? Change payoff for other player!

Equilibrium: play the boss...

A =

0 1 −1
−1 0 1
1 −1 0
0 0 −1

Equilibrium:
Row: (0, 1

3 ,
1
6 ,

1
2). Column: (1

3 ,
1
2 ,

1
6).

Payoff? Remember: weighted average of pure strategies.

Row Player.

Strategy 1: 1
3 ×0+ 1

2 ×1+ 1
6 ×−1 = 1

3
Strategy 2: 1

3 ×−1+ 1
2 ×0+ 1

6 ×1 =−1
6

Strategy 3: 1
3 ×1+ 1

2 ×−1+ 1
6 ×0 =−1

6
Strategy 4: 1

3 ×0+ 1
2 ×0+ 1

6 ×−1 =−1
6

Payoff is 0× 1
3 +

1
3 × (−1

6)+
1
6 × (−1

6)+
1
2 × (−1

6) =−
1
6

Column player: every column payoff is −1
6 .

Both only play optimal strategies! Complementary slackness.

Why not play just one? Change payoff for other player!

Equilibrium: play the boss...

A =

0 1 −1
−1 0 1
1 −1 0
0 0 −1

Equilibrium:
Row: (0, 1

3 ,
1
6 ,

1
2). Column: (1

3 ,
1
2 ,

1
6).

Payoff? Remember: weighted average of pure strategies.

Row Player.

Strategy 1: 1
3 ×0+ 1

2 ×1+ 1
6 ×−1 = 1

3
Strategy 2: 1

3 ×−1+ 1
2 ×0+ 1

6 ×1 =−1
6

Strategy 3: 1
3 ×1+ 1

2 ×−1+ 1
6 ×0

=−1
6

Strategy 4: 1
3 ×0+ 1

2 ×0+ 1
6 ×−1 =−1

6

Payoff is 0× 1
3 +

1
3 × (−1

6)+
1
6 × (−1

6)+
1
2 × (−1

6) =−
1
6

Column player: every column payoff is −1
6 .

Both only play optimal strategies! Complementary slackness.

Why not play just one? Change payoff for other player!

Equilibrium: play the boss...

A =

0 1 −1
−1 0 1
1 −1 0
0 0 −1

Equilibrium:
Row: (0, 1

3 ,
1
6 ,

1
2). Column: (1

3 ,
1
2 ,

1
6).

Payoff? Remember: weighted average of pure strategies.

Row Player.

Strategy 1: 1
3 ×0+ 1

2 ×1+ 1
6 ×−1 = 1

3
Strategy 2: 1

3 ×−1+ 1
2 ×0+ 1

6 ×1 =−1
6

Strategy 3: 1
3 ×1+ 1

2 ×−1+ 1
6 ×0 =−1

6

Strategy 4: 1
3 ×0+ 1

2 ×0+ 1
6 ×−1 =−1

6

Payoff is 0× 1
3 +

1
3 × (−1

6)+
1
6 × (−1

6)+
1
2 × (−1

6) =−
1
6

Column player: every column payoff is −1
6 .

Both only play optimal strategies! Complementary slackness.

Why not play just one? Change payoff for other player!

Equilibrium: play the boss...

A =

0 1 −1
−1 0 1
1 −1 0
0 0 −1

Equilibrium:
Row: (0, 1

3 ,
1
6 ,

1
2). Column: (1

3 ,
1
2 ,

1
6).

Payoff? Remember: weighted average of pure strategies.

Row Player.

Strategy 1: 1
3 ×0+ 1

2 ×1+ 1
6 ×−1 = 1

3
Strategy 2: 1

3 ×−1+ 1
2 ×0+ 1

6 ×1 =−1
6

Strategy 3: 1
3 ×1+ 1

2 ×−1+ 1
6 ×0 =−1

6
Strategy 4: 1

3 ×0+ 1
2 ×0+ 1

6 ×−1

=−1
6

Payoff is 0× 1
3 +

1
3 × (−1

6)+
1
6 × (−1

6)+
1
2 × (−1

6) =−
1
6

Column player: every column payoff is −1
6 .

Both only play optimal strategies! Complementary slackness.

Why not play just one? Change payoff for other player!

Equilibrium: play the boss...

A =

0 1 −1
−1 0 1
1 −1 0
0 0 −1

Equilibrium:
Row: (0, 1

3 ,
1
6 ,

1
2). Column: (1

3 ,
1
2 ,

1
6).

Payoff? Remember: weighted average of pure strategies.

Row Player.

Strategy 1: 1
3 ×0+ 1

2 ×1+ 1
6 ×−1 = 1

3
Strategy 2: 1

3 ×−1+ 1
2 ×0+ 1

6 ×1 =−1
6

Strategy 3: 1
3 ×1+ 1

2 ×−1+ 1
6 ×0 =−1

6
Strategy 4: 1

3 ×0+ 1
2 ×0+ 1

6 ×−1 =−1
6

Payoff is 0× 1
3 +

1
3 × (−1

6)+
1
6 × (−1

6)+
1
2 × (−1

6) =−
1
6

Column player: every column payoff is −1
6 .

Both only play optimal strategies! Complementary slackness.

Why not play just one? Change payoff for other player!

Equilibrium: play the boss...

A =

0 1 −1
−1 0 1
1 −1 0
0 0 −1

Equilibrium:
Row: (0, 1

3 ,
1
6 ,

1
2). Column: (1

3 ,
1
2 ,

1
6).

Payoff? Remember: weighted average of pure strategies.

Row Player.

Strategy 1: 1
3 ×0+ 1

2 ×1+ 1
6 ×−1 = 1

3
Strategy 2: 1

3 ×−1+ 1
2 ×0+ 1

6 ×1 =−1
6

Strategy 3: 1
3 ×1+ 1

2 ×−1+ 1
6 ×0 =−1

6
Strategy 4: 1

3 ×0+ 1
2 ×0+ 1

6 ×−1 =−1
6

Payoff is 0× 1
3 +

1
3 × (−1

6)+
1
6 × (−1

6)+
1
2 × (−1

6) =−
1
6

Column player: every column payoff is −1
6 .

Both only play optimal strategies! Complementary slackness.

Why not play just one? Change payoff for other player!

Equilibrium: play the boss...

A =

0 1 −1
−1 0 1
1 −1 0
0 0 −1

Equilibrium:
Row: (0, 1

3 ,
1
6 ,

1
2). Column: (1

3 ,
1
2 ,

1
6).

Payoff? Remember: weighted average of pure strategies.

Row Player.

Strategy 1: 1
3 ×0+ 1

2 ×1+ 1
6 ×−1 = 1

3
Strategy 2: 1

3 ×−1+ 1
2 ×0+ 1

6 ×1 =−1
6

Strategy 3: 1
3 ×1+ 1

2 ×−1+ 1
6 ×0 =−1

6
Strategy 4: 1

3 ×0+ 1
2 ×0+ 1

6 ×−1 =−1
6

Payoff is 0× 1
3 +

1
3 × (−1

6)+
1
6 × (−1

6)+
1
2 × (−1

6)

=−1
6

Column player: every column payoff is −1
6 .

Both only play optimal strategies! Complementary slackness.

Why not play just one? Change payoff for other player!

Equilibrium: play the boss...

A =

0 1 −1
−1 0 1
1 −1 0
0 0 −1

Equilibrium:
Row: (0, 1

3 ,
1
6 ,

1
2). Column: (1

3 ,
1
2 ,

1
6).

Payoff? Remember: weighted average of pure strategies.

Row Player.

Strategy 1: 1
3 ×0+ 1

2 ×1+ 1
6 ×−1 = 1

3
Strategy 2: 1

3 ×−1+ 1
2 ×0+ 1

6 ×1 =−1
6

Strategy 3: 1
3 ×1+ 1

2 ×−1+ 1
6 ×0 =−1

6
Strategy 4: 1

3 ×0+ 1
2 ×0+ 1

6 ×−1 =−1
6

Payoff is 0× 1
3 +

1
3 × (−1

6)+
1
6 × (−1

6)+
1
2 × (−1

6) =−
1
6

Column player: every column payoff is −1
6 .

Both only play optimal strategies! Complementary slackness.

Why not play just one? Change payoff for other player!

Equilibrium: play the boss...

A =

0 1 −1
−1 0 1
1 −1 0
0 0 −1

Equilibrium:
Row: (0, 1

3 ,
1
6 ,

1
2). Column: (1

3 ,
1
2 ,

1
6).

Payoff? Remember: weighted average of pure strategies.

Row Player.

Strategy 1: 1
3 ×0+ 1

2 ×1+ 1
6 ×−1 = 1

3
Strategy 2: 1

3 ×−1+ 1
2 ×0+ 1

6 ×1 =−1
6

Strategy 3: 1
3 ×1+ 1

2 ×−1+ 1
6 ×0 =−1

6
Strategy 4: 1

3 ×0+ 1
2 ×0+ 1

6 ×−1 =−1
6

Payoff is 0× 1
3 +

1
3 × (−1

6)+
1
6 × (−1

6)+
1
2 × (−1

6) =−
1
6

Column player: every column payoff is −1
6 .

Both only play optimal strategies! Complementary slackness.

Why not play just one? Change payoff for other player!

Equilibrium: play the boss...

A =

0 1 −1
−1 0 1
1 −1 0
0 0 −1

Equilibrium:
Row: (0, 1

3 ,
1
6 ,

1
2). Column: (1

3 ,
1
2 ,

1
6).

Payoff? Remember: weighted average of pure strategies.

Row Player.

Strategy 1: 1
3 ×0+ 1

2 ×1+ 1
6 ×−1 = 1

3
Strategy 2: 1

3 ×−1+ 1
2 ×0+ 1

6 ×1 =−1
6

Strategy 3: 1
3 ×1+ 1

2 ×−1+ 1
6 ×0 =−1

6
Strategy 4: 1

3 ×0+ 1
2 ×0+ 1

6 ×−1 =−1
6

Payoff is 0× 1
3 +

1
3 × (−1

6)+
1
6 × (−1

6)+
1
2 × (−1

6) =−
1
6

Column player: every column payoff is −1
6 .

Both only play optimal strategies!

Complementary slackness.

Why not play just one? Change payoff for other player!

Equilibrium: play the boss...

A =

0 1 −1
−1 0 1
1 −1 0
0 0 −1

Equilibrium:
Row: (0, 1

3 ,
1
6 ,

1
2). Column: (1

3 ,
1
2 ,

1
6).

Payoff? Remember: weighted average of pure strategies.

Row Player.

Strategy 1: 1
3 ×0+ 1

2 ×1+ 1
6 ×−1 = 1

3
Strategy 2: 1

3 ×−1+ 1
2 ×0+ 1

6 ×1 =−1
6

Strategy 3: 1
3 ×1+ 1

2 ×−1+ 1
6 ×0 =−1

6
Strategy 4: 1

3 ×0+ 1
2 ×0+ 1

6 ×−1 =−1
6

Payoff is 0× 1
3 +

1
3 × (−1

6)+
1
6 × (−1

6)+
1
2 × (−1

6) =−
1
6

Column player: every column payoff is −1
6 .

Both only play optimal strategies! Complementary slackness.

Why not play just one? Change payoff for other player!

Equilibrium: play the boss...

A =

0 1 −1
−1 0 1
1 −1 0
0 0 −1

Equilibrium:
Row: (0, 1

3 ,
1
6 ,

1
2). Column: (1

3 ,
1
2 ,

1
6).

Payoff? Remember: weighted average of pure strategies.

Row Player.

Strategy 1: 1
3 ×0+ 1

2 ×1+ 1
6 ×−1 = 1

3
Strategy 2: 1

3 ×−1+ 1
2 ×0+ 1

6 ×1 =−1
6

Strategy 3: 1
3 ×1+ 1

2 ×−1+ 1
6 ×0 =−1

6
Strategy 4: 1

3 ×0+ 1
2 ×0+ 1

6 ×−1 =−1
6

Payoff is 0× 1
3 +

1
3 × (−1

6)+
1
6 × (−1

6)+
1
2 × (−1

6) =−
1
6

Column player: every column payoff is −1
6 .

Both only play optimal strategies! Complementary slackness.

Why not play just one?

Change payoff for other player!

Equilibrium: play the boss...

A =

0 1 −1
−1 0 1
1 −1 0
0 0 −1

Equilibrium:
Row: (0, 1

3 ,
1
6 ,

1
2). Column: (1

3 ,
1
2 ,

1
6).

Payoff? Remember: weighted average of pure strategies.

Row Player.

Strategy 1: 1
3 ×0+ 1

2 ×1+ 1
6 ×−1 = 1

3
Strategy 2: 1

3 ×−1+ 1
2 ×0+ 1

6 ×1 =−1
6

Strategy 3: 1
3 ×1+ 1

2 ×−1+ 1
6 ×0 =−1

6
Strategy 4: 1

3 ×0+ 1
2 ×0+ 1

6 ×−1 =−1
6

Payoff is 0× 1
3 +

1
3 × (−1

6)+
1
6 × (−1

6)+
1
2 × (−1

6) =−
1
6

Column player: every column payoff is −1
6 .

Both only play optimal strategies! Complementary slackness.

Why not play just one? Change payoff for other player!

Two person zero sum games.
m×n payoff matrix A.

Row mixed strategy: x = (x1, . . . ,xm).
Column mixed strategy: y = (y1, . . . ,yn).

Payoff for strategy pair (x ,y):

p(x ,y) = x tAy

That is,

∑
i

xi

(
∑
j

ai ,jyj

)
= ∑

j

(
∑
i

xiai ,j

)
yj .

Recall row minimizes, column maximizes.

Equilibrium pair: (x∗,y∗)?

(x∗)tAy∗ =max
y

(x∗)tAy =min
x

x tAy∗.

(No better column strategy, no better row strategy.)

Two person zero sum games.
m×n payoff matrix A.

Row mixed strategy: x = (x1, . . . ,xm).

Column mixed strategy: y = (y1, . . . ,yn).

Payoff for strategy pair (x ,y):

p(x ,y) = x tAy

That is,

∑
i

xi

(
∑
j

ai ,jyj

)
= ∑

j

(
∑
i

xiai ,j

)
yj .

Recall row minimizes, column maximizes.

Equilibrium pair: (x∗,y∗)?

(x∗)tAy∗ =max
y

(x∗)tAy =min
x

x tAy∗.

(No better column strategy, no better row strategy.)

Two person zero sum games.
m×n payoff matrix A.

Row mixed strategy: x = (x1, . . . ,xm).
Column mixed strategy: y = (y1, . . . ,yn).

Payoff for strategy pair (x ,y):

p(x ,y) = x tAy

That is,

∑
i

xi

(
∑
j

ai ,jyj

)
= ∑

j

(
∑
i

xiai ,j

)
yj .

Recall row minimizes, column maximizes.

Equilibrium pair: (x∗,y∗)?

(x∗)tAy∗ =max
y

(x∗)tAy =min
x

x tAy∗.

(No better column strategy, no better row strategy.)

Two person zero sum games.
m×n payoff matrix A.

Row mixed strategy: x = (x1, . . . ,xm).
Column mixed strategy: y = (y1, . . . ,yn).

Payoff for strategy pair (x ,y):

p(x ,y) = x tAy

That is,

∑
i

xi

(
∑
j

ai ,jyj

)
= ∑

j

(
∑
i

xiai ,j

)
yj .

Recall row minimizes, column maximizes.

Equilibrium pair: (x∗,y∗)?

(x∗)tAy∗ =max
y

(x∗)tAy =min
x

x tAy∗.

(No better column strategy, no better row strategy.)

Two person zero sum games.
m×n payoff matrix A.

Row mixed strategy: x = (x1, . . . ,xm).
Column mixed strategy: y = (y1, . . . ,yn).

Payoff for strategy pair (x ,y):

p(x ,y) = x tAy

That is,

∑
i

xi

(
∑
j

ai ,jyj

)
= ∑

j

(
∑
i

xiai ,j

)
yj .

Recall row minimizes, column maximizes.

Equilibrium pair: (x∗,y∗)?

(x∗)tAy∗ =max
y

(x∗)tAy =min
x

x tAy∗.

(No better column strategy, no better row strategy.)

Two person zero sum games.
m×n payoff matrix A.

Row mixed strategy: x = (x1, . . . ,xm).
Column mixed strategy: y = (y1, . . . ,yn).

Payoff for strategy pair (x ,y):

p(x ,y) = x tAy

That is,

∑
i

xi

(
∑
j

ai ,jyj

)
= ∑

j

(
∑
i

xiai ,j

)
yj .

Recall row minimizes, column maximizes.

Equilibrium pair: (x∗,y∗)?

(x∗)tAy∗ =max
y

(x∗)tAy =min
x

x tAy∗.

(No better column strategy, no better row strategy.)

Two person zero sum games.
m×n payoff matrix A.

Row mixed strategy: x = (x1, . . . ,xm).
Column mixed strategy: y = (y1, . . . ,yn).

Payoff for strategy pair (x ,y):

p(x ,y) = x tAy

That is,

∑
i

xi

(
∑
j

ai ,jyj

)
= ∑

j

(
∑
i

xiai ,j

)
yj .

Recall row minimizes, column maximizes.

Equilibrium pair: (x∗,y∗)?

(x∗)tAy∗ =max
y

(x∗)tAy =min
x

x tAy∗.

(No better column strategy, no better row strategy.)

Two person zero sum games.
m×n payoff matrix A.

Row mixed strategy: x = (x1, . . . ,xm).
Column mixed strategy: y = (y1, . . . ,yn).

Payoff for strategy pair (x ,y):

p(x ,y) = x tAy

That is,

∑
i

xi

(
∑
j

ai ,jyj

)
= ∑

j

(
∑
i

xiai ,j

)
yj .

Recall row minimizes, column maximizes.

Equilibrium pair: (x∗,y∗)?

(x∗)tAy∗ =max
y

(x∗)tAy =min
x

x tAy∗.

(No better column strategy, no better row strategy.)

Equilibrium.

Equilibrium pair: (x∗,y∗)?

p(x ,y) = (x∗)tAy∗ =max
y

(x∗)tAy =min
x

x tAy∗.

(No better column strategy, no better row strategy.)

No row is better:
mini A(i) ·y = (x∗)tAy∗. 2

No column is better:
maxj(At)(j) ·x = (x∗)tAy∗.

2A(i) is i th row.

Equilibrium.

Equilibrium pair: (x∗,y∗)?

p(x ,y) = (x∗)tAy∗ =max
y

(x∗)tAy =min
x

x tAy∗.

(No better column strategy, no better row strategy.)

No row is better:
mini A(i) ·y = (x∗)tAy∗. 2

No column is better:
maxj(At)(j) ·x = (x∗)tAy∗.

2A(i) is i th row.

Equilibrium.

Equilibrium pair: (x∗,y∗)?

p(x ,y) = (x∗)tAy∗ =max
y

(x∗)tAy =min
x

x tAy∗.

(No better column strategy, no better row strategy.)

No row is better:
mini A(i) ·y = (x∗)tAy∗. 2

No column is better:
maxj(At)(j) ·x = (x∗)tAy∗.

2A(i) is i th row.

Best Response

Column goes first:

Find y , where best row is not too low..

R =max
y

min
x
(x tAy).

Note: x can be (0,0, . . . ,1, . . .0).

Example: Roshambo. Value of R?

Row goes first:
Find x , where best column is not high.

C =min
x

max
y

(x tAy).

Agin: y of form (0,0, . . . ,1, . . .0).

Example: Roshambo. Value of C?

Best Response

Column goes first:
Find y , where best row is not too low..

R =max
y

min
x
(x tAy).

Note: x can be (0,0, . . . ,1, . . .0).

Example: Roshambo. Value of R?

Row goes first:
Find x , where best column is not high.

C =min
x

max
y

(x tAy).

Agin: y of form (0,0, . . . ,1, . . .0).

Example: Roshambo. Value of C?

Best Response

Column goes first:
Find y , where best row is not too low..

R =max
y

min
x
(x tAy).

Note: x can be (0,0, . . . ,1, . . .0).

Example: Roshambo. Value of R?

Row goes first:
Find x , where best column is not high.

C =min
x

max
y

(x tAy).

Agin: y of form (0,0, . . . ,1, . . .0).

Example: Roshambo. Value of C?

Best Response

Column goes first:
Find y , where best row is not too low..

R =max
y

min
x
(x tAy).

Note: x can be (0,0, . . . ,1, . . .0).

Example: Roshambo.

Value of R?

Row goes first:
Find x , where best column is not high.

C =min
x

max
y

(x tAy).

Agin: y of form (0,0, . . . ,1, . . .0).

Example: Roshambo. Value of C?

Best Response

Column goes first:
Find y , where best row is not too low..

R =max
y

min
x
(x tAy).

Note: x can be (0,0, . . . ,1, . . .0).

Example: Roshambo. Value of R?

Row goes first:
Find x , where best column is not high.

C =min
x

max
y

(x tAy).

Agin: y of form (0,0, . . . ,1, . . .0).

Example: Roshambo. Value of C?

Best Response

Column goes first:
Find y , where best row is not too low..

R =max
y

min
x
(x tAy).

Note: x can be (0,0, . . . ,1, . . .0).

Example: Roshambo. Value of R?

Row goes first:
Find x , where best column is not high.

C =min
x

max
y

(x tAy).

Agin: y of form (0,0, . . . ,1, . . .0).

Example: Roshambo. Value of C?

Best Response

Column goes first:
Find y , where best row is not too low..

R =max
y

min
x
(x tAy).

Note: x can be (0,0, . . . ,1, . . .0).

Example: Roshambo. Value of R?

Row goes first:
Find x , where best column is not high.

C =min
x

max
y

(x tAy).

Agin: y of form (0,0, . . . ,1, . . .0).

Example: Roshambo. Value of C?

Best Response

Column goes first:
Find y , where best row is not too low..

R =max
y

min
x
(x tAy).

Note: x can be (0,0, . . . ,1, . . .0).

Example: Roshambo. Value of R?

Row goes first:
Find x , where best column is not high.

C =min
x

max
y

(x tAy).

Agin: y of form (0,0, . . . ,1, . . .0).

Example: Roshambo. Value of C?

Best Response

Column goes first:
Find y , where best row is not too low..

R =max
y

min
x
(x tAy).

Note: x can be (0,0, . . . ,1, . . .0).

Example: Roshambo. Value of R?

Row goes first:
Find x , where best column is not high.

C =min
x

max
y

(x tAy).

Agin: y of form (0,0, . . . ,1, . . .0).

Example: Roshambo.

Value of C?

Best Response

Column goes first:
Find y , where best row is not too low..

R =max
y

min
x
(x tAy).

Note: x can be (0,0, . . . ,1, . . .0).

Example: Roshambo. Value of R?

Row goes first:
Find x , where best column is not high.

C =min
x

max
y

(x tAy).

Agin: y of form (0,0, . . . ,1, . . .0).

Example: Roshambo. Value of C?

Duality.

R =max
y

min
x
(x tAy).

C =min
x

max
y

(x tAy).

Weak Duality: R ≤ C.
Proof: Better to go second.
Blindly play go-first strategy.

At Equilibrium (x∗,y∗), payoff v :
row payoffs (Ay∗) all ≥ v =⇒ R ≥ v .
column payoffs ((x∗)tA) all ≤ v =⇒ v ≥ C.
=⇒ R ≥ C

Equilibrium =⇒ R = C!

Strong Duality: There is an equilibrium point! and R = C!

Doesn’t matter who plays first!

Duality.

R =max
y

min
x
(x tAy).

C =min
x

max
y

(x tAy).

Weak Duality: R ≤ C.
Proof: Better to go second.
Blindly play go-first strategy.

At Equilibrium (x∗,y∗), payoff v :
row payoffs (Ay∗) all ≥ v =⇒ R ≥ v .
column payoffs ((x∗)tA) all ≤ v =⇒ v ≥ C.
=⇒ R ≥ C

Equilibrium =⇒ R = C!

Strong Duality: There is an equilibrium point! and R = C!

Doesn’t matter who plays first!

Duality.

R =max
y

min
x
(x tAy).

C =min
x

max
y

(x tAy).

Weak Duality: R ≤ C.
Proof: Better to go second.

Blindly play go-first strategy.

At Equilibrium (x∗,y∗), payoff v :
row payoffs (Ay∗) all ≥ v =⇒ R ≥ v .
column payoffs ((x∗)tA) all ≤ v =⇒ v ≥ C.
=⇒ R ≥ C

Equilibrium =⇒ R = C!

Strong Duality: There is an equilibrium point! and R = C!

Doesn’t matter who plays first!

Duality.

R =max
y

min
x
(x tAy).

C =min
x

max
y

(x tAy).

Weak Duality: R ≤ C.
Proof: Better to go second.
Blindly play go-first strategy.

At Equilibrium (x∗,y∗), payoff v :
row payoffs (Ay∗) all ≥ v =⇒ R ≥ v .
column payoffs ((x∗)tA) all ≤ v =⇒ v ≥ C.
=⇒ R ≥ C

Equilibrium =⇒ R = C!

Strong Duality: There is an equilibrium point! and R = C!

Doesn’t matter who plays first!

Duality.

R =max
y

min
x
(x tAy).

C =min
x

max
y

(x tAy).

Weak Duality: R ≤ C.
Proof: Better to go second.
Blindly play go-first strategy.

At Equilibrium (x∗,y∗), payoff v :
row payoffs (Ay∗) all ≥ v =⇒ R ≥ v .
column payoffs ((x∗)tA) all ≤ v =⇒ v ≥ C.
=⇒ R ≥ C

Equilibrium =⇒ R = C!

Strong Duality: There is an equilibrium point! and R = C!

Doesn’t matter who plays first!

Duality.

R =max
y

min
x
(x tAy).

C =min
x

max
y

(x tAy).

Weak Duality: R ≤ C.
Proof: Better to go second.
Blindly play go-first strategy.

At Equilibrium (x∗,y∗), payoff v :

row payoffs (Ay∗) all ≥ v =⇒ R ≥ v .
column payoffs ((x∗)tA) all ≤ v =⇒ v ≥ C.
=⇒ R ≥ C

Equilibrium =⇒ R = C!

Strong Duality: There is an equilibrium point! and R = C!

Doesn’t matter who plays first!

Duality.

R =max
y

min
x
(x tAy).

C =min
x

max
y

(x tAy).

Weak Duality: R ≤ C.
Proof: Better to go second.
Blindly play go-first strategy.

At Equilibrium (x∗,y∗), payoff v :
row payoffs (Ay∗) all ≥ v

=⇒ R ≥ v .
column payoffs ((x∗)tA) all ≤ v =⇒ v ≥ C.
=⇒ R ≥ C

Equilibrium =⇒ R = C!

Strong Duality: There is an equilibrium point! and R = C!

Doesn’t matter who plays first!

Duality.

R =max
y

min
x
(x tAy).

C =min
x

max
y

(x tAy).

Weak Duality: R ≤ C.
Proof: Better to go second.
Blindly play go-first strategy.

At Equilibrium (x∗,y∗), payoff v :
row payoffs (Ay∗) all ≥ v =⇒ R ≥ v .

column payoffs ((x∗)tA) all ≤ v =⇒ v ≥ C.
=⇒ R ≥ C

Equilibrium =⇒ R = C!

Strong Duality: There is an equilibrium point! and R = C!

Doesn’t matter who plays first!

Duality.

R =max
y

min
x
(x tAy).

C =min
x

max
y

(x tAy).

Weak Duality: R ≤ C.
Proof: Better to go second.
Blindly play go-first strategy.

At Equilibrium (x∗,y∗), payoff v :
row payoffs (Ay∗) all ≥ v =⇒ R ≥ v .
column payoffs ((x∗)tA) all ≤ v

=⇒ v ≥ C.
=⇒ R ≥ C

Equilibrium =⇒ R = C!

Strong Duality: There is an equilibrium point! and R = C!

Doesn’t matter who plays first!

Duality.

R =max
y

min
x
(x tAy).

C =min
x

max
y

(x tAy).

Weak Duality: R ≤ C.
Proof: Better to go second.
Blindly play go-first strategy.

At Equilibrium (x∗,y∗), payoff v :
row payoffs (Ay∗) all ≥ v =⇒ R ≥ v .
column payoffs ((x∗)tA) all ≤ v =⇒ v ≥ C.

=⇒ R ≥ C

Equilibrium =⇒ R = C!

Strong Duality: There is an equilibrium point! and R = C!

Doesn’t matter who plays first!

Duality.

R =max
y

min
x
(x tAy).

C =min
x

max
y

(x tAy).

Weak Duality: R ≤ C.
Proof: Better to go second.
Blindly play go-first strategy.

At Equilibrium (x∗,y∗), payoff v :
row payoffs (Ay∗) all ≥ v =⇒ R ≥ v .
column payoffs ((x∗)tA) all ≤ v =⇒ v ≥ C.
=⇒ R ≥ C

Equilibrium =⇒ R = C!

Strong Duality: There is an equilibrium point! and R = C!

Doesn’t matter who plays first!

Duality.

R =max
y

min
x
(x tAy).

C =min
x

max
y

(x tAy).

Weak Duality: R ≤ C.
Proof: Better to go second.
Blindly play go-first strategy.

At Equilibrium (x∗,y∗), payoff v :
row payoffs (Ay∗) all ≥ v =⇒ R ≥ v .
column payoffs ((x∗)tA) all ≤ v =⇒ v ≥ C.
=⇒ R ≥ C

Equilibrium =⇒ R = C!

Strong Duality: There is an equilibrium point! and R = C!

Doesn’t matter who plays first!

Duality.

R =max
y

min
x
(x tAy).

C =min
x

max
y

(x tAy).

Weak Duality: R ≤ C.
Proof: Better to go second.
Blindly play go-first strategy.

At Equilibrium (x∗,y∗), payoff v :
row payoffs (Ay∗) all ≥ v =⇒ R ≥ v .
column payoffs ((x∗)tA) all ≤ v =⇒ v ≥ C.
=⇒ R ≥ C

Equilibrium =⇒ R = C!

Strong Duality: There is an equilibrium point!

and R = C!

Doesn’t matter who plays first!

Duality.

R =max
y

min
x
(x tAy).

C =min
x

max
y

(x tAy).

Weak Duality: R ≤ C.
Proof: Better to go second.
Blindly play go-first strategy.

At Equilibrium (x∗,y∗), payoff v :
row payoffs (Ay∗) all ≥ v =⇒ R ≥ v .
column payoffs ((x∗)tA) all ≤ v =⇒ v ≥ C.
=⇒ R ≥ C

Equilibrium =⇒ R = C!

Strong Duality: There is an equilibrium point! and R = C!

Doesn’t matter who plays first!

Duality.

R =max
y

min
x
(x tAy).

C =min
x

max
y

(x tAy).

Weak Duality: R ≤ C.
Proof: Better to go second.
Blindly play go-first strategy.

At Equilibrium (x∗,y∗), payoff v :
row payoffs (Ay∗) all ≥ v =⇒ R ≥ v .
column payoffs ((x∗)tA) all ≤ v =⇒ v ≥ C.
=⇒ R ≥ C

Equilibrium =⇒ R = C!

Strong Duality: There is an equilibrium point! and R = C!

Doesn’t matter who plays first!

Equilibrium existence.

Linear programs.

Column player: find y to maximize row payoffs.
maxz,Ay ≥ z,∑i yi = 1

Row player: find x to minimize column payoffs.
minz,AT x ≤ z,∑i xj = 1.

Primal dual optimal are equilibrium solution.

Strong Duality: linear program.

Equilibrium existence.

Linear programs.

Column player: find y to maximize row payoffs.

maxz,Ay ≥ z,∑i yi = 1
Row player: find x to minimize column payoffs.

minz,AT x ≤ z,∑i xj = 1.

Primal dual optimal are equilibrium solution.

Strong Duality: linear program.

Equilibrium existence.

Linear programs.

Column player: find y to maximize row payoffs.
maxz,Ay ≥ z,∑i yi = 1

Row player: find x to minimize column payoffs.

minz,AT x ≤ z,∑i xj = 1.

Primal dual optimal are equilibrium solution.

Strong Duality: linear program.

Equilibrium existence.

Linear programs.

Column player: find y to maximize row payoffs.
maxz,Ay ≥ z,∑i yi = 1

Row player: find x to minimize column payoffs.
minz,AT x ≤ z,∑i xj = 1.

Primal dual optimal are equilibrium solution.

Strong Duality: linear program.

Equilibrium existence.

Linear programs.

Column player: find y to maximize row payoffs.
maxz,Ay ≥ z,∑i yi = 1

Row player: find x to minimize column payoffs.
minz,AT x ≤ z,∑i xj = 1.

Primal dual optimal are equilibrium solution.

Strong Duality: linear program.

Equilibrium existence.

Linear programs.

Column player: find y to maximize row payoffs.
maxz,Ay ≥ z,∑i yi = 1

Row player: find x to minimize column payoffs.
minz,AT x ≤ z,∑i xj = 1.

Primal dual optimal are equilibrium solution.

Strong Duality: linear program.

Equilibrium existence.

Linear programs.

Column player: find y to maximize row payoffs.
maxz,Ay ≥ z,∑i yi = 1

Row player: find x to minimize column payoffs.
minz,AT x ≤ z,∑i xj = 1.

Primal dual optimal are equilibrium solution.

Strong Duality: linear program.

Aproximate equilibrium ...

C(x) = maxy x tAy

R(y) = minx x tAy

Always: R(y)≤ C(x)
For R(y), minimizer x “goes second”, but goes first for C(x).

Strategy pair: (x ,y)

Equilibrium: (x ,y)

R(y) = C(x)→ C(x)−R(y) = 0.

Approximate Equilibrium: C(x)−R(y)≤ ε.

With R(y)< C(x)
→ “Response y to x is within ε of best response”
→ “Response x to y is within ε of best response”

Aproximate equilibrium ...

C(x) = maxy x tAy

R(y) = minx x tAy

Always: R(y)≤ C(x)
For R(y), minimizer x “goes second”, but goes first for C(x).

Strategy pair: (x ,y)

Equilibrium: (x ,y)

R(y) = C(x)→ C(x)−R(y) = 0.

Approximate Equilibrium: C(x)−R(y)≤ ε.

With R(y)< C(x)
→ “Response y to x is within ε of best response”
→ “Response x to y is within ε of best response”

Aproximate equilibrium ...

C(x) = maxy x tAy

R(y) = minx x tAy

Always: R(y)≤ C(x)
For R(y), minimizer x “goes second”, but goes first for C(x).

Strategy pair: (x ,y)

Equilibrium: (x ,y)

R(y) = C(x)→ C(x)−R(y) = 0.

Approximate Equilibrium: C(x)−R(y)≤ ε.

With R(y)< C(x)
→ “Response y to x is within ε of best response”
→ “Response x to y is within ε of best response”

Aproximate equilibrium ...

C(x) = maxy x tAy

R(y) = minx x tAy

Always: R(y)≤ C(x)

For R(y), minimizer x “goes second”, but goes first for C(x).

Strategy pair: (x ,y)

Equilibrium: (x ,y)

R(y) = C(x)→ C(x)−R(y) = 0.

Approximate Equilibrium: C(x)−R(y)≤ ε.

With R(y)< C(x)
→ “Response y to x is within ε of best response”
→ “Response x to y is within ε of best response”

Aproximate equilibrium ...

C(x) = maxy x tAy

R(y) = minx x tAy

Always: R(y)≤ C(x)
For R(y), minimizer x “goes second”, but goes first for C(x).

Strategy pair: (x ,y)

Equilibrium: (x ,y)

R(y) = C(x)→ C(x)−R(y) = 0.

Approximate Equilibrium: C(x)−R(y)≤ ε.

With R(y)< C(x)
→ “Response y to x is within ε of best response”
→ “Response x to y is within ε of best response”

Aproximate equilibrium ...

C(x) = maxy x tAy

R(y) = minx x tAy

Always: R(y)≤ C(x)
For R(y), minimizer x “goes second”, but goes first for C(x).

Strategy pair: (x ,y)

Equilibrium: (x ,y)

R(y) = C(x)→ C(x)−R(y) = 0.

Approximate Equilibrium: C(x)−R(y)≤ ε.

With R(y)< C(x)
→ “Response y to x is within ε of best response”
→ “Response x to y is within ε of best response”

Aproximate equilibrium ...

C(x) = maxy x tAy

R(y) = minx x tAy

Always: R(y)≤ C(x)
For R(y), minimizer x “goes second”, but goes first for C(x).

Strategy pair: (x ,y)

Equilibrium: (x ,y)

R(y) = C(x)→ C(x)−R(y) = 0.

Approximate Equilibrium: C(x)−R(y)≤ ε.

With R(y)< C(x)
→ “Response y to x is within ε of best response”
→ “Response x to y is within ε of best response”

Aproximate equilibrium ...

C(x) = maxy x tAy

R(y) = minx x tAy

Always: R(y)≤ C(x)
For R(y), minimizer x “goes second”, but goes first for C(x).

Strategy pair: (x ,y)

Equilibrium: (x ,y)

R(y) = C(x)→ C(x)−R(y) = 0.

Approximate Equilibrium: C(x)−R(y)≤ ε.

With R(y)< C(x)
→ “Response y to x is within ε of best response”
→ “Response x to y is within ε of best response”

Aproximate equilibrium ...

C(x) = maxy x tAy

R(y) = minx x tAy

Always: R(y)≤ C(x)
For R(y), minimizer x “goes second”, but goes first for C(x).

Strategy pair: (x ,y)

Equilibrium: (x ,y)

R(y) = C(x)

→ C(x)−R(y) = 0.

Approximate Equilibrium: C(x)−R(y)≤ ε.

With R(y)< C(x)
→ “Response y to x is within ε of best response”
→ “Response x to y is within ε of best response”

Aproximate equilibrium ...

C(x) = maxy x tAy

R(y) = minx x tAy

Always: R(y)≤ C(x)
For R(y), minimizer x “goes second”, but goes first for C(x).

Strategy pair: (x ,y)

Equilibrium: (x ,y)

R(y) = C(x)→ C(x)−R(y) = 0.

Approximate Equilibrium: C(x)−R(y)≤ ε.

With R(y)< C(x)
→ “Response y to x is within ε of best response”
→ “Response x to y is within ε of best response”

Aproximate equilibrium ...

C(x) = maxy x tAy

R(y) = minx x tAy

Always: R(y)≤ C(x)
For R(y), minimizer x “goes second”, but goes first for C(x).

Strategy pair: (x ,y)

Equilibrium: (x ,y)

R(y) = C(x)→ C(x)−R(y) = 0.

Approximate Equilibrium: C(x)−R(y)≤ ε.

With R(y)< C(x)
→ “Response y to x is within ε of best response”
→ “Response x to y is within ε of best response”

Aproximate equilibrium ...

C(x) = maxy x tAy

R(y) = minx x tAy

Always: R(y)≤ C(x)
For R(y), minimizer x “goes second”, but goes first for C(x).

Strategy pair: (x ,y)

Equilibrium: (x ,y)

R(y) = C(x)→ C(x)−R(y) = 0.

Approximate Equilibrium: C(x)−R(y)≤ ε.

With R(y)< C(x)

→ “Response y to x is within ε of best response”
→ “Response x to y is within ε of best response”

Aproximate equilibrium ...

C(x) = maxy x tAy

R(y) = minx x tAy

Always: R(y)≤ C(x)
For R(y), minimizer x “goes second”, but goes first for C(x).

Strategy pair: (x ,y)

Equilibrium: (x ,y)

R(y) = C(x)→ C(x)−R(y) = 0.

Approximate Equilibrium: C(x)−R(y)≤ ε.

With R(y)< C(x)
→ “Response y to x is within ε of best response”

→ “Response x to y is within ε of best response”

Aproximate equilibrium ...

C(x) = maxy x tAy

R(y) = minx x tAy

Always: R(y)≤ C(x)
For R(y), minimizer x “goes second”, but goes first for C(x).

Strategy pair: (x ,y)

Equilibrium: (x ,y)

R(y) = C(x)→ C(x)−R(y) = 0.

Approximate Equilibrium: C(x)−R(y)≤ ε.

With R(y)< C(x)
→ “Response y to x is within ε of best response”
→ “Response x to y is within ε of best response”

Aproximate equilibrium ...

C(x) = maxy x tAy

R(y) = minx x tAy

Always: R(y)≤ C(x)
For R(y), minimizer x “goes second”, but goes first for C(x).

Strategy pair: (x ,y)

Equilibrium: (x ,y)

R(y) = C(x)→ C(x)−R(y) = 0.

Approximate Equilibrium: C(x)−R(y)≤ ε.

With R(y)< C(x)
→ “Response y to x is within ε of best response”
→ “Response x to y is within ε of best response”

Games and experts

Again: find (x∗,y∗), such that

(maxy x∗Ay)− (minx xAy∗)≤ ε

C(x∗) − R(y∗)≤ ε

——————————————————————–

Experts Framework:
n Experts, T days, L∗ -total loss of best expert.

Multiplicative Weights Method yields loss L where

L≤ (1+ ε)L∗+ logn
ε

Games and experts

Again: find (x∗,y∗), such that

(maxy x∗Ay)− (minx xAy∗)≤ ε

C(x∗) − R(y∗)≤ ε

——————————————————————–

Experts Framework:
n Experts, T days, L∗ -total loss of best expert.

Multiplicative Weights Method yields loss L where

L≤ (1+ ε)L∗+ logn
ε

Games and experts

Again: find (x∗,y∗), such that

(maxy x∗Ay)− (minx xAy∗)≤ ε

C(x∗) − R(y∗)≤ ε

——————————————————————–

Experts Framework:
n Experts, T days, L∗ -total loss of best expert.

Multiplicative Weights Method yields loss L where

L≤ (1+ ε)L∗+ logn
ε

Games and experts

Again: find (x∗,y∗), such that

(maxy x∗Ay)− (minx xAy∗)≤ ε

C(x∗) − R(y∗)≤ ε

——————————————————————–

Experts Framework:
n Experts, T days, L∗ -total loss of best expert.

Multiplicative Weights Method yields loss L where

L≤ (1+ ε)L∗+ logn
ε

Games and experts

Again: find (x∗,y∗), such that

(maxy x∗Ay)− (minx xAy∗)≤ ε

C(x∗) − R(y∗)≤ ε

——————————————————————–

Experts Framework:
n Experts,

T days, L∗ -total loss of best expert.

Multiplicative Weights Method yields loss L where

L≤ (1+ ε)L∗+ logn
ε

Games and experts

Again: find (x∗,y∗), such that

(maxy x∗Ay)− (minx xAy∗)≤ ε

C(x∗) − R(y∗)≤ ε

——————————————————————–

Experts Framework:
n Experts, T days,

L∗ -total loss of best expert.

Multiplicative Weights Method yields loss L where

L≤ (1+ ε)L∗+ logn
ε

Games and experts

Again: find (x∗,y∗), such that

(maxy x∗Ay)− (minx xAy∗)≤ ε

C(x∗) − R(y∗)≤ ε

——————————————————————–

Experts Framework:
n Experts, T days, L∗ -total loss of best expert.

Multiplicative Weights Method yields loss L where

L≤ (1+ ε)L∗+ logn
ε

Games and experts

Again: find (x∗,y∗), such that

(maxy x∗Ay)− (minx xAy∗)≤ ε

C(x∗) − R(y∗)≤ ε

——————————————————————–

Experts Framework:
n Experts, T days, L∗ -total loss of best expert.

Multiplicative Weights Method yields loss L where

L≤ (1+ ε)L∗+ logn
ε

Games and experts

Again: find (x∗,y∗), such that

(maxy x∗Ay)− (minx xAy∗)≤ ε

C(x∗) − R(y∗)≤ ε

——————————————————————–

Experts Framework:
n Experts, T days, L∗ -total loss of best expert.

Multiplicative Weights Method yields loss L where

L≤ (1+ ε)L∗+ logn
ε

Games and Experts.

Assume: A has payoffs in [0,1].

For T = logn
ε2 days:

1) m pure row strategies are experts.
Use multiplicative weights, produce row distribution.

Let xt be distribution (row strategy) on day t .

2) Each day, adversary plays best column response to xt .
Choose column of A that maximizes row’s expected loss.

Let yt be indicator vector for “best” response column.

Games and Experts.

Assume: A has payoffs in [0,1].

For T = logn
ε2 days:

1) m pure row strategies are experts.
Use multiplicative weights, produce row distribution.

Let xt be distribution (row strategy) on day t .

2) Each day, adversary plays best column response to xt .
Choose column of A that maximizes row’s expected loss.

Let yt be indicator vector for “best” response column.

Games and Experts.

Assume: A has payoffs in [0,1].

For T = logn
ε2 days:

1) m pure row strategies are experts.
Use multiplicative weights, produce row distribution.

Let xt be distribution (row strategy) on day t .

2) Each day, adversary plays best column response to xt .
Choose column of A that maximizes row’s expected loss.

Let yt be indicator vector for “best” response column.

Games and Experts.

Assume: A has payoffs in [0,1].

For T = logn
ε2 days:

1) m pure row strategies are experts.

Use multiplicative weights, produce row distribution.

Let xt be distribution (row strategy) on day t .

2) Each day, adversary plays best column response to xt .
Choose column of A that maximizes row’s expected loss.

Let yt be indicator vector for “best” response column.

Games and Experts.

Assume: A has payoffs in [0,1].

For T = logn
ε2 days:

1) m pure row strategies are experts.
Use multiplicative weights, produce row distribution.

Let xt be distribution (row strategy) on day t .

2) Each day, adversary plays best column response to xt .
Choose column of A that maximizes row’s expected loss.

Let yt be indicator vector for “best” response column.

Games and Experts.

Assume: A has payoffs in [0,1].

For T = logn
ε2 days:

1) m pure row strategies are experts.
Use multiplicative weights, produce row distribution.

Let xt be distribution (row strategy) on day t .

2) Each day, adversary plays best column response to xt .
Choose column of A that maximizes row’s expected loss.

Let yt be indicator vector for “best” response column.

Games and Experts.

Assume: A has payoffs in [0,1].

For T = logn
ε2 days:

1) m pure row strategies are experts.
Use multiplicative weights, produce row distribution.

Let xt be distribution (row strategy) on day t .

2) Each day, adversary plays best column response to xt .
Choose column of A that maximizes row’s expected loss.

Let yt be indicator vector for “best” response column.

Games and Experts.

Assume: A has payoffs in [0,1].

For T = logn
ε2 days:

1) m pure row strategies are experts.
Use multiplicative weights, produce row distribution.

Let xt be distribution (row strategy) on day t .

2) Each day, adversary plays best column response to xt .

Choose column of A that maximizes row’s expected loss.

Let yt be indicator vector for “best” response column.

Games and Experts.

Assume: A has payoffs in [0,1].

For T = logn
ε2 days:

1) m pure row strategies are experts.
Use multiplicative weights, produce row distribution.

Let xt be distribution (row strategy) on day t .

2) Each day, adversary plays best column response to xt .
Choose column of A that maximizes row’s expected loss.

Let yt be indicator vector for “best” response column.

Games and Experts.

Assume: A has payoffs in [0,1].

For T = logn
ε2 days:

1) m pure row strategies are experts.
Use multiplicative weights, produce row distribution.

Let xt be distribution (row strategy) on day t .

2) Each day, adversary plays best column response to xt .
Choose column of A that maximizes row’s expected loss.

Let yt be indicator vector for “best” response column.

Games and Experts.

Assume: A has payoffs in [0,1].

For T = logn
ε2 days:

1) m pure row strategies are experts.
Use multiplicative weights, produce row distribution.

Let xt be distribution (row strategy) on day t .

2) Each day, adversary plays best column response to xt .
Choose column of A that maximizes row’s expected loss.

Let yt be indicator vector for “best” response column.

Games and Experts.

Assume: A has payoffs in [0,1].

For T = logn
ε2 days:

1) m pure row strategies are experts.
Use multiplicative weights, produce row distribution.

Let xt be distribution (row strategy) on day t .

2) Each day, adversary plays best column response to xt .
Choose column of A that maximizes row’s expected loss.

Let yt be indicator vector for “best” response column.

Approximate Equilibrium!
Experts: xt is strategy on day t , yt is best column against xt .

Let y∗ = 1
T ∑t yt and x∗ = argminxt

xtAyt .

Claim: (x∗,y∗) are 2ε-optimal for matrix A.

Column payoff: C(x∗) = maxy x∗Ay .
Loss on day t , xtAyt ≥ x∗Ayt∗ = C(x∗) by the choice of x∗ .
Thus, algorithm loss, L, is ≥ T ×C(x∗).

Best expert: L∗- best row against all the columns played.

best row against ∑t Ayt and T ×y∗ = ∑t yt
→ best row against T ×Ay∗.
→ L∗ ≤ T ×R(y∗).

Multiplicative Weights: L≤ (1+ ε)L∗+ lnn
ε

T ×C(x∗)≤ (1+ ε)T ×R(y∗)+ lnn
ε
→ C(x∗)≤ (1+ ε)R(y∗)+ lnn

εT
→ C(x∗)−R(y∗)≤ εR(y∗)+ lnn

εT .

T = lnn
ε2 , R(y∗)≤ 1
→ C(x∗)−R(y∗)≤ 2ε.

Approximate Equilibrium!
Experts: xt is strategy on day t , yt is best column against xt .

Let y∗ = 1
T ∑t yt

and x∗ = argminxt
xtAyt .

Claim: (x∗,y∗) are 2ε-optimal for matrix A.

Column payoff: C(x∗) = maxy x∗Ay .
Loss on day t , xtAyt ≥ x∗Ayt∗ = C(x∗) by the choice of x∗ .
Thus, algorithm loss, L, is ≥ T ×C(x∗).

Best expert: L∗- best row against all the columns played.

best row against ∑t Ayt and T ×y∗ = ∑t yt
→ best row against T ×Ay∗.
→ L∗ ≤ T ×R(y∗).

Multiplicative Weights: L≤ (1+ ε)L∗+ lnn
ε

T ×C(x∗)≤ (1+ ε)T ×R(y∗)+ lnn
ε
→ C(x∗)≤ (1+ ε)R(y∗)+ lnn

εT
→ C(x∗)−R(y∗)≤ εR(y∗)+ lnn

εT .

T = lnn
ε2 , R(y∗)≤ 1
→ C(x∗)−R(y∗)≤ 2ε.

Approximate Equilibrium!
Experts: xt is strategy on day t , yt is best column against xt .

Let y∗ = 1
T ∑t yt and x∗ = argminxt

xtAyt .

Claim: (x∗,y∗) are 2ε-optimal for matrix A.

Column payoff: C(x∗) = maxy x∗Ay .
Loss on day t , xtAyt ≥ x∗Ayt∗ = C(x∗) by the choice of x∗ .
Thus, algorithm loss, L, is ≥ T ×C(x∗).

Best expert: L∗- best row against all the columns played.

best row against ∑t Ayt and T ×y∗ = ∑t yt
→ best row against T ×Ay∗.
→ L∗ ≤ T ×R(y∗).

Multiplicative Weights: L≤ (1+ ε)L∗+ lnn
ε

T ×C(x∗)≤ (1+ ε)T ×R(y∗)+ lnn
ε
→ C(x∗)≤ (1+ ε)R(y∗)+ lnn

εT
→ C(x∗)−R(y∗)≤ εR(y∗)+ lnn

εT .

T = lnn
ε2 , R(y∗)≤ 1
→ C(x∗)−R(y∗)≤ 2ε.

Approximate Equilibrium!
Experts: xt is strategy on day t , yt is best column against xt .

Let y∗ = 1
T ∑t yt and x∗ = argminxt

xtAyt .

Claim: (x∗,y∗) are 2ε-optimal for matrix A.

Column payoff: C(x∗) = maxy x∗Ay .
Loss on day t , xtAyt ≥ x∗Ayt∗ = C(x∗) by the choice of x∗ .
Thus, algorithm loss, L, is ≥ T ×C(x∗).

Best expert: L∗- best row against all the columns played.

best row against ∑t Ayt and T ×y∗ = ∑t yt
→ best row against T ×Ay∗.
→ L∗ ≤ T ×R(y∗).

Multiplicative Weights: L≤ (1+ ε)L∗+ lnn
ε

T ×C(x∗)≤ (1+ ε)T ×R(y∗)+ lnn
ε
→ C(x∗)≤ (1+ ε)R(y∗)+ lnn

εT
→ C(x∗)−R(y∗)≤ εR(y∗)+ lnn

εT .

T = lnn
ε2 , R(y∗)≤ 1
→ C(x∗)−R(y∗)≤ 2ε.

Approximate Equilibrium!
Experts: xt is strategy on day t , yt is best column against xt .

Let y∗ = 1
T ∑t yt and x∗ = argminxt

xtAyt .

Claim: (x∗,y∗) are 2ε-optimal for matrix A.

Column payoff: C(x∗) = maxy x∗Ay .

Loss on day t , xtAyt ≥ x∗Ayt∗ = C(x∗) by the choice of x∗ .
Thus, algorithm loss, L, is ≥ T ×C(x∗).

Best expert: L∗- best row against all the columns played.

best row against ∑t Ayt and T ×y∗ = ∑t yt
→ best row against T ×Ay∗.
→ L∗ ≤ T ×R(y∗).

Multiplicative Weights: L≤ (1+ ε)L∗+ lnn
ε

T ×C(x∗)≤ (1+ ε)T ×R(y∗)+ lnn
ε
→ C(x∗)≤ (1+ ε)R(y∗)+ lnn

εT
→ C(x∗)−R(y∗)≤ εR(y∗)+ lnn

εT .

T = lnn
ε2 , R(y∗)≤ 1
→ C(x∗)−R(y∗)≤ 2ε.

Approximate Equilibrium!
Experts: xt is strategy on day t , yt is best column against xt .

Let y∗ = 1
T ∑t yt and x∗ = argminxt

xtAyt .

Claim: (x∗,y∗) are 2ε-optimal for matrix A.

Column payoff: C(x∗) = maxy x∗Ay .
Loss on day t , xtAyt ≥ x∗Ayt∗ = C(x∗) by the choice of x∗ .

Thus, algorithm loss, L, is ≥ T ×C(x∗).

Best expert: L∗- best row against all the columns played.

best row against ∑t Ayt and T ×y∗ = ∑t yt
→ best row against T ×Ay∗.
→ L∗ ≤ T ×R(y∗).

Multiplicative Weights: L≤ (1+ ε)L∗+ lnn
ε

T ×C(x∗)≤ (1+ ε)T ×R(y∗)+ lnn
ε
→ C(x∗)≤ (1+ ε)R(y∗)+ lnn

εT
→ C(x∗)−R(y∗)≤ εR(y∗)+ lnn

εT .

T = lnn
ε2 , R(y∗)≤ 1
→ C(x∗)−R(y∗)≤ 2ε.

Approximate Equilibrium!
Experts: xt is strategy on day t , yt is best column against xt .

Let y∗ = 1
T ∑t yt and x∗ = argminxt

xtAyt .

Claim: (x∗,y∗) are 2ε-optimal for matrix A.

Column payoff: C(x∗) = maxy x∗Ay .
Loss on day t , xtAyt ≥ x∗Ayt∗ = C(x∗) by the choice of x∗ .
Thus, algorithm loss, L, is ≥ T ×C(x∗).

Best expert: L∗- best row against all the columns played.

best row against ∑t Ayt and T ×y∗ = ∑t yt
→ best row against T ×Ay∗.
→ L∗ ≤ T ×R(y∗).

Multiplicative Weights: L≤ (1+ ε)L∗+ lnn
ε

T ×C(x∗)≤ (1+ ε)T ×R(y∗)+ lnn
ε
→ C(x∗)≤ (1+ ε)R(y∗)+ lnn

εT
→ C(x∗)−R(y∗)≤ εR(y∗)+ lnn

εT .

T = lnn
ε2 , R(y∗)≤ 1
→ C(x∗)−R(y∗)≤ 2ε.

Approximate Equilibrium!
Experts: xt is strategy on day t , yt is best column against xt .

Let y∗ = 1
T ∑t yt and x∗ = argminxt

xtAyt .

Claim: (x∗,y∗) are 2ε-optimal for matrix A.

Column payoff: C(x∗) = maxy x∗Ay .
Loss on day t , xtAyt ≥ x∗Ayt∗ = C(x∗) by the choice of x∗ .
Thus, algorithm loss, L, is ≥ T ×C(x∗).

Best expert: L∗- best row against all the columns played.

best row against ∑t Ayt and T ×y∗ = ∑t yt
→ best row against T ×Ay∗.
→ L∗ ≤ T ×R(y∗).

Multiplicative Weights: L≤ (1+ ε)L∗+ lnn
ε

T ×C(x∗)≤ (1+ ε)T ×R(y∗)+ lnn
ε
→ C(x∗)≤ (1+ ε)R(y∗)+ lnn

εT
→ C(x∗)−R(y∗)≤ εR(y∗)+ lnn

εT .

T = lnn
ε2 , R(y∗)≤ 1
→ C(x∗)−R(y∗)≤ 2ε.

Approximate Equilibrium!
Experts: xt is strategy on day t , yt is best column against xt .

Let y∗ = 1
T ∑t yt and x∗ = argminxt

xtAyt .

Claim: (x∗,y∗) are 2ε-optimal for matrix A.

Column payoff: C(x∗) = maxy x∗Ay .
Loss on day t , xtAyt ≥ x∗Ayt∗ = C(x∗) by the choice of x∗ .
Thus, algorithm loss, L, is ≥ T ×C(x∗).

Best expert: L∗- best row against all the columns played.

best row against ∑t Ayt

and T ×y∗ = ∑t yt
→ best row against T ×Ay∗.
→ L∗ ≤ T ×R(y∗).

Multiplicative Weights: L≤ (1+ ε)L∗+ lnn
ε

T ×C(x∗)≤ (1+ ε)T ×R(y∗)+ lnn
ε
→ C(x∗)≤ (1+ ε)R(y∗)+ lnn

εT
→ C(x∗)−R(y∗)≤ εR(y∗)+ lnn

εT .

T = lnn
ε2 , R(y∗)≤ 1
→ C(x∗)−R(y∗)≤ 2ε.

Approximate Equilibrium!
Experts: xt is strategy on day t , yt is best column against xt .

Let y∗ = 1
T ∑t yt and x∗ = argminxt

xtAyt .

Claim: (x∗,y∗) are 2ε-optimal for matrix A.

Column payoff: C(x∗) = maxy x∗Ay .
Loss on day t , xtAyt ≥ x∗Ayt∗ = C(x∗) by the choice of x∗ .
Thus, algorithm loss, L, is ≥ T ×C(x∗).

Best expert: L∗- best row against all the columns played.

best row against ∑t Ayt and T ×y∗ = ∑t yt

→ best row against T ×Ay∗.
→ L∗ ≤ T ×R(y∗).

Multiplicative Weights: L≤ (1+ ε)L∗+ lnn
ε

T ×C(x∗)≤ (1+ ε)T ×R(y∗)+ lnn
ε
→ C(x∗)≤ (1+ ε)R(y∗)+ lnn

εT
→ C(x∗)−R(y∗)≤ εR(y∗)+ lnn

εT .

T = lnn
ε2 , R(y∗)≤ 1
→ C(x∗)−R(y∗)≤ 2ε.

Approximate Equilibrium!
Experts: xt is strategy on day t , yt is best column against xt .

Let y∗ = 1
T ∑t yt and x∗ = argminxt

xtAyt .

Claim: (x∗,y∗) are 2ε-optimal for matrix A.

Column payoff: C(x∗) = maxy x∗Ay .
Loss on day t , xtAyt ≥ x∗Ayt∗ = C(x∗) by the choice of x∗ .
Thus, algorithm loss, L, is ≥ T ×C(x∗).

Best expert: L∗- best row against all the columns played.

best row against ∑t Ayt and T ×y∗ = ∑t yt
→ best row against T ×Ay∗.

→ L∗ ≤ T ×R(y∗).

Multiplicative Weights: L≤ (1+ ε)L∗+ lnn
ε

T ×C(x∗)≤ (1+ ε)T ×R(y∗)+ lnn
ε
→ C(x∗)≤ (1+ ε)R(y∗)+ lnn

εT
→ C(x∗)−R(y∗)≤ εR(y∗)+ lnn

εT .

T = lnn
ε2 , R(y∗)≤ 1
→ C(x∗)−R(y∗)≤ 2ε.

Approximate Equilibrium!
Experts: xt is strategy on day t , yt is best column against xt .

Let y∗ = 1
T ∑t yt and x∗ = argminxt

xtAyt .

Claim: (x∗,y∗) are 2ε-optimal for matrix A.

Column payoff: C(x∗) = maxy x∗Ay .
Loss on day t , xtAyt ≥ x∗Ayt∗ = C(x∗) by the choice of x∗ .
Thus, algorithm loss, L, is ≥ T ×C(x∗).

Best expert: L∗- best row against all the columns played.

best row against ∑t Ayt and T ×y∗ = ∑t yt
→ best row against T ×Ay∗.
→ L∗ ≤ T ×R(y∗).

Multiplicative Weights: L≤ (1+ ε)L∗+ lnn
ε

T ×C(x∗)≤ (1+ ε)T ×R(y∗)+ lnn
ε
→ C(x∗)≤ (1+ ε)R(y∗)+ lnn

εT
→ C(x∗)−R(y∗)≤ εR(y∗)+ lnn

εT .

T = lnn
ε2 , R(y∗)≤ 1
→ C(x∗)−R(y∗)≤ 2ε.

Approximate Equilibrium!
Experts: xt is strategy on day t , yt is best column against xt .

Let y∗ = 1
T ∑t yt and x∗ = argminxt

xtAyt .

Claim: (x∗,y∗) are 2ε-optimal for matrix A.

Column payoff: C(x∗) = maxy x∗Ay .
Loss on day t , xtAyt ≥ x∗Ayt∗ = C(x∗) by the choice of x∗ .
Thus, algorithm loss, L, is ≥ T ×C(x∗).

Best expert: L∗- best row against all the columns played.

best row against ∑t Ayt and T ×y∗ = ∑t yt
→ best row against T ×Ay∗.
→ L∗ ≤ T ×R(y∗).

Multiplicative Weights: L≤ (1+ ε)L∗+ lnn
ε

T ×C(x∗)≤ (1+ ε)T ×R(y∗)+ lnn
ε
→ C(x∗)≤ (1+ ε)R(y∗)+ lnn

εT
→ C(x∗)−R(y∗)≤ εR(y∗)+ lnn

εT .

T = lnn
ε2 , R(y∗)≤ 1
→ C(x∗)−R(y∗)≤ 2ε.

Approximate Equilibrium!
Experts: xt is strategy on day t , yt is best column against xt .

Let y∗ = 1
T ∑t yt and x∗ = argminxt

xtAyt .

Claim: (x∗,y∗) are 2ε-optimal for matrix A.

Column payoff: C(x∗) = maxy x∗Ay .
Loss on day t , xtAyt ≥ x∗Ayt∗ = C(x∗) by the choice of x∗ .
Thus, algorithm loss, L, is ≥ T ×C(x∗).

Best expert: L∗- best row against all the columns played.

best row against ∑t Ayt and T ×y∗ = ∑t yt
→ best row against T ×Ay∗.
→ L∗ ≤ T ×R(y∗).

Multiplicative Weights:

L≤ (1+ ε)L∗+ lnn
ε

T ×C(x∗)≤ (1+ ε)T ×R(y∗)+ lnn
ε
→ C(x∗)≤ (1+ ε)R(y∗)+ lnn

εT
→ C(x∗)−R(y∗)≤ εR(y∗)+ lnn

εT .

T = lnn
ε2 , R(y∗)≤ 1
→ C(x∗)−R(y∗)≤ 2ε.

Approximate Equilibrium!
Experts: xt is strategy on day t , yt is best column against xt .

Let y∗ = 1
T ∑t yt and x∗ = argminxt

xtAyt .

Claim: (x∗,y∗) are 2ε-optimal for matrix A.

Column payoff: C(x∗) = maxy x∗Ay .
Loss on day t , xtAyt ≥ x∗Ayt∗ = C(x∗) by the choice of x∗ .
Thus, algorithm loss, L, is ≥ T ×C(x∗).

Best expert: L∗- best row against all the columns played.

best row against ∑t Ayt and T ×y∗ = ∑t yt
→ best row against T ×Ay∗.
→ L∗ ≤ T ×R(y∗).

Multiplicative Weights: L≤ (1+ ε)L∗+ lnn
ε

T ×C(x∗)≤ (1+ ε)T ×R(y∗)+ lnn
ε
→ C(x∗)≤ (1+ ε)R(y∗)+ lnn

εT
→ C(x∗)−R(y∗)≤ εR(y∗)+ lnn

εT .

T = lnn
ε2 , R(y∗)≤ 1
→ C(x∗)−R(y∗)≤ 2ε.

Approximate Equilibrium!
Experts: xt is strategy on day t , yt is best column against xt .

Let y∗ = 1
T ∑t yt and x∗ = argminxt

xtAyt .

Claim: (x∗,y∗) are 2ε-optimal for matrix A.

Column payoff: C(x∗) = maxy x∗Ay .
Loss on day t , xtAyt ≥ x∗Ayt∗ = C(x∗) by the choice of x∗ .
Thus, algorithm loss, L, is ≥ T ×C(x∗).

Best expert: L∗- best row against all the columns played.

best row against ∑t Ayt and T ×y∗ = ∑t yt
→ best row against T ×Ay∗.
→ L∗ ≤ T ×R(y∗).

Multiplicative Weights: L≤ (1+ ε)L∗+ lnn
ε

T ×C(x∗)≤ (1+ ε)T ×R(y∗)+ lnn
ε

→ C(x∗)≤ (1+ ε)R(y∗)+ lnn
εT

→ C(x∗)−R(y∗)≤ εR(y∗)+ lnn
εT .

T = lnn
ε2 , R(y∗)≤ 1
→ C(x∗)−R(y∗)≤ 2ε.

Approximate Equilibrium!
Experts: xt is strategy on day t , yt is best column against xt .

Let y∗ = 1
T ∑t yt and x∗ = argminxt

xtAyt .

Claim: (x∗,y∗) are 2ε-optimal for matrix A.

Column payoff: C(x∗) = maxy x∗Ay .
Loss on day t , xtAyt ≥ x∗Ayt∗ = C(x∗) by the choice of x∗ .
Thus, algorithm loss, L, is ≥ T ×C(x∗).

Best expert: L∗- best row against all the columns played.

best row against ∑t Ayt and T ×y∗ = ∑t yt
→ best row against T ×Ay∗.
→ L∗ ≤ T ×R(y∗).

Multiplicative Weights: L≤ (1+ ε)L∗+ lnn
ε

T ×C(x∗)≤ (1+ ε)T ×R(y∗)+ lnn
ε
→ C(x∗)≤ (1+ ε)R(y∗)+ lnn

εT

→ C(x∗)−R(y∗)≤ εR(y∗)+ lnn
εT .

T = lnn
ε2 , R(y∗)≤ 1
→ C(x∗)−R(y∗)≤ 2ε.

Approximate Equilibrium!
Experts: xt is strategy on day t , yt is best column against xt .

Let y∗ = 1
T ∑t yt and x∗ = argminxt

xtAyt .

Claim: (x∗,y∗) are 2ε-optimal for matrix A.

Column payoff: C(x∗) = maxy x∗Ay .
Loss on day t , xtAyt ≥ x∗Ayt∗ = C(x∗) by the choice of x∗ .
Thus, algorithm loss, L, is ≥ T ×C(x∗).

Best expert: L∗- best row against all the columns played.

best row against ∑t Ayt and T ×y∗ = ∑t yt
→ best row against T ×Ay∗.
→ L∗ ≤ T ×R(y∗).

Multiplicative Weights: L≤ (1+ ε)L∗+ lnn
ε

T ×C(x∗)≤ (1+ ε)T ×R(y∗)+ lnn
ε
→ C(x∗)≤ (1+ ε)R(y∗)+ lnn

εT
→ C(x∗)−R(y∗)≤ εR(y∗)+ lnn

εT .

T = lnn
ε2 , R(y∗)≤ 1
→ C(x∗)−R(y∗)≤ 2ε.

Approximate Equilibrium!
Experts: xt is strategy on day t , yt is best column against xt .

Let y∗ = 1
T ∑t yt and x∗ = argminxt

xtAyt .

Claim: (x∗,y∗) are 2ε-optimal for matrix A.

Column payoff: C(x∗) = maxy x∗Ay .
Loss on day t , xtAyt ≥ x∗Ayt∗ = C(x∗) by the choice of x∗ .
Thus, algorithm loss, L, is ≥ T ×C(x∗).

Best expert: L∗- best row against all the columns played.

best row against ∑t Ayt and T ×y∗ = ∑t yt
→ best row against T ×Ay∗.
→ L∗ ≤ T ×R(y∗).

Multiplicative Weights: L≤ (1+ ε)L∗+ lnn
ε

T ×C(x∗)≤ (1+ ε)T ×R(y∗)+ lnn
ε
→ C(x∗)≤ (1+ ε)R(y∗)+ lnn

εT
→ C(x∗)−R(y∗)≤ εR(y∗)+ lnn

εT .

T = lnn
ε2 , R(y∗)≤ 1

→ C(x∗)−R(y∗)≤ 2ε.

Approximate Equilibrium!
Experts: xt is strategy on day t , yt is best column against xt .

Let y∗ = 1
T ∑t yt and x∗ = argminxt

xtAyt .

Claim: (x∗,y∗) are 2ε-optimal for matrix A.

Column payoff: C(x∗) = maxy x∗Ay .
Loss on day t , xtAyt ≥ x∗Ayt∗ = C(x∗) by the choice of x∗ .
Thus, algorithm loss, L, is ≥ T ×C(x∗).

Best expert: L∗- best row against all the columns played.

best row against ∑t Ayt and T ×y∗ = ∑t yt
→ best row against T ×Ay∗.
→ L∗ ≤ T ×R(y∗).

Multiplicative Weights: L≤ (1+ ε)L∗+ lnn
ε

T ×C(x∗)≤ (1+ ε)T ×R(y∗)+ lnn
ε
→ C(x∗)≤ (1+ ε)R(y∗)+ lnn

εT
→ C(x∗)−R(y∗)≤ εR(y∗)+ lnn

εT .

T = lnn
ε2 , R(y∗)≤ 1
→ C(x∗)−R(y∗)≤ 2ε.

Approximate Equilibrium: slightly different!

Experts: xt is strategy on day t , yt is best column against xt .

Let x∗ = 1
T ∑t xt and y∗ = 1

T ∑t yt .

Claim: (x∗,y∗) are 2ε-optimal for matrix A.

Left as exercise.

Approximate Equilibrium: slightly different!

Experts: xt is strategy on day t , yt is best column against xt .

Let x∗ = 1
T ∑t xt

and y∗ = 1
T ∑t yt .

Claim: (x∗,y∗) are 2ε-optimal for matrix A.

Left as exercise.

Approximate Equilibrium: slightly different!

Experts: xt is strategy on day t , yt is best column against xt .

Let x∗ = 1
T ∑t xt and y∗ = 1

T ∑t yt .

Claim: (x∗,y∗) are 2ε-optimal for matrix A.

Left as exercise.

Approximate Equilibrium: slightly different!

Experts: xt is strategy on day t , yt is best column against xt .

Let x∗ = 1
T ∑t xt and y∗ = 1

T ∑t yt .

Claim: (x∗,y∗) are 2ε-optimal for matrix A.

Left as exercise.

Approximate Equilibrium: slightly different!

Experts: xt is strategy on day t , yt is best column against xt .

Let x∗ = 1
T ∑t xt and y∗ = 1

T ∑t yt .

Claim: (x∗,y∗) are 2ε-optimal for matrix A.

Left as exercise.

Comments

For any ε, there exists an ε-Approximate Equilibrium.

Does an equilibrium exist? Yes.

Something about math here?
Limit of a sequence on some closed set..hmmm..

Comments

For any ε, there exists an ε-Approximate Equilibrium.
Does an equilibrium exist?

Yes.

Something about math here?
Limit of a sequence on some closed set..hmmm..

Comments

For any ε, there exists an ε-Approximate Equilibrium.
Does an equilibrium exist? Yes.

Something about math here?
Limit of a sequence on some closed set..hmmm..

Comments

For any ε, there exists an ε-Approximate Equilibrium.
Does an equilibrium exist? Yes.

Something about math here?

Limit of a sequence on some closed set..hmmm..

Comments

For any ε, there exists an ε-Approximate Equilibrium.
Does an equilibrium exist? Yes.

Something about math here?
Limit of a sequence on some closed set..hmmm..

Comments

For any ε, there exists an ε-Approximate Equilibrium.
Does an equilibrium exist? Yes.

Something about math here?
Limit of a sequence on some closed set..hmmm..

More comments

Complexity?

T = lnn
ε2 → O(nm logn

ε2). Basically linear!

Versus Linear Programming: O(n3m) Basically quadratic.
(Faster linear programming: O(

√
n+m) linear system solves.)

Still much slower ... and more complicated.

Dynamics: best response, update weight according to loss, ...

Near integrality.
Only lnn/ε2 non-zero column variables.
Average 1/T , so not too many nonzeros and not too small.

Not stochastic at all here, the column responses are adversarial.

Various assumptions: [0,1] losses, other ranges takes some work.

More comments

Complexity?
T = lnn

ε2

→ O(nm logn
ε2). Basically linear!

Versus Linear Programming: O(n3m) Basically quadratic.
(Faster linear programming: O(

√
n+m) linear system solves.)

Still much slower ... and more complicated.

Dynamics: best response, update weight according to loss, ...

Near integrality.
Only lnn/ε2 non-zero column variables.
Average 1/T , so not too many nonzeros and not too small.

Not stochastic at all here, the column responses are adversarial.

Various assumptions: [0,1] losses, other ranges takes some work.

More comments

Complexity?
T = lnn

ε2 → O(nm logn
ε2).

Basically linear!

Versus Linear Programming: O(n3m) Basically quadratic.
(Faster linear programming: O(

√
n+m) linear system solves.)

Still much slower ... and more complicated.

Dynamics: best response, update weight according to loss, ...

Near integrality.
Only lnn/ε2 non-zero column variables.
Average 1/T , so not too many nonzeros and not too small.

Not stochastic at all here, the column responses are adversarial.

Various assumptions: [0,1] losses, other ranges takes some work.

More comments

Complexity?
T = lnn

ε2 → O(nm logn
ε2). Basically linear!

Versus Linear Programming: O(n3m) Basically quadratic.
(Faster linear programming: O(

√
n+m) linear system solves.)

Still much slower ... and more complicated.

Dynamics: best response, update weight according to loss, ...

Near integrality.
Only lnn/ε2 non-zero column variables.
Average 1/T , so not too many nonzeros and not too small.

Not stochastic at all here, the column responses are adversarial.

Various assumptions: [0,1] losses, other ranges takes some work.

More comments

Complexity?
T = lnn

ε2 → O(nm logn
ε2). Basically linear!

Versus Linear Programming: O(n3m)

Basically quadratic.
(Faster linear programming: O(

√
n+m) linear system solves.)

Still much slower ... and more complicated.

Dynamics: best response, update weight according to loss, ...

Near integrality.
Only lnn/ε2 non-zero column variables.
Average 1/T , so not too many nonzeros and not too small.

Not stochastic at all here, the column responses are adversarial.

Various assumptions: [0,1] losses, other ranges takes some work.

More comments

Complexity?
T = lnn

ε2 → O(nm logn
ε2). Basically linear!

Versus Linear Programming: O(n3m) Basically quadratic.

(Faster linear programming: O(
√

n+m) linear system solves.)
Still much slower ... and more complicated.

Dynamics: best response, update weight according to loss, ...

Near integrality.
Only lnn/ε2 non-zero column variables.
Average 1/T , so not too many nonzeros and not too small.

Not stochastic at all here, the column responses are adversarial.

Various assumptions: [0,1] losses, other ranges takes some work.

More comments

Complexity?
T = lnn

ε2 → O(nm logn
ε2). Basically linear!

Versus Linear Programming: O(n3m) Basically quadratic.
(Faster linear programming: O(

√
n+m) linear system solves.)

Still much slower ... and more complicated.

Dynamics: best response, update weight according to loss, ...

Near integrality.
Only lnn/ε2 non-zero column variables.
Average 1/T , so not too many nonzeros and not too small.

Not stochastic at all here, the column responses are adversarial.

Various assumptions: [0,1] losses, other ranges takes some work.

More comments

Complexity?
T = lnn

ε2 → O(nm logn
ε2). Basically linear!

Versus Linear Programming: O(n3m) Basically quadratic.
(Faster linear programming: O(

√
n+m) linear system solves.)

Still much slower

... and more complicated.

Dynamics: best response, update weight according to loss, ...

Near integrality.
Only lnn/ε2 non-zero column variables.
Average 1/T , so not too many nonzeros and not too small.

Not stochastic at all here, the column responses are adversarial.

Various assumptions: [0,1] losses, other ranges takes some work.

More comments

Complexity?
T = lnn

ε2 → O(nm logn
ε2). Basically linear!

Versus Linear Programming: O(n3m) Basically quadratic.
(Faster linear programming: O(

√
n+m) linear system solves.)

Still much slower ... and more complicated.

Dynamics: best response, update weight according to loss, ...

Near integrality.
Only lnn/ε2 non-zero column variables.
Average 1/T , so not too many nonzeros and not too small.

Not stochastic at all here, the column responses are adversarial.

Various assumptions: [0,1] losses, other ranges takes some work.

More comments

Complexity?
T = lnn

ε2 → O(nm logn
ε2). Basically linear!

Versus Linear Programming: O(n3m) Basically quadratic.
(Faster linear programming: O(

√
n+m) linear system solves.)

Still much slower ... and more complicated.

Dynamics: best response, update weight according to loss, ...

Near integrality.
Only lnn/ε2 non-zero column variables.
Average 1/T , so not too many nonzeros and not too small.

Not stochastic at all here, the column responses are adversarial.

Various assumptions: [0,1] losses, other ranges takes some work.

More comments

Complexity?
T = lnn

ε2 → O(nm logn
ε2). Basically linear!

Versus Linear Programming: O(n3m) Basically quadratic.
(Faster linear programming: O(

√
n+m) linear system solves.)

Still much slower ... and more complicated.

Dynamics: best response, update weight according to loss, ...

Near integrality.

Only lnn/ε2 non-zero column variables.
Average 1/T , so not too many nonzeros and not too small.

Not stochastic at all here, the column responses are adversarial.

Various assumptions: [0,1] losses, other ranges takes some work.

More comments

Complexity?
T = lnn

ε2 → O(nm logn
ε2). Basically linear!

Versus Linear Programming: O(n3m) Basically quadratic.
(Faster linear programming: O(

√
n+m) linear system solves.)

Still much slower ... and more complicated.

Dynamics: best response, update weight according to loss, ...

Near integrality.
Only lnn/ε2 non-zero column variables.

Average 1/T , so not too many nonzeros and not too small.

Not stochastic at all here, the column responses are adversarial.

Various assumptions: [0,1] losses, other ranges takes some work.

More comments

Complexity?
T = lnn

ε2 → O(nm logn
ε2). Basically linear!

Versus Linear Programming: O(n3m) Basically quadratic.
(Faster linear programming: O(

√
n+m) linear system solves.)

Still much slower ... and more complicated.

Dynamics: best response, update weight according to loss, ...

Near integrality.
Only lnn/ε2 non-zero column variables.
Average 1/T , so not too many nonzeros and not too small.

Not stochastic at all here, the column responses are adversarial.

Various assumptions: [0,1] losses, other ranges takes some work.

More comments

Complexity?
T = lnn

ε2 → O(nm logn
ε2). Basically linear!

Versus Linear Programming: O(n3m) Basically quadratic.
(Faster linear programming: O(

√
n+m) linear system solves.)

Still much slower ... and more complicated.

Dynamics: best response, update weight according to loss, ...

Near integrality.
Only lnn/ε2 non-zero column variables.
Average 1/T , so not too many nonzeros and not too small.

Not stochastic at all here, the column responses are adversarial.

Various assumptions: [0,1] losses, other ranges takes some work.

More comments

Complexity?
T = lnn

ε2 → O(nm logn
ε2). Basically linear!

Versus Linear Programming: O(n3m) Basically quadratic.
(Faster linear programming: O(

√
n+m) linear system solves.)

Still much slower ... and more complicated.

Dynamics: best response, update weight according to loss, ...

Near integrality.
Only lnn/ε2 non-zero column variables.
Average 1/T , so not too many nonzeros and not too small.

Not stochastic at all here, the column responses are adversarial.

Various assumptions: [0,1] losses, other ranges takes some work.

Toll/Congestion

Given: G = (V ,E).
Given (s1, t1) . . .(sk , tk).
Row: choose routing of all paths.
Column: choose edge.
Row pays if column chooses edge on any path.

Matrix:
row for each routing: r
column for each edge: e

A[r ,e] is congestion on edge e by routing r

Offense: (Best Response.)
Router: route along shortest paths.
Toll: charge most loaded edge.

Defense: Toll: maximize shortest path under tolls.
Route: minimize max congestion on any edge.

Toll/Congestion

Given: G = (V ,E).
Given (s1, t1) . . .(sk , tk).
Row: choose routing of all paths.
Column: choose edge.
Row pays if column chooses edge on any path.

Matrix:
row for each routing: r

column for each edge: e

A[r ,e] is congestion on edge e by routing r

Offense: (Best Response.)
Router: route along shortest paths.
Toll: charge most loaded edge.

Defense: Toll: maximize shortest path under tolls.
Route: minimize max congestion on any edge.

Toll/Congestion

Given: G = (V ,E).
Given (s1, t1) . . .(sk , tk).
Row: choose routing of all paths.
Column: choose edge.
Row pays if column chooses edge on any path.

Matrix:
row for each routing: r
column for each edge: e

A[r ,e] is congestion on edge e by routing r

Offense: (Best Response.)
Router: route along shortest paths.
Toll: charge most loaded edge.

Defense: Toll: maximize shortest path under tolls.
Route: minimize max congestion on any edge.

Toll/Congestion

Given: G = (V ,E).
Given (s1, t1) . . .(sk , tk).
Row: choose routing of all paths.
Column: choose edge.
Row pays if column chooses edge on any path.

Matrix:
row for each routing: r
column for each edge: e

A[r ,e] is congestion on edge e by routing r

Offense: (Best Response.)
Router: route along shortest paths.
Toll: charge most loaded edge.

Defense: Toll: maximize shortest path under tolls.
Route: minimize max congestion on any edge.

Toll/Congestion

Given: G = (V ,E).
Given (s1, t1) . . .(sk , tk).
Row: choose routing of all paths.
Column: choose edge.
Row pays if column chooses edge on any path.

Matrix:
row for each routing: r
column for each edge: e

A[r ,e] is congestion on edge e by routing r

Offense: (Best Response.)

Router: route along shortest paths.
Toll: charge most loaded edge.

Defense: Toll: maximize shortest path under tolls.
Route: minimize max congestion on any edge.

Toll/Congestion

Given: G = (V ,E).
Given (s1, t1) . . .(sk , tk).
Row: choose routing of all paths.
Column: choose edge.
Row pays if column chooses edge on any path.

Matrix:
row for each routing: r
column for each edge: e

A[r ,e] is congestion on edge e by routing r

Offense: (Best Response.)
Router: route along shortest paths.

Toll: charge most loaded edge.

Defense: Toll: maximize shortest path under tolls.
Route: minimize max congestion on any edge.

Toll/Congestion

Given: G = (V ,E).
Given (s1, t1) . . .(sk , tk).
Row: choose routing of all paths.
Column: choose edge.
Row pays if column chooses edge on any path.

Matrix:
row for each routing: r
column for each edge: e

A[r ,e] is congestion on edge e by routing r

Offense: (Best Response.)
Router: route along shortest paths.
Toll: charge most loaded edge.

Defense: Toll: maximize shortest path under tolls.
Route: minimize max congestion on any edge.

Toll/Congestion

Given: G = (V ,E).
Given (s1, t1) . . .(sk , tk).
Row: choose routing of all paths.
Column: choose edge.
Row pays if column chooses edge on any path.

Matrix:
row for each routing: r
column for each edge: e

A[r ,e] is congestion on edge e by routing r

Offense: (Best Response.)
Router: route along shortest paths.
Toll: charge most loaded edge.

Defense: Toll: maximize shortest path under tolls.

Route: minimize max congestion on any edge.

Toll/Congestion

Given: G = (V ,E).
Given (s1, t1) . . .(sk , tk).
Row: choose routing of all paths.
Column: choose edge.
Row pays if column chooses edge on any path.

Matrix:
row for each routing: r
column for each edge: e

A[r ,e] is congestion on edge e by routing r

Offense: (Best Response.)
Router: route along shortest paths.
Toll: charge most loaded edge.

Defense: Toll: maximize shortest path under tolls.
Route: minimize max congestion on any edge.

Toll/Congestion

Given: G = (V ,E).
Given (s1, t1) . . .(sk , tk).
Row: choose routing of all paths.
Column: choose edge.
Row pays if column chooses edge on any path.

Matrix:
row for each routing: r
column for each edge: e

A[r ,e] is congestion on edge e by routing r

Offense: (Best Response.)
Router: route along shortest paths.
Toll: charge most loaded edge.

Defense: Toll: maximize shortest path under tolls.
Route: minimize max congestion on any edge.

Two person game.

Row is router.

An exponential number of rows!

Two person game with experts won’t be so easy to implement.

Version with row and column flipped may work.

A[e, r] - congestion of edge e on routing r .

m rows. Exponential number of columns.

Multiplicative Weights only maintains m weights.

Adversary only needs to provide best column each day.

Runtime only dependent on m and T (number of days.)

Two person game.

Row is router.

An exponential number of rows!

Two person game with experts won’t be so easy to implement.

Version with row and column flipped may work.

A[e, r] - congestion of edge e on routing r .

m rows. Exponential number of columns.

Multiplicative Weights only maintains m weights.

Adversary only needs to provide best column each day.

Runtime only dependent on m and T (number of days.)

Two person game.

Row is router.

An exponential number of rows!

Two person game with experts won’t be so easy to implement.

Version with row and column flipped may work.

A[e, r] - congestion of edge e on routing r .

m rows. Exponential number of columns.

Multiplicative Weights only maintains m weights.

Adversary only needs to provide best column each day.

Runtime only dependent on m and T (number of days.)

Two person game.

Row is router.

An exponential number of rows!

Two person game with experts won’t be so easy to implement.

Version with row and column flipped may work.

A[e, r] - congestion of edge e on routing r .

m rows. Exponential number of columns.

Multiplicative Weights only maintains m weights.

Adversary only needs to provide best column each day.

Runtime only dependent on m and T (number of days.)

Two person game.

Row is router.

An exponential number of rows!

Two person game with experts won’t be so easy to implement.

Version with row and column flipped may work.

A[e, r] - congestion of edge e on routing r .

m rows. Exponential number of columns.

Multiplicative Weights only maintains m weights.

Adversary only needs to provide best column each day.

Runtime only dependent on m and T (number of days.)

Two person game.

Row is router.

An exponential number of rows!

Two person game with experts won’t be so easy to implement.

Version with row and column flipped may work.

A[e, r] - congestion of edge e on routing r .

m rows.

Exponential number of columns.

Multiplicative Weights only maintains m weights.

Adversary only needs to provide best column each day.

Runtime only dependent on m and T (number of days.)

Two person game.

Row is router.

An exponential number of rows!

Two person game with experts won’t be so easy to implement.

Version with row and column flipped may work.

A[e, r] - congestion of edge e on routing r .

m rows. Exponential number of columns.

Multiplicative Weights only maintains m weights.

Adversary only needs to provide best column each day.

Runtime only dependent on m and T (number of days.)

Two person game.

Row is router.

An exponential number of rows!

Two person game with experts won’t be so easy to implement.

Version with row and column flipped may work.

A[e, r] - congestion of edge e on routing r .

m rows. Exponential number of columns.

Multiplicative Weights only maintains m weights.

Adversary only needs to provide best column each day.

Runtime only dependent on m and T (number of days.)

Two person game.

Row is router.

An exponential number of rows!

Two person game with experts won’t be so easy to implement.

Version with row and column flipped may work.

A[e, r] - congestion of edge e on routing r .

m rows. Exponential number of columns.

Multiplicative Weights only maintains m weights.

Adversary only needs to provide best column each day.

Runtime only dependent on m and T (number of days.)

Two person game.

Row is router.

An exponential number of rows!

Two person game with experts won’t be so easy to implement.

Version with row and column flipped may work.

A[e, r] - congestion of edge e on routing r .

m rows. Exponential number of columns.

Multiplicative Weights only maintains m weights.

Adversary only needs to provide best column each day.

Runtime only dependent on m and T (number of days.)

Congestion minimization and Experts.
Will use gain and [0,ρ] version of experts:

G ≥ (1− ε)G∗− ρ logn
ε

.

Let T = k logn
ε2

1. Row player runs multiplicative weights on edges:
wi = wi(1+ ε)gi/k .

2. Column routes all paths along shortest paths.

3. Output the average of all routings: 1
T ∑t f (t).

Claim: The congestion, cmax is at most C∗+2kε.

Proof:
G ≥G∗(1− ε)− k logn

εT →G∗−G ≤ εG∗+ k logn
ε

G∗ = T ∗cmax – Best row payoff against average routing (times T).

G ≤ T ×C∗ – each day, gain is avg. congestion ≤ opt congestion.

T = k logn
ε2 → Tc∗max−TC ≤ εTC∗+ k logn

ε
→

cmax −C∗ ≤ εC∗+ ε

Congestion minimization and Experts.
Will use gain and [0,ρ] version of experts:

G ≥ (1− ε)G∗− ρ logn
ε

.

Let T = k logn
ε2

1. Row player runs multiplicative weights on edges:
wi = wi(1+ ε)gi/k .

2. Column routes all paths along shortest paths.

3. Output the average of all routings: 1
T ∑t f (t).

Claim: The congestion, cmax is at most C∗+2kε.

Proof:
G ≥G∗(1− ε)− k logn

εT →G∗−G ≤ εG∗+ k logn
ε

G∗ = T ∗cmax – Best row payoff against average routing (times T).

G ≤ T ×C∗ – each day, gain is avg. congestion ≤ opt congestion.

T = k logn
ε2 → Tc∗max−TC ≤ εTC∗+ k logn

ε
→

cmax −C∗ ≤ εC∗+ ε

Congestion minimization and Experts.
Will use gain and [0,ρ] version of experts:

G ≥ (1− ε)G∗− ρ logn
ε

.

Let T = k logn
ε2

1. Row player runs multiplicative weights on edges:
wi = wi(1+ ε)gi/k .

2. Column routes all paths along shortest paths.

3. Output the average of all routings: 1
T ∑t f (t).

Claim: The congestion, cmax is at most C∗+2kε.

Proof:
G ≥G∗(1− ε)− k logn

εT →G∗−G ≤ εG∗+ k logn
ε

G∗ = T ∗cmax – Best row payoff against average routing (times T).

G ≤ T ×C∗ – each day, gain is avg. congestion ≤ opt congestion.

T = k logn
ε2 → Tc∗max−TC ≤ εTC∗+ k logn

ε
→

cmax −C∗ ≤ εC∗+ ε

Congestion minimization and Experts.
Will use gain and [0,ρ] version of experts:

G ≥ (1− ε)G∗− ρ logn
ε

.

Let T = k logn
ε2

1. Row player runs multiplicative weights on edges:

wi = wi(1+ ε)gi/k .

2. Column routes all paths along shortest paths.

3. Output the average of all routings: 1
T ∑t f (t).

Claim: The congestion, cmax is at most C∗+2kε.

Proof:
G ≥G∗(1− ε)− k logn

εT →G∗−G ≤ εG∗+ k logn
ε

G∗ = T ∗cmax – Best row payoff against average routing (times T).

G ≤ T ×C∗ – each day, gain is avg. congestion ≤ opt congestion.

T = k logn
ε2 → Tc∗max−TC ≤ εTC∗+ k logn

ε
→

cmax −C∗ ≤ εC∗+ ε

Congestion minimization and Experts.
Will use gain and [0,ρ] version of experts:

G ≥ (1− ε)G∗− ρ logn
ε

.

Let T = k logn
ε2

1. Row player runs multiplicative weights on edges:
wi = wi(1+ ε)gi/k .

2. Column routes all paths along shortest paths.

3. Output the average of all routings: 1
T ∑t f (t).

Claim: The congestion, cmax is at most C∗+2kε.

Proof:
G ≥G∗(1− ε)− k logn

εT →G∗−G ≤ εG∗+ k logn
ε

G∗ = T ∗cmax – Best row payoff against average routing (times T).

G ≤ T ×C∗ – each day, gain is avg. congestion ≤ opt congestion.

T = k logn
ε2 → Tc∗max−TC ≤ εTC∗+ k logn

ε
→

cmax −C∗ ≤ εC∗+ ε

Congestion minimization and Experts.
Will use gain and [0,ρ] version of experts:

G ≥ (1− ε)G∗− ρ logn
ε

.

Let T = k logn
ε2

1. Row player runs multiplicative weights on edges:
wi = wi(1+ ε)gi/k .

2. Column routes all paths along shortest paths.

3. Output the average of all routings: 1
T ∑t f (t).

Claim: The congestion, cmax is at most C∗+2kε.

Proof:
G ≥G∗(1− ε)− k logn

εT →G∗−G ≤ εG∗+ k logn
ε

G∗ = T ∗cmax – Best row payoff against average routing (times T).

G ≤ T ×C∗ – each day, gain is avg. congestion ≤ opt congestion.

T = k logn
ε2 → Tc∗max−TC ≤ εTC∗+ k logn

ε
→

cmax −C∗ ≤ εC∗+ ε

Congestion minimization and Experts.
Will use gain and [0,ρ] version of experts:

G ≥ (1− ε)G∗− ρ logn
ε

.

Let T = k logn
ε2

1. Row player runs multiplicative weights on edges:
wi = wi(1+ ε)gi/k .

2. Column routes all paths along shortest paths.

3. Output the average of all routings: 1
T ∑t f (t).

Claim: The congestion, cmax is at most C∗+2kε.

Proof:
G ≥G∗(1− ε)− k logn

εT →G∗−G ≤ εG∗+ k logn
ε

G∗ = T ∗cmax – Best row payoff against average routing (times T).

G ≤ T ×C∗ – each day, gain is avg. congestion ≤ opt congestion.

T = k logn
ε2 → Tc∗max−TC ≤ εTC∗+ k logn

ε
→

cmax −C∗ ≤ εC∗+ ε

Congestion minimization and Experts.
Will use gain and [0,ρ] version of experts:

G ≥ (1− ε)G∗− ρ logn
ε

.

Let T = k logn
ε2

1. Row player runs multiplicative weights on edges:
wi = wi(1+ ε)gi/k .

2. Column routes all paths along shortest paths.

3. Output the average of all routings: 1
T ∑t f (t).

Claim: The congestion, cmax is at most C∗+2kε.

Proof:
G ≥G∗(1− ε)− k logn

εT →G∗−G ≤ εG∗+ k logn
ε

G∗ = T ∗cmax – Best row payoff against average routing (times T).

G ≤ T ×C∗ – each day, gain is avg. congestion ≤ opt congestion.

T = k logn
ε2 → Tc∗max−TC ≤ εTC∗+ k logn

ε
→

cmax −C∗ ≤ εC∗+ ε

Congestion minimization and Experts.
Will use gain and [0,ρ] version of experts:

G ≥ (1− ε)G∗− ρ logn
ε

.

Let T = k logn
ε2

1. Row player runs multiplicative weights on edges:
wi = wi(1+ ε)gi/k .

2. Column routes all paths along shortest paths.

3. Output the average of all routings: 1
T ∑t f (t).

Claim: The congestion, cmax is at most C∗+2kε.

Proof:

G ≥G∗(1− ε)− k logn
εT →G∗−G ≤ εG∗+ k logn

ε

G∗ = T ∗cmax – Best row payoff against average routing (times T).

G ≤ T ×C∗ – each day, gain is avg. congestion ≤ opt congestion.

T = k logn
ε2 → Tc∗max−TC ≤ εTC∗+ k logn

ε
→

cmax −C∗ ≤ εC∗+ ε

Congestion minimization and Experts.
Will use gain and [0,ρ] version of experts:

G ≥ (1− ε)G∗− ρ logn
ε

.

Let T = k logn
ε2

1. Row player runs multiplicative weights on edges:
wi = wi(1+ ε)gi/k .

2. Column routes all paths along shortest paths.

3. Output the average of all routings: 1
T ∑t f (t).

Claim: The congestion, cmax is at most C∗+2kε.

Proof:
G ≥G∗(1− ε)− k logn

εT

→G∗−G ≤ εG∗+ k logn
ε

G∗ = T ∗cmax – Best row payoff against average routing (times T).

G ≤ T ×C∗ – each day, gain is avg. congestion ≤ opt congestion.

T = k logn
ε2 → Tc∗max−TC ≤ εTC∗+ k logn

ε
→

cmax −C∗ ≤ εC∗+ ε

Congestion minimization and Experts.
Will use gain and [0,ρ] version of experts:

G ≥ (1− ε)G∗− ρ logn
ε

.

Let T = k logn
ε2

1. Row player runs multiplicative weights on edges:
wi = wi(1+ ε)gi/k .

2. Column routes all paths along shortest paths.

3. Output the average of all routings: 1
T ∑t f (t).

Claim: The congestion, cmax is at most C∗+2kε.

Proof:
G ≥G∗(1− ε)− k logn

εT →G∗−G ≤ εG∗+ k logn
ε

G∗ = T ∗cmax – Best row payoff against average routing (times T).

G ≤ T ×C∗ – each day, gain is avg. congestion ≤ opt congestion.

T = k logn
ε2 → Tc∗max−TC ≤ εTC∗+ k logn

ε
→

cmax −C∗ ≤ εC∗+ ε

Congestion minimization and Experts.
Will use gain and [0,ρ] version of experts:

G ≥ (1− ε)G∗− ρ logn
ε

.

Let T = k logn
ε2

1. Row player runs multiplicative weights on edges:
wi = wi(1+ ε)gi/k .

2. Column routes all paths along shortest paths.

3. Output the average of all routings: 1
T ∑t f (t).

Claim: The congestion, cmax is at most C∗+2kε.

Proof:
G ≥G∗(1− ε)− k logn

εT →G∗−G ≤ εG∗+ k logn
ε

G∗ = T ∗cmax – Best row payoff against average routing (times T).

G ≤ T ×C∗ – each day, gain is avg. congestion ≤ opt congestion.

T = k logn
ε2 → Tc∗max−TC ≤ εTC∗+ k logn

ε
→

cmax −C∗ ≤ εC∗+ ε

Congestion minimization and Experts.
Will use gain and [0,ρ] version of experts:

G ≥ (1− ε)G∗− ρ logn
ε

.

Let T = k logn
ε2

1. Row player runs multiplicative weights on edges:
wi = wi(1+ ε)gi/k .

2. Column routes all paths along shortest paths.

3. Output the average of all routings: 1
T ∑t f (t).

Claim: The congestion, cmax is at most C∗+2kε.

Proof:
G ≥G∗(1− ε)− k logn

εT →G∗−G ≤ εG∗+ k logn
ε

G∗ = T ∗cmax – Best row payoff against average routing (times T).

G ≤ T ×C∗ – each day, gain is avg. congestion ≤ opt congestion.

T = k logn
ε2 → Tc∗max−TC ≤ εTC∗+ k logn

ε
→

cmax −C∗ ≤ εC∗+ ε

Congestion minimization and Experts.
Will use gain and [0,ρ] version of experts:

G ≥ (1− ε)G∗− ρ logn
ε

.

Let T = k logn
ε2

1. Row player runs multiplicative weights on edges:
wi = wi(1+ ε)gi/k .

2. Column routes all paths along shortest paths.

3. Output the average of all routings: 1
T ∑t f (t).

Claim: The congestion, cmax is at most C∗+2kε.

Proof:
G ≥G∗(1− ε)− k logn

εT →G∗−G ≤ εG∗+ k logn
ε

G∗ = T ∗cmax – Best row payoff against average routing (times T).

G ≤ T ×C∗ – each day, gain is avg. congestion ≤ opt congestion.

T = k logn
ε2 → Tc∗max−TC ≤ εTC∗+ k logn

ε
→

cmax −C∗ ≤ εC∗+ ε

Congestion minimization and Experts.
Will use gain and [0,ρ] version of experts:

G ≥ (1− ε)G∗− ρ logn
ε

.

Let T = k logn
ε2

1. Row player runs multiplicative weights on edges:
wi = wi(1+ ε)gi/k .

2. Column routes all paths along shortest paths.

3. Output the average of all routings: 1
T ∑t f (t).

Claim: The congestion, cmax is at most C∗+2kε.

Proof:
G ≥G∗(1− ε)− k logn

εT →G∗−G ≤ εG∗+ k logn
ε

G∗ = T ∗cmax – Best row payoff against average routing (times T).

G ≤ T ×C∗ – each day, gain is avg. congestion ≤ opt congestion.

T = k logn
ε2 → Tc∗max−TC ≤ εTC∗+ k logn

ε
→

cmax −C∗ ≤ εC∗+ ε

Congestion minimization and Experts.
Will use gain and [0,ρ] version of experts:

G ≥ (1− ε)G∗− ρ logn
ε

.

Let T = k logn
ε2

1. Row player runs multiplicative weights on edges:
wi = wi(1+ ε)gi/k .

2. Column routes all paths along shortest paths.

3. Output the average of all routings: 1
T ∑t f (t).

Claim: The congestion, cmax is at most C∗+2kε.

Proof:
G ≥G∗(1− ε)− k logn

εT →G∗−G ≤ εG∗+ k logn
ε

G∗ = T ∗cmax – Best row payoff against average routing (times T).

G ≤ T ×C∗ – each day, gain is avg. congestion ≤ opt congestion.

T = k logn
ε2 → Tc∗max−TC ≤ εTC∗+ k logn

ε
→

cmax −C∗ ≤ εC∗+ ε

Better setup.

Runtime: O(km logn) to route in each step (using Dijkstra’s)

O(k logn
ε2) steps

to get cmax−C∗ < εC∗ (assuming C∗ > 1) approximation.

To get constant c error.
→O(k2m logn/ε2) to get a constant approximation.

Exercise: O(km logn/ε2) algorithm ! ! !

Better setup.

Runtime: O(km logn) to route in each step (using Dijkstra’s)

O(k logn
ε2) steps

to get cmax−C∗ < εC∗ (assuming C∗ > 1) approximation.

To get constant c error.
→O(k2m logn/ε2) to get a constant approximation.

Exercise: O(km logn/ε2) algorithm ! ! !

Better setup.

Runtime: O(km logn) to route in each step (using Dijkstra’s)

O(k logn
ε2) steps

to get cmax−C∗ < εC∗ (assuming C∗ > 1) approximation.

To get constant c error.
→O(k2m logn/ε2) to get a constant approximation.

Exercise: O(km logn/ε2) algorithm ! ! !

Better setup.

Runtime: O(km logn) to route in each step (using Dijkstra’s)

O(k logn
ε2) steps

to get cmax−C∗ < εC∗ (assuming C∗ > 1) approximation.

To get constant c error.
→O(k2m logn/ε2) to get a constant approximation.

Exercise: O(km logn/ε2) algorithm ! ! !

Better setup.

Runtime: O(km logn) to route in each step (using Dijkstra’s)

O(k logn
ε2) steps

to get cmax−C∗ < εC∗ (assuming C∗ > 1) approximation.

To get constant c error.
→O(k2m logn/ε2) to get a constant approximation.

Exercise: O(km logn/ε2) algorithm ! ! !

Better setup.

Runtime: O(km logn) to route in each step (using Dijkstra’s)

O(k logn
ε2) steps

to get cmax−C∗ < εC∗ (assuming C∗ > 1) approximation.

To get constant c error.
→O(k2m logn/ε2) to get a constant approximation.

Exercise: O(km logn/ε2) algorithm ! ! !

Better setup.

Runtime: O(km logn) to route in each step (using Dijkstra’s)

O(k logn
ε2) steps

to get cmax−C∗ < εC∗ (assuming C∗ > 1) approximation.

To get constant c error.
→O(k2m logn/ε2) to get a constant approximation.

Exercise: O(km logn/ε2) algorithm

! ! !

Better setup.

Runtime: O(km logn) to route in each step (using Dijkstra’s)

O(k logn
ε2) steps

to get cmax−C∗ < εC∗ (assuming C∗ > 1) approximation.

To get constant c error.
→O(k2m logn/ε2) to get a constant approximation.

Exercise: O(km logn/ε2) algorithm !

! !

Better setup.

Runtime: O(km logn) to route in each step (using Dijkstra’s)

O(k logn
ε2) steps

to get cmax−C∗ < εC∗ (assuming C∗ > 1) approximation.

To get constant c error.
→O(k2m logn/ε2) to get a constant approximation.

Exercise: O(km logn/ε2) algorithm ! !

!

Better setup.

Runtime: O(km logn) to route in each step (using Dijkstra’s)

O(k logn
ε2) steps

to get cmax−C∗ < εC∗ (assuming C∗ > 1) approximation.

To get constant c error.
→O(k2m logn/ε2) to get a constant approximation.

Exercise: O(km logn/ε2) algorithm ! ! !

Fractional versus Integer.

Did we (approximately) solve path routing?

Yes? No?

No! Average of T routings.
We approximately solved fractional routing problem.

No solution to the path routing problem that is (1+ ε) optimal!

Decent solution to path routing problem?

For each si , ti , choose path pi uniformly at random from “daily”
paths.

Congestion c(e) edge has expected congestion, c̃(e), of c(e).

“Concentration” (law of large numbers)
c(e) is relatively large (Ω(logn))
→ c̃(e)≈ c(e).

Concentration results? later.

Fractional versus Integer.

Did we (approximately) solve path routing?
Yes?

No?

No! Average of T routings.
We approximately solved fractional routing problem.

No solution to the path routing problem that is (1+ ε) optimal!

Decent solution to path routing problem?

For each si , ti , choose path pi uniformly at random from “daily”
paths.

Congestion c(e) edge has expected congestion, c̃(e), of c(e).

“Concentration” (law of large numbers)
c(e) is relatively large (Ω(logn))
→ c̃(e)≈ c(e).

Concentration results? later.

Fractional versus Integer.

Did we (approximately) solve path routing?
Yes? No?

No! Average of T routings.
We approximately solved fractional routing problem.

No solution to the path routing problem that is (1+ ε) optimal!

Decent solution to path routing problem?

For each si , ti , choose path pi uniformly at random from “daily”
paths.

Congestion c(e) edge has expected congestion, c̃(e), of c(e).

“Concentration” (law of large numbers)
c(e) is relatively large (Ω(logn))
→ c̃(e)≈ c(e).

Concentration results? later.

Fractional versus Integer.

Did we (approximately) solve path routing?
Yes? No?

No!

Average of T routings.
We approximately solved fractional routing problem.

No solution to the path routing problem that is (1+ ε) optimal!

Decent solution to path routing problem?

For each si , ti , choose path pi uniformly at random from “daily”
paths.

Congestion c(e) edge has expected congestion, c̃(e), of c(e).

“Concentration” (law of large numbers)
c(e) is relatively large (Ω(logn))
→ c̃(e)≈ c(e).

Concentration results? later.

Fractional versus Integer.

Did we (approximately) solve path routing?
Yes? No?

No! Average of T routings.

We approximately solved fractional routing problem.

No solution to the path routing problem that is (1+ ε) optimal!

Decent solution to path routing problem?

For each si , ti , choose path pi uniformly at random from “daily”
paths.

Congestion c(e) edge has expected congestion, c̃(e), of c(e).

“Concentration” (law of large numbers)
c(e) is relatively large (Ω(logn))
→ c̃(e)≈ c(e).

Concentration results? later.

Fractional versus Integer.

Did we (approximately) solve path routing?
Yes? No?

No! Average of T routings.
We approximately solved fractional routing problem.

No solution to the path routing problem that is (1+ ε) optimal!

Decent solution to path routing problem?

For each si , ti , choose path pi uniformly at random from “daily”
paths.

Congestion c(e) edge has expected congestion, c̃(e), of c(e).

“Concentration” (law of large numbers)
c(e) is relatively large (Ω(logn))
→ c̃(e)≈ c(e).

Concentration results? later.

Fractional versus Integer.

Did we (approximately) solve path routing?
Yes? No?

No! Average of T routings.
We approximately solved fractional routing problem.

No solution to the path routing problem that is (1+ ε) optimal!

Decent solution to path routing problem?

For each si , ti , choose path pi uniformly at random from “daily”
paths.

Congestion c(e) edge has expected congestion, c̃(e), of c(e).

“Concentration” (law of large numbers)
c(e) is relatively large (Ω(logn))
→ c̃(e)≈ c(e).

Concentration results? later.

Fractional versus Integer.

Did we (approximately) solve path routing?
Yes? No?

No! Average of T routings.
We approximately solved fractional routing problem.

No solution to the path routing problem that is (1+ ε) optimal!

Decent solution to path routing problem?

For each si , ti , choose path pi uniformly at random from “daily”
paths.

Congestion c(e) edge has expected congestion, c̃(e), of c(e).

“Concentration” (law of large numbers)
c(e) is relatively large (Ω(logn))
→ c̃(e)≈ c(e).

Concentration results? later.

Fractional versus Integer.

Did we (approximately) solve path routing?
Yes? No?

No! Average of T routings.
We approximately solved fractional routing problem.

No solution to the path routing problem that is (1+ ε) optimal!

Decent solution to path routing problem?

For each si , ti , choose path pi uniformly at random from “daily”
paths.

Congestion c(e) edge has expected congestion, c̃(e), of c(e).

“Concentration” (law of large numbers)
c(e) is relatively large (Ω(logn))
→ c̃(e)≈ c(e).

Concentration results? later.

Fractional versus Integer.

Did we (approximately) solve path routing?
Yes? No?

No! Average of T routings.
We approximately solved fractional routing problem.

No solution to the path routing problem that is (1+ ε) optimal!

Decent solution to path routing problem?

For each si , ti , choose path pi uniformly at random from “daily”
paths.

Congestion c(e) edge has expected congestion, c̃(e), of c(e).

“Concentration” (law of large numbers)
c(e) is relatively large (Ω(logn))
→ c̃(e)≈ c(e).

Concentration results? later.

Fractional versus Integer.

Did we (approximately) solve path routing?
Yes? No?

No! Average of T routings.
We approximately solved fractional routing problem.

No solution to the path routing problem that is (1+ ε) optimal!

Decent solution to path routing problem?

For each si , ti , choose path pi uniformly at random from “daily”
paths.

Congestion c(e) edge has expected congestion, c̃(e), of c(e).

“Concentration” (law of large numbers)

c(e) is relatively large (Ω(logn))
→ c̃(e)≈ c(e).

Concentration results? later.

Fractional versus Integer.

Did we (approximately) solve path routing?
Yes? No?

No! Average of T routings.
We approximately solved fractional routing problem.

No solution to the path routing problem that is (1+ ε) optimal!

Decent solution to path routing problem?

For each si , ti , choose path pi uniformly at random from “daily”
paths.

Congestion c(e) edge has expected congestion, c̃(e), of c(e).

“Concentration” (law of large numbers)
c(e) is relatively large

(Ω(logn))
→ c̃(e)≈ c(e).

Concentration results? later.

Fractional versus Integer.

Did we (approximately) solve path routing?
Yes? No?

No! Average of T routings.
We approximately solved fractional routing problem.

No solution to the path routing problem that is (1+ ε) optimal!

Decent solution to path routing problem?

For each si , ti , choose path pi uniformly at random from “daily”
paths.

Congestion c(e) edge has expected congestion, c̃(e), of c(e).

“Concentration” (law of large numbers)
c(e) is relatively large (Ω(logn))

→ c̃(e)≈ c(e).

Concentration results? later.

Fractional versus Integer.

Did we (approximately) solve path routing?
Yes? No?

No! Average of T routings.
We approximately solved fractional routing problem.

No solution to the path routing problem that is (1+ ε) optimal!

Decent solution to path routing problem?

For each si , ti , choose path pi uniformly at random from “daily”
paths.

Congestion c(e) edge has expected congestion, c̃(e), of c(e).

“Concentration” (law of large numbers)
c(e) is relatively large (Ω(logn))
→ c̃(e)≈ c(e).

Concentration results? later.

Fractional versus Integer.

Did we (approximately) solve path routing?
Yes? No?

No! Average of T routings.
We approximately solved fractional routing problem.

No solution to the path routing problem that is (1+ ε) optimal!

Decent solution to path routing problem?

For each si , ti , choose path pi uniformly at random from “daily”
paths.

Congestion c(e) edge has expected congestion, c̃(e), of c(e).

“Concentration” (law of large numbers)
c(e) is relatively large (Ω(logn))
→ c̃(e)≈ c(e).

Concentration results?

later.

Fractional versus Integer.

Did we (approximately) solve path routing?
Yes? No?

No! Average of T routings.
We approximately solved fractional routing problem.

No solution to the path routing problem that is (1+ ε) optimal!

Decent solution to path routing problem?

For each si , ti , choose path pi uniformly at random from “daily”
paths.

Congestion c(e) edge has expected congestion, c̃(e), of c(e).

“Concentration” (law of large numbers)
c(e) is relatively large (Ω(logn))
→ c̃(e)≈ c(e).

Concentration results? later.

Learning

Learning just a bit.

Example: set of labelled points, find hyperplane that separates.

+ −
+

−
+

−

−
+−

+

−

+

Looks hard.

1/2 of them? Easy.
Arbitrary line. And Scan.

Useless. A bit more than 1/2 Correct would be better.

Weak Learner: Classify ≥ 1
2 + ε points correctly.

Not really important but ...

Learning

Learning just a bit.

Example: set of labelled points, find hyperplane that separates.

+ −
+

−
+

−

−
+−

+

−

+

Looks hard.

1/2 of them? Easy.
Arbitrary line. And Scan.

Useless. A bit more than 1/2 Correct would be better.

Weak Learner: Classify ≥ 1
2 + ε points correctly.

Not really important but ...

Learning

Learning just a bit.

Example: set of labelled points, find hyperplane that separates.

+ −
+

−
+

−

−
+−

+

−

+

Looks hard.

1/2 of them? Easy.
Arbitrary line. And Scan.

Useless. A bit more than 1/2 Correct would be better.

Weak Learner: Classify ≥ 1
2 + ε points correctly.

Not really important but ...

Learning

Learning just a bit.

Example: set of labelled points, find hyperplane that separates.

+ −
+

−
+

−

−
+−

+

−

+

Looks hard.

1/2 of them?

Easy.
Arbitrary line. And Scan.

Useless. A bit more than 1/2 Correct would be better.

Weak Learner: Classify ≥ 1
2 + ε points correctly.

Not really important but ...

Learning

Learning just a bit.

Example: set of labelled points, find hyperplane that separates.

+ −
+

−
+

−

−
+−

+

−

+

Looks hard.

1/2 of them? Easy.

Arbitrary line. And Scan.

Useless. A bit more than 1/2 Correct would be better.

Weak Learner: Classify ≥ 1
2 + ε points correctly.

Not really important but ...

Learning

Learning just a bit.

Example: set of labelled points, find hyperplane that separates.

+ −
+

−
+

−

−
+−

+

−

+

Looks hard.

1/2 of them? Easy.
Arbitrary line.

And Scan.

Useless. A bit more than 1/2 Correct would be better.

Weak Learner: Classify ≥ 1
2 + ε points correctly.

Not really important but ...

Learning

Learning just a bit.

Example: set of labelled points, find hyperplane that separates.

+ −
+

−
+

−

−
+−

+

−

+

Looks hard.

1/2 of them? Easy.
Arbitrary line. And Scan.

Useless. A bit more than 1/2 Correct would be better.

Weak Learner: Classify ≥ 1
2 + ε points correctly.

Not really important but ...

Learning

Learning just a bit.

Example: set of labelled points, find hyperplane that separates.

+ −
+

−
+

−

−
+−

+

−

+

Looks hard.

1/2 of them? Easy.
Arbitrary line. And Scan.

Useless. A bit more than 1/2 Correct would be better.

Weak Learner: Classify ≥ 1
2 + ε points correctly.

Not really important but ...

Learning

Learning just a bit.

Example: set of labelled points, find hyperplane that separates.

+ −
+

−
+

−

−
+−

+

−

+

Looks hard.

1/2 of them? Easy.
Arbitrary line. And Scan.

Useless.

A bit more than 1/2 Correct would be better.

Weak Learner: Classify ≥ 1
2 + ε points correctly.

Not really important but ...

Learning

Learning just a bit.

Example: set of labelled points, find hyperplane that separates.

+ −
+

−
+

−

−
+−

+

−

+

Looks hard.

1/2 of them? Easy.
Arbitrary line. And Scan.

Useless. A bit more than 1/2 Correct would be better.

Weak Learner: Classify ≥ 1
2 + ε points correctly.

Not really important but ...

Learning

Learning just a bit.

Example: set of labelled points, find hyperplane that separates.

+ −
+

−
+

−

−
+−

+

−

+

Looks hard.

1/2 of them? Easy.
Arbitrary line. And Scan.

Useless. A bit more than 1/2 Correct would be better.

Weak Learner: Classify ≥ 1
2 + ε points correctly.

Not really important but ...

Learning

Learning just a bit.

Example: set of labelled points, find hyperplane that separates.

+ −
+

−
+

−

−
+−

+

−

+

Looks hard.

1/2 of them? Easy.
Arbitrary line. And Scan.

Useless. A bit more than 1/2 Correct would be better.

Weak Learner: Classify ≥ 1
2 + ε points correctly.

Not really important but ...

Learning

Learning just a bit.

Example: set of labelled points, find hyperplane that separates.

+ −
+

−
+

−

−
+−

+

−

+

Looks hard.

1/2 of them? Easy.
Arbitrary line. And Scan.

Useless. A bit more than 1/2 Correct would be better.

Weak Learner: Classify ≥ 1
2 + ε points correctly.

Not really important but ...

Weak Learner/Strong Learner

Input: n labelled points.

Weak Learner:
produce hypothesis correctly classifies 1

2 + ε fraction

Strong Learner:
produce hyp. correctly classifies 1+µ fraction

That’s a really strong learner!
Strong Learner:

produce hypothesis correctly classifies 1−µ fraction

Same thing?

Can one use weak learning to produce strong learner?

Boosting: use a weak learner to produce strong learner.

Weak Learner/Strong Learner

Input: n labelled points.

Weak Learner:

produce hypothesis correctly classifies 1
2 + ε fraction

Strong Learner:
produce hyp. correctly classifies 1+µ fraction

That’s a really strong learner!
Strong Learner:

produce hypothesis correctly classifies 1−µ fraction

Same thing?

Can one use weak learning to produce strong learner?

Boosting: use a weak learner to produce strong learner.

Weak Learner/Strong Learner

Input: n labelled points.

Weak Learner:
produce hypothesis correctly classifies 1

2 + ε fraction

Strong Learner:
produce hyp. correctly classifies 1+µ fraction

That’s a really strong learner!
Strong Learner:

produce hypothesis correctly classifies 1−µ fraction

Same thing?

Can one use weak learning to produce strong learner?

Boosting: use a weak learner to produce strong learner.

Weak Learner/Strong Learner

Input: n labelled points.

Weak Learner:
produce hypothesis correctly classifies 1

2 + ε fraction

Strong Learner:

produce hyp. correctly classifies 1+µ fraction
That’s a really strong learner!

Strong Learner:
produce hypothesis correctly classifies 1−µ fraction

Same thing?

Can one use weak learning to produce strong learner?

Boosting: use a weak learner to produce strong learner.

Weak Learner/Strong Learner

Input: n labelled points.

Weak Learner:
produce hypothesis correctly classifies 1

2 + ε fraction

Strong Learner:
produce hyp. correctly classifies 1+µ fraction

That’s a really strong learner!
Strong Learner:

produce hypothesis correctly classifies 1−µ fraction

Same thing?

Can one use weak learning to produce strong learner?

Boosting: use a weak learner to produce strong learner.

Weak Learner/Strong Learner

Input: n labelled points.

Weak Learner:
produce hypothesis correctly classifies 1

2 + ε fraction

Strong Learner:
produce hyp. correctly classifies 1+µ fraction

That’s a really strong learner!

Strong Learner:
produce hypothesis correctly classifies 1−µ fraction

Same thing?

Can one use weak learning to produce strong learner?

Boosting: use a weak learner to produce strong learner.

Weak Learner/Strong Learner

Input: n labelled points.

Weak Learner:
produce hypothesis correctly classifies 1

2 + ε fraction

Strong Learner:
produce hyp. correctly classifies 1+µ fraction

produce hyp.
correctly classifies 1+µ fraction

That’s a really strong learner!

Strong Learner:

produce hypothesis correctly classifies 1−µ fraction

Same thing?

Can one use weak learning to produce strong learner?

Boosting: use a weak learner to produce strong learner.

Weak Learner/Strong Learner

Input: n labelled points.

Weak Learner:
produce hypothesis correctly classifies 1

2 + ε fraction

Strong Learner:
produce hyp. correctly classifies 1+µ fraction

produce hyp.
correctly classifies 1+µ fraction

That’s a really strong learner!

Strong Learner:
produce hypothesis correctly classifies 1−µ fraction

Same thing?

Can one use weak learning to produce strong learner?

Boosting: use a weak learner to produce strong learner.

Weak Learner/Strong Learner

Input: n labelled points.

Weak Learner:
produce hypothesis correctly classifies 1

2 + ε fraction

Strong Learner:
produce hyp. correctly classifies 1+µ fraction

produce hyp.
correctly classifies 1+µ fraction

That’s a really strong learner!

Strong Learner:
produce hypothesis correctly classifies 1−µ fraction

Same thing?

Can one use weak learning to produce strong learner?

Boosting: use a weak learner to produce strong learner.

Weak Learner/Strong Learner

Input: n labelled points.

Weak Learner:
produce hypothesis correctly classifies 1

2 + ε fraction

Strong Learner:
produce hyp. correctly classifies 1+µ fraction

produce hyp.
correctly classifies 1+µ fraction

That’s a really strong learner!

Strong Learner:
produce hypothesis correctly classifies 1−µ fraction

Same thing?

Can one use weak learning to produce strong learner?

Boosting: use a weak learner to produce strong learner.

Weak Learner/Strong Learner

Input: n labelled points.

Weak Learner:
produce hypothesis correctly classifies 1

2 + ε fraction

Strong Learner:
produce hyp. correctly classifies 1+µ fraction

produce hyp.
correctly classifies 1+µ fraction

That’s a really strong learner!

Strong Learner:
produce hypothesis correctly classifies 1−µ fraction

Same thing?

Can one use weak learning to produce strong learner?

Boosting: use a weak learner to produce strong learner.

Poll.

Given a weak learning method (produce ok hypotheses.)

produce a great hypothesis.

Can we do this?

(A) Yes

(B) No

If yes. How?

The idea: Multiplicative Weights.
Standard online optimization method reinvented in many areas.

Poll.

Given a weak learning method (produce ok hypotheses.)
produce a great hypothesis.

Can we do this?

(A) Yes

(B) No

If yes. How?

The idea: Multiplicative Weights.
Standard online optimization method reinvented in many areas.

Poll.

Given a weak learning method (produce ok hypotheses.)
produce a great hypothesis.

Can we do this?

(A) Yes

(B) No

If yes. How?

The idea: Multiplicative Weights.
Standard online optimization method reinvented in many areas.

Poll.

Given a weak learning method (produce ok hypotheses.)
produce a great hypothesis.

Can we do this?

(A) Yes

(B) No

If yes. How?

The idea: Multiplicative Weights.
Standard online optimization method reinvented in many areas.

Poll.

Given a weak learning method (produce ok hypotheses.)
produce a great hypothesis.

Can we do this?

(A) Yes

(B) No

If yes.

How?

The idea: Multiplicative Weights.
Standard online optimization method reinvented in many areas.

Poll.

Given a weak learning method (produce ok hypotheses.)
produce a great hypothesis.

Can we do this?

(A) Yes

(B) No

If yes. How?

The idea: Multiplicative Weights.
Standard online optimization method reinvented in many areas.

Poll.

Given a weak learning method (produce ok hypotheses.)
produce a great hypothesis.

Can we do this?

(A) Yes

(B) No

If yes. How?

The idea: Multiplicative Weights.

Standard online optimization method reinvented in many areas.

Poll.

Given a weak learning method (produce ok hypotheses.)
produce a great hypothesis.

Can we do this?

(A) Yes

(B) No

If yes. How?

The idea: Multiplicative Weights.
Standard online optimization method reinvented in many areas.

Boosting/MW Framework

Points lose when classified correctly.
The little devils want to fool the learner.

Learner classifies weighted majority of points correctly.

Strong learner algorithm from many weak learners!

Initialize: all points have weight 1.

Do T = 2
ε2 ln

1
µ

rounds

1. Find ht(·) correct on 1/2+ γ of weighted points.
2. Multiply each point that is correct by (1− ε).

Output hypotheses h(x): majority of h1(x),h2(x), . . . ,hT (x).

Claim: h(x) is correct on 1−µ of the points ! ! !

Cool!

Really? Proof?

Boosting/MW Framework

Points lose when classified correctly.

The little devils want to fool the learner.

Learner classifies weighted majority of points correctly.

Strong learner algorithm from many weak learners!

Initialize: all points have weight 1.

Do T = 2
ε2 ln

1
µ

rounds

1. Find ht(·) correct on 1/2+ γ of weighted points.
2. Multiply each point that is correct by (1− ε).

Output hypotheses h(x): majority of h1(x),h2(x), . . . ,hT (x).

Claim: h(x) is correct on 1−µ of the points ! ! !

Cool!

Really? Proof?

Boosting/MW Framework

Points lose when classified correctly.
The little devils want to fool the learner.

Learner classifies weighted majority of points correctly.

Strong learner algorithm from many weak learners!

Initialize: all points have weight 1.

Do T = 2
ε2 ln

1
µ

rounds

1. Find ht(·) correct on 1/2+ γ of weighted points.
2. Multiply each point that is correct by (1− ε).

Output hypotheses h(x): majority of h1(x),h2(x), . . . ,hT (x).

Claim: h(x) is correct on 1−µ of the points ! ! !

Cool!

Really? Proof?

Boosting/MW Framework

Points lose when classified correctly.
The little devils want to fool the learner.

Learner classifies weighted majority of points correctly.

Strong learner algorithm from many weak learners!

Initialize: all points have weight 1.

Do T = 2
ε2 ln

1
µ

rounds

1. Find ht(·) correct on 1/2+ γ of weighted points.
2. Multiply each point that is correct by (1− ε).

Output hypotheses h(x): majority of h1(x),h2(x), . . . ,hT (x).

Claim: h(x) is correct on 1−µ of the points ! ! !

Cool!

Really? Proof?

Boosting/MW Framework

Points lose when classified correctly.
The little devils want to fool the learner.

Learner classifies weighted majority of points correctly.

Strong learner algorithm from many weak learners!

Initialize: all points have weight 1.

Do T = 2
ε2 ln

1
µ

rounds

1. Find ht(·) correct on 1/2+ γ of weighted points.
2. Multiply each point that is correct by (1− ε).

Output hypotheses h(x): majority of h1(x),h2(x), . . . ,hT (x).

Claim: h(x) is correct on 1−µ of the points ! ! !

Cool!

Really? Proof?

Boosting/MW Framework

Points lose when classified correctly.
The little devils want to fool the learner.

Learner classifies weighted majority of points correctly.

Strong learner algorithm from many weak learners!

Initialize: all points have weight 1.

Do T = 2
ε2 ln

1
µ

rounds

1. Find ht(·) correct on 1/2+ γ of weighted points.
2. Multiply each point that is correct by (1− ε).

Output hypotheses h(x): majority of h1(x),h2(x), . . . ,hT (x).

Claim: h(x) is correct on 1−µ of the points ! ! !

Cool!

Really? Proof?

Boosting/MW Framework

Points lose when classified correctly.
The little devils want to fool the learner.

Learner classifies weighted majority of points correctly.

Strong learner algorithm from many weak learners!

Initialize: all points have weight 1.

Do T = 2
ε2 ln

1
µ

rounds

1. Find ht(·) correct on 1/2+ γ of weighted points.
2. Multiply each point that is correct by (1− ε).

Output hypotheses h(x): majority of h1(x),h2(x), . . . ,hT (x).

Claim: h(x) is correct on 1−µ of the points ! ! !

Cool!

Really? Proof?

Boosting/MW Framework

Points lose when classified correctly.
The little devils want to fool the learner.

Learner classifies weighted majority of points correctly.

Strong learner algorithm from many weak learners!

Initialize: all points have weight 1.

Do T = 2
ε2 ln

1
µ

rounds

1. Find ht(·) correct on 1/2+ γ of weighted points.
2. Multiply each point that is correct by (1− ε).

Output hypotheses h(x): majority of h1(x),h2(x), . . . ,hT (x).

Claim: h(x) is correct on 1−µ of the points ! ! !

Cool!

Really? Proof?

Boosting/MW Framework

Points lose when classified correctly.
The little devils want to fool the learner.

Learner classifies weighted majority of points correctly.

Strong learner algorithm from many weak learners!

Initialize: all points have weight 1.

Do T = 2
ε2 ln

1
µ

rounds

1. Find ht(·) correct on 1/2+ γ of weighted points.

2. Multiply each point that is correct by (1− ε).

Output hypotheses h(x): majority of h1(x),h2(x), . . . ,hT (x).

Claim: h(x) is correct on 1−µ of the points ! ! !

Cool!

Really? Proof?

Boosting/MW Framework

Points lose when classified correctly.
The little devils want to fool the learner.

Learner classifies weighted majority of points correctly.

Strong learner algorithm from many weak learners!

Initialize: all points have weight 1.

Do T = 2
ε2 ln

1
µ

rounds

1. Find ht(·) correct on 1/2+ γ of weighted points.
2. Multiply each point that is correct by (1− ε).

Output hypotheses h(x): majority of h1(x),h2(x), . . . ,hT (x).

Claim: h(x) is correct on 1−µ of the points ! ! !

Cool!

Really? Proof?

Boosting/MW Framework

Points lose when classified correctly.
The little devils want to fool the learner.

Learner classifies weighted majority of points correctly.

Strong learner algorithm from many weak learners!

Initialize: all points have weight 1.

Do T = 2
ε2 ln

1
µ

rounds

1. Find ht(·) correct on 1/2+ γ of weighted points.
2. Multiply each point that is correct by (1− ε).

Output hypotheses h(x): majority of h1(x),h2(x), . . . ,hT (x).

Claim: h(x) is correct on 1−µ of the points ! ! !

Cool!

Really? Proof?

Boosting/MW Framework

Points lose when classified correctly.
The little devils want to fool the learner.

Learner classifies weighted majority of points correctly.

Strong learner algorithm from many weak learners!

Initialize: all points have weight 1.

Do T = 2
ε2 ln

1
µ

rounds

1. Find ht(·) correct on 1/2+ γ of weighted points.
2. Multiply each point that is correct by (1− ε).

Output hypotheses h(x):

majority of h1(x),h2(x), . . . ,hT (x).

Claim: h(x) is correct on 1−µ of the points ! ! !

Cool!

Really? Proof?

Boosting/MW Framework

Points lose when classified correctly.
The little devils want to fool the learner.

Learner classifies weighted majority of points correctly.

Strong learner algorithm from many weak learners!

Initialize: all points have weight 1.

Do T = 2
ε2 ln

1
µ

rounds

1. Find ht(·) correct on 1/2+ γ of weighted points.
2. Multiply each point that is correct by (1− ε).

Output hypotheses h(x): majority of h1(x),h2(x), . . . ,hT (x).

Claim: h(x) is correct on 1−µ of the points ! ! !

Cool!

Really? Proof?

Boosting/MW Framework

Points lose when classified correctly.
The little devils want to fool the learner.

Learner classifies weighted majority of points correctly.

Strong learner algorithm from many weak learners!

Initialize: all points have weight 1.

Do T = 2
ε2 ln

1
µ

rounds

1. Find ht(·) correct on 1/2+ γ of weighted points.
2. Multiply each point that is correct by (1− ε).

Output hypotheses h(x): majority of h1(x),h2(x), . . . ,hT (x).

Claim: h(x) is correct on 1−µ of the points

! ! !

Cool!

Really? Proof?

Boosting/MW Framework

Points lose when classified correctly.
The little devils want to fool the learner.

Learner classifies weighted majority of points correctly.

Strong learner algorithm from many weak learners!

Initialize: all points have weight 1.

Do T = 2
ε2 ln

1
µ

rounds

1. Find ht(·) correct on 1/2+ γ of weighted points.
2. Multiply each point that is correct by (1− ε).

Output hypotheses h(x): majority of h1(x),h2(x), . . . ,hT (x).

Claim: h(x) is correct on 1−µ of the points !

! !

Cool!

Really? Proof?

Boosting/MW Framework

Points lose when classified correctly.
The little devils want to fool the learner.

Learner classifies weighted majority of points correctly.

Strong learner algorithm from many weak learners!

Initialize: all points have weight 1.

Do T = 2
ε2 ln

1
µ

rounds

1. Find ht(·) correct on 1/2+ γ of weighted points.
2. Multiply each point that is correct by (1− ε).

Output hypotheses h(x): majority of h1(x),h2(x), . . . ,hT (x).

Claim: h(x) is correct on 1−µ of the points ! !

!

Cool!

Really? Proof?

Boosting/MW Framework

Points lose when classified correctly.
The little devils want to fool the learner.

Learner classifies weighted majority of points correctly.

Strong learner algorithm from many weak learners!

Initialize: all points have weight 1.

Do T = 2
ε2 ln

1
µ

rounds

1. Find ht(·) correct on 1/2+ γ of weighted points.
2. Multiply each point that is correct by (1− ε).

Output hypotheses h(x): majority of h1(x),h2(x), . . . ,hT (x).

Claim: h(x) is correct on 1−µ of the points ! ! !

Cool!

Really? Proof?

Boosting/MW Framework

Points lose when classified correctly.
The little devils want to fool the learner.

Learner classifies weighted majority of points correctly.

Strong learner algorithm from many weak learners!

Initialize: all points have weight 1.

Do T = 2
ε2 ln

1
µ

rounds

1. Find ht(·) correct on 1/2+ γ of weighted points.
2. Multiply each point that is correct by (1− ε).

Output hypotheses h(x): majority of h1(x),h2(x), . . . ,hT (x).

Claim: h(x) is correct on 1−µ of the points ! ! !

Cool!

Really? Proof?

Boosting/MW Framework

Points lose when classified correctly.
The little devils want to fool the learner.

Learner classifies weighted majority of points correctly.

Strong learner algorithm from many weak learners!

Initialize: all points have weight 1.

Do T = 2
ε2 ln

1
µ

rounds

1. Find ht(·) correct on 1/2+ γ of weighted points.
2. Multiply each point that is correct by (1− ε).

Output hypotheses h(x): majority of h1(x),h2(x), . . . ,hT (x).

Claim: h(x) is correct on 1−µ of the points ! ! !

Cool!

Really?

Proof?

Boosting/MW Framework

Points lose when classified correctly.
The little devils want to fool the learner.

Learner classifies weighted majority of points correctly.

Strong learner algorithm from many weak learners!

Initialize: all points have weight 1.

Do T = 2
ε2 ln

1
µ

rounds

1. Find ht(·) correct on 1/2+ γ of weighted points.
2. Multiply each point that is correct by (1− ε).

Output hypotheses h(x): majority of h1(x),h2(x), . . . ,hT (x).

Claim: h(x) is correct on 1−µ of the points ! ! !

Cool!

Really? Proof?

Logarithm

ln(1−x) = (−x−x2/2−x3/3....) Taylors formula for |x |< 1.

Implies: for x ≤ 1/2, that −x−x2 ≤ ln(1−x)≤−x .

The first inequality is from geometric series.

x3/3+ ...= x2(x/3+x2/4+ ..)≤ x2(1/2) for |x |< 1/2.

The second is from truncation.

Second implies: (1− ε)x ≤ e−εx , by exponentiation.

Logarithm

ln(1−x) = (−x−x2/2−x3/3....) Taylors formula for |x |< 1.

Implies: for x ≤ 1/2, that −x−x2 ≤ ln(1−x)≤−x .

The first inequality is from geometric series.

x3/3+ ...= x2(x/3+x2/4+ ..)≤ x2(1/2) for |x |< 1/2.

The second is from truncation.

Second implies: (1− ε)x ≤ e−εx , by exponentiation.

Logarithm

ln(1−x) = (−x−x2/2−x3/3....) Taylors formula for |x |< 1.

Implies: for x ≤ 1/2, that −x−x2 ≤ ln(1−x)≤−x .

The first inequality is from geometric series.

x3/3+ ...= x2(x/3+x2/4+ ..)≤ x2(1/2) for |x |< 1/2.

The second is from truncation.

Second implies: (1− ε)x ≤ e−εx , by exponentiation.

Logarithm

ln(1−x) = (−x−x2/2−x3/3....) Taylors formula for |x |< 1.

Implies: for x ≤ 1/2, that −x−x2 ≤ ln(1−x)≤−x .

The first inequality is from geometric series.

x3/3+ ...= x2(x/3+x2/4+ ..)

≤ x2(1/2) for |x |< 1/2.

The second is from truncation.

Second implies: (1− ε)x ≤ e−εx , by exponentiation.

Logarithm

ln(1−x) = (−x−x2/2−x3/3....) Taylors formula for |x |< 1.

Implies: for x ≤ 1/2, that −x−x2 ≤ ln(1−x)≤−x .

The first inequality is from geometric series.

x3/3+ ...= x2(x/3+x2/4+ ..)≤ x2(1/2) for |x |< 1/2.

The second is from truncation.

Second implies: (1− ε)x ≤ e−εx , by exponentiation.

Logarithm

ln(1−x) = (−x−x2/2−x3/3....) Taylors formula for |x |< 1.

Implies: for x ≤ 1/2, that −x−x2 ≤ ln(1−x)≤−x .

The first inequality is from geometric series.

x3/3+ ...= x2(x/3+x2/4+ ..)≤ x2(1/2) for |x |< 1/2.

The second is from truncation.

Second implies: (1− ε)x ≤ e−εx , by exponentiation.

Logarithm

ln(1−x) = (−x−x2/2−x3/3....) Taylors formula for |x |< 1.

Implies: for x ≤ 1/2, that −x−x2 ≤ ln(1−x)≤−x .

The first inequality is from geometric series.

x3/3+ ...= x2(x/3+x2/4+ ..)≤ x2(1/2) for |x |< 1/2.

The second is from truncation.

Second implies: (1− ε)x ≤ e−εx , by exponentiation.

Adaboost proof.

Claim: h(x) is correct on 1−µ of the points!

Let Sbad be the set of points where h(x) is incorrect.

majority of ht(x) are wrong for x ∈ Sbad .

point x ∈ Sbad is winning – loses less than 1
2 the time.

W (T)≥ (1− ε)
T
2 |Sbad |

Each day t , weak learner penalizes ≥ 1
2 + γ of the weight.

Loss Lt ≥ (1/2+ γ)

→W (t +1)≤W (t)(1− ε(Lt))≤W (t)e−εLt

→W (T)≤ ne−ε ∑t Lt ≤ ne−ε(1
2+γ)T

Combining

|Sbad |(1− ε)T/2 ≤W (T)≤ ne−ε(1
2+γ)T

Adaboost proof.

Claim: h(x) is correct on 1−µ of the points!

Let Sbad be the set of points where h(x) is incorrect.

majority of ht(x) are wrong for x ∈ Sbad .

point x ∈ Sbad is winning – loses less than 1
2 the time.

W (T)≥ (1− ε)
T
2 |Sbad |

Each day t , weak learner penalizes ≥ 1
2 + γ of the weight.

Loss Lt ≥ (1/2+ γ)

→W (t +1)≤W (t)(1− ε(Lt))≤W (t)e−εLt

→W (T)≤ ne−ε ∑t Lt ≤ ne−ε(1
2+γ)T

Combining

|Sbad |(1− ε)T/2 ≤W (T)≤ ne−ε(1
2+γ)T

Adaboost proof.

Claim: h(x) is correct on 1−µ of the points!

Let Sbad be the set of points where h(x) is incorrect.

majority of ht(x) are wrong for x ∈ Sbad .

point x ∈ Sbad is winning – loses less than 1
2 the time.

W (T)≥ (1− ε)
T
2 |Sbad |

Each day t , weak learner penalizes ≥ 1
2 + γ of the weight.

Loss Lt ≥ (1/2+ γ)

→W (t +1)≤W (t)(1− ε(Lt))≤W (t)e−εLt

→W (T)≤ ne−ε ∑t Lt ≤ ne−ε(1
2+γ)T

Combining

|Sbad |(1− ε)T/2 ≤W (T)≤ ne−ε(1
2+γ)T

Adaboost proof.

Claim: h(x) is correct on 1−µ of the points!

Let Sbad be the set of points where h(x) is incorrect.

majority of ht(x) are wrong for x ∈ Sbad .

point x ∈ Sbad is winning

– loses less than 1
2 the time.

W (T)≥ (1− ε)
T
2 |Sbad |

Each day t , weak learner penalizes ≥ 1
2 + γ of the weight.

Loss Lt ≥ (1/2+ γ)

→W (t +1)≤W (t)(1− ε(Lt))≤W (t)e−εLt

→W (T)≤ ne−ε ∑t Lt ≤ ne−ε(1
2+γ)T

Combining

|Sbad |(1− ε)T/2 ≤W (T)≤ ne−ε(1
2+γ)T

Adaboost proof.

Claim: h(x) is correct on 1−µ of the points!

Let Sbad be the set of points where h(x) is incorrect.

majority of ht(x) are wrong for x ∈ Sbad .

point x ∈ Sbad is winning – loses less than 1
2 the time.

W (T)≥ (1− ε)
T
2 |Sbad |

Each day t , weak learner penalizes ≥ 1
2 + γ of the weight.

Loss Lt ≥ (1/2+ γ)

→W (t +1)≤W (t)(1− ε(Lt))≤W (t)e−εLt

→W (T)≤ ne−ε ∑t Lt ≤ ne−ε(1
2+γ)T

Combining

|Sbad |(1− ε)T/2 ≤W (T)≤ ne−ε(1
2+γ)T

Adaboost proof.

Claim: h(x) is correct on 1−µ of the points!

Let Sbad be the set of points where h(x) is incorrect.

majority of ht(x) are wrong for x ∈ Sbad .

point x ∈ Sbad is winning – loses less than 1
2 the time.

W (T)≥ (1− ε)
T
2 |Sbad |

Each day t , weak learner penalizes ≥ 1
2 + γ of the weight.

Loss Lt ≥ (1/2+ γ)

→W (t +1)≤W (t)(1− ε(Lt))≤W (t)e−εLt

→W (T)≤ ne−ε ∑t Lt ≤ ne−ε(1
2+γ)T

Combining

|Sbad |(1− ε)T/2 ≤W (T)≤ ne−ε(1
2+γ)T

Adaboost proof.

Claim: h(x) is correct on 1−µ of the points!

Let Sbad be the set of points where h(x) is incorrect.

majority of ht(x) are wrong for x ∈ Sbad .

point x ∈ Sbad is winning – loses less than 1
2 the time.

W (T)≥ (1− ε)
T
2 |Sbad |

Each day t , weak learner penalizes ≥ 1
2 + γ of the weight.

Loss Lt ≥ (1/2+ γ)

→W (t +1)≤W (t)(1− ε(Lt))≤W (t)e−εLt

→W (T)≤ ne−ε ∑t Lt ≤ ne−ε(1
2+γ)T

Combining

|Sbad |(1− ε)T/2 ≤W (T)≤ ne−ε(1
2+γ)T

Adaboost proof.

Claim: h(x) is correct on 1−µ of the points!

Let Sbad be the set of points where h(x) is incorrect.

majority of ht(x) are wrong for x ∈ Sbad .

point x ∈ Sbad is winning – loses less than 1
2 the time.

W (T)≥ (1− ε)
T
2 |Sbad |

Each day t , weak learner penalizes ≥ 1
2 + γ of the weight.

Loss Lt ≥ (1/2+ γ)

→W (t +1)≤W (t)(1− ε(Lt))≤W (t)e−εLt

→W (T)≤ ne−ε ∑t Lt ≤ ne−ε(1
2+γ)T

Combining

|Sbad |(1− ε)T/2 ≤W (T)≤ ne−ε(1
2+γ)T

Adaboost proof.

Claim: h(x) is correct on 1−µ of the points!

Let Sbad be the set of points where h(x) is incorrect.

majority of ht(x) are wrong for x ∈ Sbad .

point x ∈ Sbad is winning – loses less than 1
2 the time.

W (T)≥ (1− ε)
T
2 |Sbad |

Each day t , weak learner penalizes ≥ 1
2 + γ of the weight.

Loss Lt ≥ (1/2+ γ)

→W (t +1)≤W (t)(1− ε(Lt))≤W (t)e−εLt

→W (T)≤ ne−ε ∑t Lt ≤ ne−ε(1
2+γ)T

Combining

|Sbad |(1− ε)T/2 ≤W (T)≤ ne−ε(1
2+γ)T

Adaboost proof.

Claim: h(x) is correct on 1−µ of the points!

Let Sbad be the set of points where h(x) is incorrect.

majority of ht(x) are wrong for x ∈ Sbad .

point x ∈ Sbad is winning – loses less than 1
2 the time.

W (T)≥ (1− ε)
T
2 |Sbad |

Each day t , weak learner penalizes ≥ 1
2 + γ of the weight.

Loss Lt ≥ (1/2+ γ)

→W (t +1)≤W (t)(1− ε(Lt))≤W (t)e−εLt

→

W (T)≤ ne−ε ∑t Lt ≤ ne−ε(1
2+γ)T

Combining

|Sbad |(1− ε)T/2 ≤W (T)≤ ne−ε(1
2+γ)T

Adaboost proof.

Claim: h(x) is correct on 1−µ of the points!

Let Sbad be the set of points where h(x) is incorrect.

majority of ht(x) are wrong for x ∈ Sbad .

point x ∈ Sbad is winning – loses less than 1
2 the time.

W (T)≥ (1− ε)
T
2 |Sbad |

Each day t , weak learner penalizes ≥ 1
2 + γ of the weight.

Loss Lt ≥ (1/2+ γ)

→W (t +1)≤W (t)(1− ε(Lt))≤W (t)e−εLt

→W (T)≤ ne−ε ∑t Lt

≤ ne−ε(1
2+γ)T

Combining

|Sbad |(1− ε)T/2 ≤W (T)≤ ne−ε(1
2+γ)T

Adaboost proof.

Claim: h(x) is correct on 1−µ of the points!

Let Sbad be the set of points where h(x) is incorrect.

majority of ht(x) are wrong for x ∈ Sbad .

point x ∈ Sbad is winning – loses less than 1
2 the time.

W (T)≥ (1− ε)
T
2 |Sbad |

Each day t , weak learner penalizes ≥ 1
2 + γ of the weight.

Loss Lt ≥ (1/2+ γ)

→W (t +1)≤W (t)(1− ε(Lt))≤W (t)e−εLt

→W (T)≤ ne−ε ∑t Lt ≤ ne−ε(1
2+γ)T

Combining

|Sbad |(1− ε)T/2 ≤W (T)≤ ne−ε(1
2+γ)T

Adaboost proof.

Claim: h(x) is correct on 1−µ of the points!

Let Sbad be the set of points where h(x) is incorrect.

majority of ht(x) are wrong for x ∈ Sbad .

point x ∈ Sbad is winning – loses less than 1
2 the time.

W (T)≥ (1− ε)
T
2 |Sbad |

Each day t , weak learner penalizes ≥ 1
2 + γ of the weight.

Loss Lt ≥ (1/2+ γ)

→W (t +1)≤W (t)(1− ε(Lt))≤W (t)e−εLt

→W (T)≤ ne−ε ∑t Lt ≤ ne−ε(1
2+γ)T

Combining

|Sbad |(1− ε)T/2 ≤W (T)≤ ne−ε(1
2+γ)T

Adaboost proof.

Claim: h(x) is correct on 1−µ of the points!

Let Sbad be the set of points where h(x) is incorrect.

majority of ht(x) are wrong for x ∈ Sbad .

point x ∈ Sbad is winning – loses less than 1
2 the time.

W (T)≥ (1− ε)
T
2 |Sbad |

Each day t , weak learner penalizes ≥ 1
2 + γ of the weight.

Loss Lt ≥ (1/2+ γ)

→W (t +1)≤W (t)(1− ε(Lt))≤W (t)e−εLt

→W (T)≤ ne−ε ∑t Lt ≤ ne−ε(1
2+γ)T

Combining

|Sbad |(1− ε)T/2 ≤W (T)≤ ne−ε(1
2+γ)T

Calculation..

|Sbad |(1− ε)T/2 ≤ ne−ε(1
2+γ)T

Set ε = γ, take logs.

ln
(
|Sbad |

n

)
+ T

2 ln(1− γ)≤−γT (1
2 + γ)

Again, −γ− γ2 ≤ ln(1− γ),

ln
(
|Sbad |

n

)
+ T

2 (−γ− γ2)≤−γT (1
2 + γ)→ ln

(
|Sbad |

n

)
≤− γ2T

2

And T = 2
γ2 logµ,

→ ln
(
|Sbad |

n

)
≤ logµ → |Sbad |

n ≤ µ.

The misclassified set is at most µ fraction of all the points.

The hypothesis correctly classifies 1−µ of the points !

Claim: Multiplicative weights: h(x) is correct on 1−µ of the points!

Calculation..

|Sbad |(1− ε)T/2 ≤ ne−ε(1
2+γ)T

Set ε = γ, take logs.

ln
(
|Sbad |

n

)
+ T

2 ln(1− γ)≤−γT (1
2 + γ)

Again, −γ− γ2 ≤ ln(1− γ),

ln
(
|Sbad |

n

)
+ T

2 (−γ− γ2)≤−γT (1
2 + γ)→ ln

(
|Sbad |

n

)
≤− γ2T

2

And T = 2
γ2 logµ,

→ ln
(
|Sbad |

n

)
≤ logµ → |Sbad |

n ≤ µ.

The misclassified set is at most µ fraction of all the points.

The hypothesis correctly classifies 1−µ of the points !

Claim: Multiplicative weights: h(x) is correct on 1−µ of the points!

Calculation..

|Sbad |(1− ε)T/2 ≤ ne−ε(1
2+γ)T

Set ε = γ, take logs.

ln
(
|Sbad |

n

)
+ T

2 ln(1− γ)≤−γT (1
2 + γ)

Again, −γ− γ2 ≤ ln(1− γ),

ln
(
|Sbad |

n

)
+ T

2 (−γ− γ2)≤−γT (1
2 + γ)→ ln

(
|Sbad |

n

)
≤− γ2T

2

And T = 2
γ2 logµ,

→ ln
(
|Sbad |

n

)
≤ logµ → |Sbad |

n ≤ µ.

The misclassified set is at most µ fraction of all the points.

The hypothesis correctly classifies 1−µ of the points !

Claim: Multiplicative weights: h(x) is correct on 1−µ of the points!

Calculation..

|Sbad |(1− ε)T/2 ≤ ne−ε(1
2+γ)T

Set ε = γ, take logs.

ln
(
|Sbad |

n

)
+ T

2 ln(1− γ)≤−γT (1
2 + γ)

Again, −γ− γ2 ≤ ln(1− γ),

ln
(
|Sbad |

n

)
+ T

2 (−γ− γ2)≤−γT (1
2 + γ)→ ln

(
|Sbad |

n

)
≤− γ2T

2

And T = 2
γ2 logµ,

→ ln
(
|Sbad |

n

)
≤ logµ → |Sbad |

n ≤ µ.

The misclassified set is at most µ fraction of all the points.

The hypothesis correctly classifies 1−µ of the points !

Claim: Multiplicative weights: h(x) is correct on 1−µ of the points!

Calculation..

|Sbad |(1− ε)T/2 ≤ ne−ε(1
2+γ)T

Set ε = γ, take logs.

ln
(
|Sbad |

n

)
+ T

2 ln(1− γ)≤−γT (1
2 + γ)

Again, −γ− γ2 ≤ ln(1− γ),

ln
(
|Sbad |

n

)
+ T

2 (−γ− γ2)≤−γT (1
2 + γ)

→ ln
(
|Sbad |

n

)
≤− γ2T

2

And T = 2
γ2 logµ,

→ ln
(
|Sbad |

n

)
≤ logµ → |Sbad |

n ≤ µ.

The misclassified set is at most µ fraction of all the points.

The hypothesis correctly classifies 1−µ of the points !

Claim: Multiplicative weights: h(x) is correct on 1−µ of the points!

Calculation..

|Sbad |(1− ε)T/2 ≤ ne−ε(1
2+γ)T

Set ε = γ, take logs.

ln
(
|Sbad |

n

)
+ T

2 ln(1− γ)≤−γT (1
2 + γ)

Again, −γ− γ2 ≤ ln(1− γ),

ln
(
|Sbad |

n

)
+ T

2 (−γ− γ2)≤−γT (1
2 + γ)→ ln

(
|Sbad |

n

)
≤− γ2T

2

And T = 2
γ2 logµ,

→ ln
(
|Sbad |

n

)
≤ logµ → |Sbad |

n ≤ µ.

The misclassified set is at most µ fraction of all the points.

The hypothesis correctly classifies 1−µ of the points !

Claim: Multiplicative weights: h(x) is correct on 1−µ of the points!

Calculation..

|Sbad |(1− ε)T/2 ≤ ne−ε(1
2+γ)T

Set ε = γ, take logs.

ln
(
|Sbad |

n

)
+ T

2 ln(1− γ)≤−γT (1
2 + γ)

Again, −γ− γ2 ≤ ln(1− γ),

ln
(
|Sbad |

n

)
+ T

2 (−γ− γ2)≤−γT (1
2 + γ)→ ln

(
|Sbad |

n

)
≤− γ2T

2

And T = 2
γ2 logµ,

→ ln
(
|Sbad |

n

)
≤ logµ → |Sbad |

n ≤ µ.

The misclassified set is at most µ fraction of all the points.

The hypothesis correctly classifies 1−µ of the points !

Claim: Multiplicative weights: h(x) is correct on 1−µ of the points!

Calculation..

|Sbad |(1− ε)T/2 ≤ ne−ε(1
2+γ)T

Set ε = γ, take logs.

ln
(
|Sbad |

n

)
+ T

2 ln(1− γ)≤−γT (1
2 + γ)

Again, −γ− γ2 ≤ ln(1− γ),

ln
(
|Sbad |

n

)
+ T

2 (−γ− γ2)≤−γT (1
2 + γ)→ ln

(
|Sbad |

n

)
≤− γ2T

2

And T = 2
γ2 logµ,

→ ln
(
|Sbad |

n

)
≤ logµ

→ |Sbad |
n ≤ µ.

The misclassified set is at most µ fraction of all the points.

The hypothesis correctly classifies 1−µ of the points !

Claim: Multiplicative weights: h(x) is correct on 1−µ of the points!

Calculation..

|Sbad |(1− ε)T/2 ≤ ne−ε(1
2+γ)T

Set ε = γ, take logs.

ln
(
|Sbad |

n

)
+ T

2 ln(1− γ)≤−γT (1
2 + γ)

Again, −γ− γ2 ≤ ln(1− γ),

ln
(
|Sbad |

n

)
+ T

2 (−γ− γ2)≤−γT (1
2 + γ)→ ln

(
|Sbad |

n

)
≤− γ2T

2

And T = 2
γ2 logµ,

→ ln
(
|Sbad |

n

)
≤ logµ → |Sbad |

n ≤ µ.

The misclassified set is at most µ fraction of all the points.

The hypothesis correctly classifies 1−µ of the points !

Claim: Multiplicative weights: h(x) is correct on 1−µ of the points!

Calculation..

|Sbad |(1− ε)T/2 ≤ ne−ε(1
2+γ)T

Set ε = γ, take logs.

ln
(
|Sbad |

n

)
+ T

2 ln(1− γ)≤−γT (1
2 + γ)

Again, −γ− γ2 ≤ ln(1− γ),

ln
(
|Sbad |

n

)
+ T

2 (−γ− γ2)≤−γT (1
2 + γ)→ ln

(
|Sbad |

n

)
≤− γ2T

2

And T = 2
γ2 logµ,

→ ln
(
|Sbad |

n

)
≤ logµ → |Sbad |

n ≤ µ.

The misclassified set is at most µ fraction of all the points.

The hypothesis correctly classifies 1−µ of the points !

Claim: Multiplicative weights: h(x) is correct on 1−µ of the points!

Calculation..

|Sbad |(1− ε)T/2 ≤ ne−ε(1
2+γ)T

Set ε = γ, take logs.

ln
(
|Sbad |

n

)
+ T

2 ln(1− γ)≤−γT (1
2 + γ)

Again, −γ− γ2 ≤ ln(1− γ),

ln
(
|Sbad |

n

)
+ T

2 (−γ− γ2)≤−γT (1
2 + γ)→ ln

(
|Sbad |

n

)
≤− γ2T

2

And T = 2
γ2 logµ,

→ ln
(
|Sbad |

n

)
≤ logµ → |Sbad |

n ≤ µ.

The misclassified set is at most µ fraction of all the points.

The hypothesis correctly classifies 1−µ of the points

!

Claim: Multiplicative weights: h(x) is correct on 1−µ of the points!

Calculation..

|Sbad |(1− ε)T/2 ≤ ne−ε(1
2+γ)T

Set ε = γ, take logs.

ln
(
|Sbad |

n

)
+ T

2 ln(1− γ)≤−γT (1
2 + γ)

Again, −γ− γ2 ≤ ln(1− γ),

ln
(
|Sbad |

n

)
+ T

2 (−γ− γ2)≤−γT (1
2 + γ)→ ln

(
|Sbad |

n

)
≤− γ2T

2

And T = 2
γ2 logµ,

→ ln
(
|Sbad |

n

)
≤ logµ → |Sbad |

n ≤ µ.

The misclassified set is at most µ fraction of all the points.

The hypothesis correctly classifies 1−µ of the points !

Claim: Multiplicative weights: h(x) is correct on 1−µ of the points!

Calculation..

|Sbad |(1− ε)T/2 ≤ ne−ε(1
2+γ)T

Set ε = γ, take logs.

ln
(
|Sbad |

n

)
+ T

2 ln(1− γ)≤−γT (1
2 + γ)

Again, −γ− γ2 ≤ ln(1− γ),

ln
(
|Sbad |

n

)
+ T

2 (−γ− γ2)≤−γT (1
2 + γ)→ ln

(
|Sbad |

n

)
≤− γ2T

2

And T = 2
γ2 logµ,

→ ln
(
|Sbad |

n

)
≤ logµ → |Sbad |

n ≤ µ.

The misclassified set is at most µ fraction of all the points.

The hypothesis correctly classifies 1−µ of the points !

Claim: Multiplicative weights: h(x) is correct on 1−µ of the points!

Calculation..

|Sbad |(1− ε)T/2 ≤ ne−ε(1
2+γ)T

Set ε = γ, take logs.

ln
(
|Sbad |

n

)
+ T

2 ln(1− γ)≤−γT (1
2 + γ)

Again, −γ− γ2 ≤ ln(1− γ),

ln
(
|Sbad |

n

)
+ T

2 (−γ− γ2)≤−γT (1
2 + γ)→ ln

(
|Sbad |

n

)
≤− γ2T

2

And T = 2
γ2 logµ,

→ ln
(
|Sbad |

n

)
≤ logµ → |Sbad |

n ≤ µ.

The misclassified set is at most µ fraction of all the points.

The hypothesis correctly classifies 1−µ of the points !

Claim: Multiplicative weights: h(x) is correct on 1−µ of the points!

Some details...

Weak learner learns over distributions of points not points.

Make copies of points to simulate distributions.

Used often in machine learning.
Blending learning methods.

Some details...

Weak learner learns over distributions of points not points.

Make copies of points to simulate distributions.

Used often in machine learning.
Blending learning methods.

Some details...

Weak learner learns over distributions of points not points.

Make copies of points to simulate distributions.

Used often in machine learning.

Blending learning methods.

Some details...

Weak learner learns over distributions of points not points.

Make copies of points to simulate distributions.

Used often in machine learning.
Blending learning methods.

