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Infallible expert.
One of the experts is infallible!

Your strategy?

Choose any expert that has not made a mistake!

How long to find perfect expert?

Maybe..never! Never see a mistake.

Better model?

How many mistakes could you make? Mistake Bound.

(A) 1

(B) 2

(C) logn

(D) n−1

Adversary designs setup to watch who you choose, and make that
expert make a mistake.

n−1!
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Concept Alert.

Note.

Adversary:
makes you want to look bad.
”You could have done so well”...
but you didn’t! ha..ha!

Analysis of Algorithms: do as well as possible!
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Back to mistake bound.

Infallible Experts.

Alg: Choose one of the perfect experts.

Mistake Bound: n−1
Lower bound: adversary argument.
Upper bound: every mistake finds fallible expert.

Better Algorithm?

Making decision, not trying to find expert!

Algorithm: Go with the majority of previously correct experts.

What you would do anyway!
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Alg 2: find majority of the perfect

How many mistakes could you make?

(A) 1

(B) 2

(C) logn

(D) n−1

At most logn!

When alg makes a mistake,
|“perfect” experts| drops by a factor of two.

Initially n perfect experts
mistake→ ≤ n/2 perfect experts
mistake→ ≤ n/4 perfect experts

...
mistake→ ≤ 1 perfect expert

≥ 1 perfect expert→ at most logn mistakes!
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Imperfect Experts

Goal?

Do as well as the best expert!

Algorithm. Suggestions?

Go with majority?

Penalize inaccurate experts?

Best expert is penalized the least.

1. Initially: wi = 1.

2. Predict with weighted majority of experts.

3. wi → wi/2 if wrong.



Imperfect Experts

Goal?

Do as well as the best expert!

Algorithm. Suggestions?

Go with majority?

Penalize inaccurate experts?

Best expert is penalized the least.

1. Initially: wi = 1.

2. Predict with weighted majority of experts.

3. wi → wi/2 if wrong.



Imperfect Experts

Goal?

Do as well as the best expert!

Algorithm.

Suggestions?

Go with majority?

Penalize inaccurate experts?

Best expert is penalized the least.

1. Initially: wi = 1.

2. Predict with weighted majority of experts.

3. wi → wi/2 if wrong.



Imperfect Experts

Goal?

Do as well as the best expert!

Algorithm. Suggestions?

Go with majority?

Penalize inaccurate experts?

Best expert is penalized the least.

1. Initially: wi = 1.

2. Predict with weighted majority of experts.

3. wi → wi/2 if wrong.



Imperfect Experts

Goal?

Do as well as the best expert!

Algorithm. Suggestions?

Go with majority?

Penalize inaccurate experts?

Best expert is penalized the least.

1. Initially: wi = 1.

2. Predict with weighted majority of experts.

3. wi → wi/2 if wrong.



Imperfect Experts

Goal?

Do as well as the best expert!

Algorithm. Suggestions?

Go with majority?

Penalize inaccurate experts?

Best expert is penalized the least.

1. Initially: wi = 1.

2. Predict with weighted majority of experts.

3. wi → wi/2 if wrong.



Imperfect Experts

Goal?

Do as well as the best expert!

Algorithm. Suggestions?

Go with majority?

Penalize inaccurate experts?

Best expert is penalized the least.

1. Initially: wi = 1.

2. Predict with weighted majority of experts.

3. wi → wi/2 if wrong.



Imperfect Experts

Goal?

Do as well as the best expert!

Algorithm. Suggestions?

Go with majority?

Penalize inaccurate experts?

Best expert is penalized the least.

1. Initially: wi = 1.

2. Predict with weighted majority of experts.

3. wi → wi/2 if wrong.



Imperfect Experts

Goal?

Do as well as the best expert!

Algorithm. Suggestions?

Go with majority?

Penalize inaccurate experts?

Best expert is penalized the least.

1. Initially: wi = 1.

2. Predict with weighted majority of experts.

3. wi → wi/2 if wrong.



Imperfect Experts

Goal?

Do as well as the best expert!

Algorithm. Suggestions?

Go with majority?

Penalize inaccurate experts?

Best expert is penalized the least.

1. Initially: wi = 1.

2. Predict with weighted majority of experts.

3. wi → wi/2 if wrong.



Imperfect Experts

Goal?

Do as well as the best expert!

Algorithm. Suggestions?

Go with majority?

Penalize inaccurate experts?

Best expert is penalized the least.

1. Initially: wi = 1.

2. Predict with weighted majority of experts.

3. wi → wi/2 if wrong.



Analysis: weighted majority

1. Initially: wi = 1.

2. Predict with
weighted
majority of
experts.

3. wi → wi/2 if
wrong.

Goal: Best expert makes m mistakes.

Potential function: ∑i wi . Initially n.

For best expert, b, wb ≥ 1
2m .

Each mistake:
total weight of incorrect experts reduced by
−1? −2? factor of 1

2?
each incorrect expert weight multiplied by 1

2 !
total weight decreases by

factor of 1
2? factor of 3

4?
mistake→ ≥ half weight with incorrect experts
(≥ 1

2 total.

Mistake→ potential function decreased by 3
4 .

=⇒ for M is number of mistakes that:

1
2m ≤∑

i
wi ≤

(
3
4

)M
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Analysis: continued.

1
2m ≤ ∑i wi ≤

(3
4

)M
n.

m - best expert mistakes M algorithm mistakes.

1
2m ≤

(3
4

)M
n.

Take log of both sides.

−m ≤−M log(4/3)+ logn.

Solve for M.
M ≤ (m+logn)/ log(4/3)≤ 2.4(m+logn)

Multiple by 1− ε for incorrect experts...

(1− ε)m ≤
(
1− ε

2

)M n.

Massage...

M ≤ 2(1+ ε)m+ 2 lnn
ε

Approaches a factor of two of best expert performance!
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Best Analysis?

Consider two experts: A,B

Bad example?

Which is worse?

(A) A correct even days, B correct odd days

(B) A correct first half of days, B correct second

Best expert peformance: T/2 mistakes.

Pattern (A): T −1 mistakes.

Factor of (almost) two worse!
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Randomization

!!!!

Better approach?

Use?

Randomization!

That is, choose expert i with prob ∝ wi

Bad example: A,B,A,B,A...

After a bit, A and B make nearly the same number of mistakes.

Choose each with approximately the same probabilty.

Make a mistake around 1/2 of the time.

Best expert makes T/2 mistakes.

Roughly optimal!
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Randomized analysis.

Some formulas:

For ε ≤ 1
2 ,x ∈ [0,1],

(1− ε)x ≤ (1− εx)

For ε ∈ [0, 1
2 ],

−ε− ε2 ≤ ln(1− ε)≤−ε

ε− ε2 ≤ ln(1+ ε)≤ ε

Proof Idea: ln(1+x) = x− x2

2 + x3

3 −·· ·
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Randomized algorithm
Expert i loses ℓt

i ∈ [0,1] in round t.

1. Initially wi = 1 for expert i .

2. Choose expert i with prob wi
W , W = ∑i wi .

3. wi ← wi(1− ε)ℓ
t
i

W (t) sum of wi at time t . W (0) = n

Best expert, b, loses L∗ total. →W (T )≥ wb ≥ (1− ε)L∗ .

Lt = ∑i
wi ℓ

t
i

W expected loss of alg. in time t .

Claim: W (t +1)≤W (t)(1− εLt) Loss→ weight loss.

Proof:
W (t +1) = ∑

i
(1− ε)ℓ

t
i wi ≤∑

i
(1− εℓt

i )wi = ∑
i

wi − ε ∑
i

wiℓ
t
i

= ∑
i

wi

(
1− ε

∑i wiℓ
t
i

∑i wi

)
= W (t)(1− εLt)



Randomized algorithm
Expert i loses ℓt

i ∈ [0,1] in round t.

1. Initially wi = 1 for expert i .

2. Choose expert i with prob wi
W , W = ∑i wi .

3. wi ← wi(1− ε)ℓ
t
i

W (t) sum of wi at time t . W (0) = n

Best expert, b, loses L∗ total. →W (T )≥ wb ≥ (1− ε)L∗ .

Lt = ∑i
wi ℓ

t
i

W expected loss of alg. in time t .

Claim: W (t +1)≤W (t)(1− εLt) Loss→ weight loss.

Proof:
W (t +1) = ∑

i
(1− ε)ℓ

t
i wi ≤∑

i
(1− εℓt

i )wi = ∑
i

wi − ε ∑
i

wiℓ
t
i

= ∑
i

wi

(
1− ε

∑i wiℓ
t
i

∑i wi

)
= W (t)(1− εLt)



Randomized algorithm
Expert i loses ℓt

i ∈ [0,1] in round t.

1. Initially wi = 1 for expert i .

2. Choose expert i with prob wi
W , W = ∑i wi .

3. wi ← wi(1− ε)ℓ
t
i

W (t) sum of wi at time t . W (0) = n

Best expert, b, loses L∗ total. →W (T )≥ wb ≥ (1− ε)L∗ .

Lt = ∑i
wi ℓ

t
i

W expected loss of alg. in time t .

Claim: W (t +1)≤W (t)(1− εLt) Loss→ weight loss.

Proof:
W (t +1) = ∑

i
(1− ε)ℓ

t
i wi ≤∑

i
(1− εℓt

i )wi = ∑
i

wi − ε ∑
i

wiℓ
t
i

= ∑
i

wi

(
1− ε

∑i wiℓ
t
i

∑i wi

)
= W (t)(1− εLt)



Randomized algorithm
Expert i loses ℓt

i ∈ [0,1] in round t.

1. Initially wi = 1 for expert i .

2. Choose expert i with prob wi
W , W = ∑i wi .

3. wi ← wi(1− ε)ℓ
t
i

W (t) sum of wi at time t . W (0) = n

Best expert, b, loses L∗ total. →W (T )≥ wb ≥ (1− ε)L∗ .

Lt = ∑i
wi ℓ

t
i

W expected loss of alg. in time t .

Claim: W (t +1)≤W (t)(1− εLt) Loss→ weight loss.

Proof:
W (t +1) = ∑

i
(1− ε)ℓ

t
i wi ≤∑

i
(1− εℓt

i )wi = ∑
i

wi − ε ∑
i

wiℓ
t
i

= ∑
i

wi

(
1− ε

∑i wiℓ
t
i

∑i wi

)
= W (t)(1− εLt)



Randomized algorithm
Expert i loses ℓt

i ∈ [0,1] in round t.

1. Initially wi = 1 for expert i .

2. Choose expert i with prob wi
W , W = ∑i wi .

3. wi ← wi(1− ε)ℓ
t
i

W (t) sum of wi at time t .

W (0) = n

Best expert, b, loses L∗ total. →W (T )≥ wb ≥ (1− ε)L∗ .

Lt = ∑i
wi ℓ

t
i

W expected loss of alg. in time t .

Claim: W (t +1)≤W (t)(1− εLt) Loss→ weight loss.

Proof:
W (t +1) = ∑

i
(1− ε)ℓ

t
i wi ≤∑

i
(1− εℓt

i )wi = ∑
i

wi − ε ∑
i

wiℓ
t
i

= ∑
i

wi

(
1− ε

∑i wiℓ
t
i

∑i wi

)
= W (t)(1− εLt)



Randomized algorithm
Expert i loses ℓt

i ∈ [0,1] in round t.

1. Initially wi = 1 for expert i .

2. Choose expert i with prob wi
W , W = ∑i wi .

3. wi ← wi(1− ε)ℓ
t
i

W (t) sum of wi at time t . W (0) =

n

Best expert, b, loses L∗ total. →W (T )≥ wb ≥ (1− ε)L∗ .

Lt = ∑i
wi ℓ

t
i

W expected loss of alg. in time t .

Claim: W (t +1)≤W (t)(1− εLt) Loss→ weight loss.

Proof:
W (t +1) = ∑

i
(1− ε)ℓ

t
i wi ≤∑

i
(1− εℓt

i )wi = ∑
i

wi − ε ∑
i

wiℓ
t
i

= ∑
i

wi

(
1− ε

∑i wiℓ
t
i

∑i wi

)
= W (t)(1− εLt)



Randomized algorithm
Expert i loses ℓt

i ∈ [0,1] in round t.

1. Initially wi = 1 for expert i .

2. Choose expert i with prob wi
W , W = ∑i wi .

3. wi ← wi(1− ε)ℓ
t
i

W (t) sum of wi at time t . W (0) = n

Best expert, b, loses L∗ total. →W (T )≥ wb ≥ (1− ε)L∗ .

Lt = ∑i
wi ℓ

t
i

W expected loss of alg. in time t .

Claim: W (t +1)≤W (t)(1− εLt) Loss→ weight loss.

Proof:
W (t +1) = ∑

i
(1− ε)ℓ

t
i wi ≤∑

i
(1− εℓt

i )wi = ∑
i

wi − ε ∑
i

wiℓ
t
i

= ∑
i

wi

(
1− ε

∑i wiℓ
t
i

∑i wi

)
= W (t)(1− εLt)



Randomized algorithm
Expert i loses ℓt

i ∈ [0,1] in round t.

1. Initially wi = 1 for expert i .

2. Choose expert i with prob wi
W , W = ∑i wi .

3. wi ← wi(1− ε)ℓ
t
i

W (t) sum of wi at time t . W (0) = n

Best expert, b, loses L∗ total.

→W (T )≥ wb ≥ (1− ε)L∗ .

Lt = ∑i
wi ℓ

t
i

W expected loss of alg. in time t .

Claim: W (t +1)≤W (t)(1− εLt) Loss→ weight loss.

Proof:
W (t +1) = ∑

i
(1− ε)ℓ

t
i wi ≤∑

i
(1− εℓt

i )wi = ∑
i

wi − ε ∑
i

wiℓ
t
i

= ∑
i

wi

(
1− ε

∑i wiℓ
t
i

∑i wi

)
= W (t)(1− εLt)



Randomized algorithm
Expert i loses ℓt

i ∈ [0,1] in round t.

1. Initially wi = 1 for expert i .

2. Choose expert i with prob wi
W , W = ∑i wi .

3. wi ← wi(1− ε)ℓ
t
i

W (t) sum of wi at time t . W (0) = n

Best expert, b, loses L∗ total. →W (T )≥ wb ≥ (1− ε)L∗ .

Lt = ∑i
wi ℓ

t
i

W expected loss of alg. in time t .

Claim: W (t +1)≤W (t)(1− εLt) Loss→ weight loss.

Proof:
W (t +1) = ∑

i
(1− ε)ℓ

t
i wi ≤∑

i
(1− εℓt

i )wi = ∑
i

wi − ε ∑
i

wiℓ
t
i

= ∑
i

wi

(
1− ε

∑i wiℓ
t
i

∑i wi

)
= W (t)(1− εLt)



Randomized algorithm
Expert i loses ℓt

i ∈ [0,1] in round t.

1. Initially wi = 1 for expert i .

2. Choose expert i with prob wi
W , W = ∑i wi .

3. wi ← wi(1− ε)ℓ
t
i

W (t) sum of wi at time t . W (0) = n

Best expert, b, loses L∗ total. →W (T )≥ wb ≥ (1− ε)L∗ .

Lt = ∑i
wi ℓ

t
i

W expected loss of alg. in time t .

Claim: W (t +1)≤W (t)(1− εLt) Loss→ weight loss.

Proof:
W (t +1) = ∑

i
(1− ε)ℓ

t
i wi ≤∑

i
(1− εℓt

i )wi = ∑
i

wi − ε ∑
i

wiℓ
t
i

= ∑
i

wi

(
1− ε

∑i wiℓ
t
i

∑i wi

)
= W (t)(1− εLt)



Randomized algorithm
Expert i loses ℓt

i ∈ [0,1] in round t.

1. Initially wi = 1 for expert i .

2. Choose expert i with prob wi
W , W = ∑i wi .

3. wi ← wi(1− ε)ℓ
t
i

W (t) sum of wi at time t . W (0) = n

Best expert, b, loses L∗ total. →W (T )≥ wb ≥ (1− ε)L∗ .

Lt = ∑i
wi ℓ

t
i

W expected loss of alg. in time t .

Claim: W (t +1)≤W (t)(1− εLt)

Loss→ weight loss.

Proof:
W (t +1) = ∑

i
(1− ε)ℓ

t
i wi ≤∑

i
(1− εℓt

i )wi = ∑
i

wi − ε ∑
i

wiℓ
t
i

= ∑
i

wi

(
1− ε

∑i wiℓ
t
i

∑i wi

)
= W (t)(1− εLt)



Randomized algorithm
Expert i loses ℓt

i ∈ [0,1] in round t.

1. Initially wi = 1 for expert i .

2. Choose expert i with prob wi
W , W = ∑i wi .

3. wi ← wi(1− ε)ℓ
t
i

W (t) sum of wi at time t . W (0) = n

Best expert, b, loses L∗ total. →W (T )≥ wb ≥ (1− ε)L∗ .

Lt = ∑i
wi ℓ

t
i

W expected loss of alg. in time t .

Claim: W (t +1)≤W (t)(1− εLt) Loss→ weight loss.

Proof:
W (t +1) = ∑

i
(1− ε)ℓ

t
i wi ≤∑

i
(1− εℓt

i )wi = ∑
i

wi − ε ∑
i

wiℓ
t
i

= ∑
i

wi

(
1− ε

∑i wiℓ
t
i

∑i wi

)
= W (t)(1− εLt)



Randomized algorithm
Expert i loses ℓt

i ∈ [0,1] in round t.

1. Initially wi = 1 for expert i .

2. Choose expert i with prob wi
W , W = ∑i wi .

3. wi ← wi(1− ε)ℓ
t
i

W (t) sum of wi at time t . W (0) = n

Best expert, b, loses L∗ total. →W (T )≥ wb ≥ (1− ε)L∗ .

Lt = ∑i
wi ℓ

t
i

W expected loss of alg. in time t .

Claim: W (t +1)≤W (t)(1− εLt) Loss→ weight loss.

Proof:

W (t +1) = ∑
i
(1− ε)ℓ

t
i wi ≤∑

i
(1− εℓt

i )wi = ∑
i

wi − ε ∑
i

wiℓ
t
i

= ∑
i

wi

(
1− ε

∑i wiℓ
t
i

∑i wi

)
= W (t)(1− εLt)



Randomized algorithm
Expert i loses ℓt

i ∈ [0,1] in round t.

1. Initially wi = 1 for expert i .

2. Choose expert i with prob wi
W , W = ∑i wi .

3. wi ← wi(1− ε)ℓ
t
i

W (t) sum of wi at time t . W (0) = n

Best expert, b, loses L∗ total. →W (T )≥ wb ≥ (1− ε)L∗ .

Lt = ∑i
wi ℓ

t
i

W expected loss of alg. in time t .

Claim: W (t +1)≤W (t)(1− εLt) Loss→ weight loss.

Proof:
W (t +1) = ∑

i
(1− ε)ℓ

t
i wi

≤∑
i
(1− εℓt

i )wi = ∑
i

wi − ε ∑
i

wiℓ
t
i

= ∑
i

wi

(
1− ε

∑i wiℓ
t
i

∑i wi

)
= W (t)(1− εLt)



Randomized algorithm
Expert i loses ℓt

i ∈ [0,1] in round t.

1. Initially wi = 1 for expert i .

2. Choose expert i with prob wi
W , W = ∑i wi .

3. wi ← wi(1− ε)ℓ
t
i

W (t) sum of wi at time t . W (0) = n

Best expert, b, loses L∗ total. →W (T )≥ wb ≥ (1− ε)L∗ .

Lt = ∑i
wi ℓ

t
i

W expected loss of alg. in time t .

Claim: W (t +1)≤W (t)(1− εLt) Loss→ weight loss.

Proof:
W (t +1) = ∑

i
(1− ε)ℓ

t
i wi ≤∑

i
(1− εℓt

i )wi

= ∑
i

wi − ε ∑
i

wiℓ
t
i

= ∑
i

wi

(
1− ε

∑i wiℓ
t
i

∑i wi

)
= W (t)(1− εLt)



Randomized algorithm
Expert i loses ℓt

i ∈ [0,1] in round t.

1. Initially wi = 1 for expert i .

2. Choose expert i with prob wi
W , W = ∑i wi .

3. wi ← wi(1− ε)ℓ
t
i

W (t) sum of wi at time t . W (0) = n

Best expert, b, loses L∗ total. →W (T )≥ wb ≥ (1− ε)L∗ .

Lt = ∑i
wi ℓ

t
i

W expected loss of alg. in time t .

Claim: W (t +1)≤W (t)(1− εLt) Loss→ weight loss.

Proof:
W (t +1) = ∑

i
(1− ε)ℓ

t
i wi ≤∑

i
(1− εℓt

i )wi = ∑
i

wi − ε ∑
i

wiℓ
t
i

= ∑
i

wi

(
1− ε

∑i wiℓ
t
i

∑i wi

)
= W (t)(1− εLt)



Randomized algorithm
Expert i loses ℓt

i ∈ [0,1] in round t.

1. Initially wi = 1 for expert i .

2. Choose expert i with prob wi
W , W = ∑i wi .

3. wi ← wi(1− ε)ℓ
t
i

W (t) sum of wi at time t . W (0) = n

Best expert, b, loses L∗ total. →W (T )≥ wb ≥ (1− ε)L∗ .

Lt = ∑i
wi ℓ

t
i

W expected loss of alg. in time t .

Claim: W (t +1)≤W (t)(1− εLt) Loss→ weight loss.

Proof:
W (t +1) = ∑

i
(1− ε)ℓ

t
i wi ≤∑

i
(1− εℓt

i )wi = ∑
i

wi − ε ∑
i

wiℓ
t
i

= ∑
i

wi

(
1− ε

∑i wiℓ
t
i

∑i wi

)

= W (t)(1− εLt)



Randomized algorithm
Expert i loses ℓt

i ∈ [0,1] in round t.

1. Initially wi = 1 for expert i .

2. Choose expert i with prob wi
W , W = ∑i wi .

3. wi ← wi(1− ε)ℓ
t
i

W (t) sum of wi at time t . W (0) = n

Best expert, b, loses L∗ total. →W (T )≥ wb ≥ (1− ε)L∗ .

Lt = ∑i
wi ℓ

t
i

W expected loss of alg. in time t .

Claim: W (t +1)≤W (t)(1− εLt) Loss→ weight loss.

Proof:
W (t +1) = ∑

i
(1− ε)ℓ

t
i wi ≤∑

i
(1− εℓt

i )wi = ∑
i

wi − ε ∑
i

wiℓ
t
i

= ∑
i

wi

(
1− ε

∑i wiℓ
t
i

∑i wi

)
= W (t)(1− εLt)



Analysis

(1− ε)L∗ ≤W (T )≤ n ∏t(1− εLt)

Take logs
(L∗) ln(1− ε)≤ lnn+∑ ln(1− εLt)

Use −ε− ε2 ≤ ln(1− ε)≤−ε

−(L∗)(ε + ε2)≤ lnn− ε ∑Lt

And

∑t Lt ≤ (1+ ε)L∗+ lnn
ε

.

∑t Lt is total expected loss of algorithm.

Within (1+ ε) ish of the best expert!

No factor of 2 loss!



Analysis

(1− ε)L∗ ≤W (T )≤ n ∏t(1− εLt)

Take logs
(L∗) ln(1− ε)≤ lnn+∑ ln(1− εLt)

Use −ε− ε2 ≤ ln(1− ε)≤−ε

−(L∗)(ε + ε2)≤ lnn− ε ∑Lt

And

∑t Lt ≤ (1+ ε)L∗+ lnn
ε

.

∑t Lt is total expected loss of algorithm.

Within (1+ ε) ish of the best expert!

No factor of 2 loss!



Analysis

(1− ε)L∗ ≤W (T )≤ n ∏t(1− εLt)

Take logs
(L∗) ln(1− ε)≤ lnn+∑ ln(1− εLt)

Use −ε− ε2 ≤ ln(1− ε)≤−ε

−(L∗)(ε + ε2)≤ lnn− ε ∑Lt

And

∑t Lt ≤ (1+ ε)L∗+ lnn
ε

.

∑t Lt is total expected loss of algorithm.

Within (1+ ε) ish of the best expert!

No factor of 2 loss!



Analysis

(1− ε)L∗ ≤W (T )≤ n ∏t(1− εLt)

Take logs
(L∗) ln(1− ε)≤ lnn+∑ ln(1− εLt)

Use −ε− ε2 ≤ ln(1− ε)≤−ε

−(L∗)(ε + ε2)≤ lnn− ε ∑Lt

And

∑t Lt ≤ (1+ ε)L∗+ lnn
ε

.

∑t Lt is total expected loss of algorithm.

Within (1+ ε) ish of the best expert!

No factor of 2 loss!



Analysis

(1− ε)L∗ ≤W (T )≤ n ∏t(1− εLt)

Take logs
(L∗) ln(1− ε)≤ lnn+∑ ln(1− εLt)

Use −ε− ε2 ≤ ln(1− ε)≤−ε

−(L∗)(ε + ε2)≤ lnn− ε ∑Lt

And

∑t Lt ≤ (1+ ε)L∗+ lnn
ε

.

∑t Lt is total expected loss of algorithm.

Within (1+ ε) ish of the best expert!

No factor of 2 loss!



Analysis

(1− ε)L∗ ≤W (T )≤ n ∏t(1− εLt)

Take logs
(L∗) ln(1− ε)≤ lnn+∑ ln(1− εLt)

Use −ε− ε2 ≤ ln(1− ε)≤−ε

−(L∗)(ε + ε2)≤ lnn− ε ∑Lt

And

∑t Lt ≤ (1+ ε)L∗+ lnn
ε

.

∑t Lt is total expected loss of algorithm.

Within (1+ ε) ish of the best expert!

No factor of 2 loss!



Analysis

(1− ε)L∗ ≤W (T )≤ n ∏t(1− εLt)

Take logs
(L∗) ln(1− ε)≤ lnn+∑ ln(1− εLt)

Use −ε− ε2 ≤ ln(1− ε)≤−ε

−(L∗)(ε + ε2)≤ lnn− ε ∑Lt

And

∑t Lt ≤ (1+ ε)L∗+ lnn
ε

.

∑t Lt is total expected loss of algorithm.

Within (1+ ε) ish of the best expert!

No factor of 2 loss!



Analysis

(1− ε)L∗ ≤W (T )≤ n ∏t(1− εLt)

Take logs
(L∗) ln(1− ε)≤ lnn+∑ ln(1− εLt)

Use −ε− ε2 ≤ ln(1− ε)≤−ε

−(L∗)(ε + ε2)≤ lnn− ε ∑Lt

And

∑t Lt ≤ (1+ ε)L∗+ lnn
ε

.

∑t Lt is total expected loss of algorithm.

Within (1+ ε)

ish of the best expert!

No factor of 2 loss!



Analysis

(1− ε)L∗ ≤W (T )≤ n ∏t(1− εLt)

Take logs
(L∗) ln(1− ε)≤ lnn+∑ ln(1− εLt)

Use −ε− ε2 ≤ ln(1− ε)≤−ε

−(L∗)(ε + ε2)≤ lnn− ε ∑Lt

And

∑t Lt ≤ (1+ ε)L∗+ lnn
ε

.

∑t Lt is total expected loss of algorithm.

Within (1+ ε) ish

of the best expert!

No factor of 2 loss!



Analysis

(1− ε)L∗ ≤W (T )≤ n ∏t(1− εLt)

Take logs
(L∗) ln(1− ε)≤ lnn+∑ ln(1− εLt)

Use −ε− ε2 ≤ ln(1− ε)≤−ε

−(L∗)(ε + ε2)≤ lnn− ε ∑Lt

And

∑t Lt ≤ (1+ ε)L∗+ lnn
ε

.

∑t Lt is total expected loss of algorithm.

Within (1+ ε) ish of the best expert!

No factor of 2 loss!



Analysis

(1− ε)L∗ ≤W (T )≤ n ∏t(1− εLt)

Take logs
(L∗) ln(1− ε)≤ lnn+∑ ln(1− εLt)

Use −ε− ε2 ≤ ln(1− ε)≤−ε

−(L∗)(ε + ε2)≤ lnn− ε ∑Lt

And

∑t Lt ≤ (1+ ε)L∗+ lnn
ε

.

∑t Lt is total expected loss of algorithm.

Within (1+ ε) ish of the best expert!

No factor of 2 loss!



Gains.

Why so negative?

Each day, each expert gives gain in [0,1].

Multiplicative weights with (1+ ε)gt
i .

G ≥ (1− ε)G∗− logn
ε

where G∗ is payoff of best expert.

Scaling:

Not [0,1], say [0,ρ].

L≤ (1+ ε)L∗+
ρ logn

ε
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Summary: multiplicative weights.

Framework: n experts, each loses different amount every day.

Perfect Expert: logn mistakes.

Imperfect Expert: best makes m mistakes.

Deterministic Strategy: 2(1+ ε)m+ logn
ε

Real numbered losses: Best loses L∗ total.

Randomized Strategy: (1+ ε)L∗+ logn
ε

Strategy:
Choose proportional to weights

multiply weight by (1− ε)loss.

Multiplicative weights framework!
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Strategic Games.

N players.

Each player has strategy set. {S1, . . . ,SN}.
Vector valued payoff function: u(s1, . . . ,sn) (e.g., ∈ℜN ).

Example:

2 players

Player 1: { Defect, Cooperate }.
Player 2: { Defect, Cooperate }.
Payoff:

C D
C (3,3) (0,5)
D (5,0) (1,1)
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Famous because?

C D
C (3,3) (0,5)
D (5,0) (.1.1)

What is the best thing for the players to do?

Both cooperate. Payoff (3,3).

If player 1 wants to do better, what do they do?

Defects! Payoff (5,0)

What does player 2 do now?

Defects! Payoff (.1, .1).

Stable now!

Nash Equilibrium: neither player has incentive to change strategy.
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Digression..

What situations?

Prisoner’s dilemma:
Two prisoners separated by jailors and asked to betray partner.

Basis of the free market.
Companies compete, don’t cooperate.
No Monopoly:
E.G., OPEC, Airlines, .
Should defect.
Why don’t they?
Free market economics ...not so much?
More sophisticated models ,e.g, iterated dominance, coalitions,
complexity..
Lots of interesting Game Theory!

This class(today): simpler version.



Digression..

What situations?

Prisoner’s dilemma:

Two prisoners separated by jailors and asked to betray partner.

Basis of the free market.
Companies compete, don’t cooperate.
No Monopoly:
E.G., OPEC, Airlines, .
Should defect.
Why don’t they?
Free market economics ...not so much?
More sophisticated models ,e.g, iterated dominance, coalitions,
complexity..
Lots of interesting Game Theory!

This class(today): simpler version.



Digression..

What situations?

Prisoner’s dilemma:
Two prisoners separated by jailors and asked to betray partner.

Basis of the free market.
Companies compete, don’t cooperate.
No Monopoly:
E.G., OPEC, Airlines, .
Should defect.
Why don’t they?
Free market economics ...not so much?
More sophisticated models ,e.g, iterated dominance, coalitions,
complexity..
Lots of interesting Game Theory!

This class(today): simpler version.



Digression..

What situations?

Prisoner’s dilemma:
Two prisoners separated by jailors and asked to betray partner.

Basis of the free market.

Companies compete, don’t cooperate.
No Monopoly:
E.G., OPEC, Airlines, .
Should defect.
Why don’t they?
Free market economics ...not so much?
More sophisticated models ,e.g, iterated dominance, coalitions,
complexity..
Lots of interesting Game Theory!

This class(today): simpler version.



Digression..

What situations?

Prisoner’s dilemma:
Two prisoners separated by jailors and asked to betray partner.

Basis of the free market.
Companies compete, don’t cooperate.

No Monopoly:
E.G., OPEC, Airlines, .
Should defect.
Why don’t they?
Free market economics ...not so much?
More sophisticated models ,e.g, iterated dominance, coalitions,
complexity..
Lots of interesting Game Theory!

This class(today): simpler version.



Digression..

What situations?

Prisoner’s dilemma:
Two prisoners separated by jailors and asked to betray partner.

Basis of the free market.
Companies compete, don’t cooperate.
No Monopoly:

E.G., OPEC, Airlines, .
Should defect.
Why don’t they?
Free market economics ...not so much?
More sophisticated models ,e.g, iterated dominance, coalitions,
complexity..
Lots of interesting Game Theory!

This class(today): simpler version.



Digression..

What situations?

Prisoner’s dilemma:
Two prisoners separated by jailors and asked to betray partner.

Basis of the free market.
Companies compete, don’t cooperate.
No Monopoly:
E.G., OPEC, Airlines, .

Should defect.
Why don’t they?
Free market economics ...not so much?
More sophisticated models ,e.g, iterated dominance, coalitions,
complexity..
Lots of interesting Game Theory!

This class(today): simpler version.



Digression..

What situations?

Prisoner’s dilemma:
Two prisoners separated by jailors and asked to betray partner.

Basis of the free market.
Companies compete, don’t cooperate.
No Monopoly:
E.G., OPEC, Airlines, .
Should defect.

Why don’t they?
Free market economics ...not so much?
More sophisticated models ,e.g, iterated dominance, coalitions,
complexity..
Lots of interesting Game Theory!

This class(today): simpler version.



Digression..

What situations?

Prisoner’s dilemma:
Two prisoners separated by jailors and asked to betray partner.

Basis of the free market.
Companies compete, don’t cooperate.
No Monopoly:
E.G., OPEC, Airlines, .
Should defect.
Why don’t they?

Free market economics ...not so much?
More sophisticated models ,e.g, iterated dominance, coalitions,
complexity..
Lots of interesting Game Theory!

This class(today): simpler version.



Digression..

What situations?

Prisoner’s dilemma:
Two prisoners separated by jailors and asked to betray partner.

Basis of the free market.
Companies compete, don’t cooperate.
No Monopoly:
E.G., OPEC, Airlines, .
Should defect.
Why don’t they?
Free market economics ...

not so much?
More sophisticated models ,e.g, iterated dominance, coalitions,
complexity..
Lots of interesting Game Theory!

This class(today): simpler version.



Digression..

What situations?

Prisoner’s dilemma:
Two prisoners separated by jailors and asked to betray partner.

Basis of the free market.
Companies compete, don’t cooperate.
No Monopoly:
E.G., OPEC, Airlines, .
Should defect.
Why don’t they?
Free market economics ...not so much?

More sophisticated models ,e.g, iterated dominance, coalitions,
complexity..
Lots of interesting Game Theory!

This class(today): simpler version.



Digression..

What situations?

Prisoner’s dilemma:
Two prisoners separated by jailors and asked to betray partner.

Basis of the free market.
Companies compete, don’t cooperate.
No Monopoly:
E.G., OPEC, Airlines, .
Should defect.
Why don’t they?
Free market economics ...not so much?
More sophisticated models

,e.g, iterated dominance, coalitions,
complexity..
Lots of interesting Game Theory!

This class(today): simpler version.



Digression..

What situations?

Prisoner’s dilemma:
Two prisoners separated by jailors and asked to betray partner.

Basis of the free market.
Companies compete, don’t cooperate.
No Monopoly:
E.G., OPEC, Airlines, .
Should defect.
Why don’t they?
Free market economics ...not so much?
More sophisticated models ,e.g, iterated dominance,

coalitions,
complexity..
Lots of interesting Game Theory!

This class(today): simpler version.



Digression..

What situations?

Prisoner’s dilemma:
Two prisoners separated by jailors and asked to betray partner.

Basis of the free market.
Companies compete, don’t cooperate.
No Monopoly:
E.G., OPEC, Airlines, .
Should defect.
Why don’t they?
Free market economics ...not so much?
More sophisticated models ,e.g, iterated dominance, coalitions,

complexity..
Lots of interesting Game Theory!

This class(today): simpler version.



Digression..

What situations?

Prisoner’s dilemma:
Two prisoners separated by jailors and asked to betray partner.

Basis of the free market.
Companies compete, don’t cooperate.
No Monopoly:
E.G., OPEC, Airlines, .
Should defect.
Why don’t they?
Free market economics ...not so much?
More sophisticated models ,e.g, iterated dominance, coalitions,
complexity..

Lots of interesting Game Theory!

This class(today): simpler version.



Digression..

What situations?

Prisoner’s dilemma:
Two prisoners separated by jailors and asked to betray partner.

Basis of the free market.
Companies compete, don’t cooperate.
No Monopoly:
E.G., OPEC, Airlines, .
Should defect.
Why don’t they?
Free market economics ...not so much?
More sophisticated models ,e.g, iterated dominance, coalitions,
complexity..
Lots of interesting Game Theory!

This class(today): simpler version.



Digression..

What situations?

Prisoner’s dilemma:
Two prisoners separated by jailors and asked to betray partner.

Basis of the free market.
Companies compete, don’t cooperate.
No Monopoly:
E.G., OPEC, Airlines, .
Should defect.
Why don’t they?
Free market economics ...not so much?
More sophisticated models ,e.g, iterated dominance, coalitions,
complexity..
Lots of interesting Game Theory!

This class(today): simpler version.



Two Person Zero Sum Games

2 players.

Each player has strategy set:
m strategies for player 1 n strategies for player 2

Payoff function: u(i , j) = (−a,a) (or just a).
“Player 1 pays a to player 2.”

Zero Sum: Payoff for any pair of strategies sums to 0.

Payoffs by m by n matrix: A.
Row player minimizes, column player maximizes.

Roshambo: rock,paper, scissors.
R P S

R 0 1 -1
P -1 0 1
S 1 -1 0

Any Nash Equilibrium?

(R,R)? no. (R,P)? no. (R,S)? no.
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Roshambo: rock,paper, scissors.
R P S

R 0 1 -1
P -1 0 1
S 1 -1 0

Any Nash Equilibrium?

(R,R)? no. (R,P)? no. (R,S)? no.
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Mixed Strategies.

R P S

.33 .33 .33

R

.33

0 1 -1
P

.33

-1 0 1
S

.33

1 -1 0
How do you play?

Player 1: play each strategy with equal probability.
Player 2: play each strategy with equal probability.

Definitions.

Mixed strategies: Each player plays distribution over strategies.

Pure strategies: Each player plays single strategy.
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Payoffs: Equilibrium.
R P S
.33 .33 .33

R .33 0 1 -1
P .33 -1 0 1
S .33 1 -1 0

Payoffs?

Can’t just look it up in matrix!.

Average Payoff. Expected Payoff.

Sample space: Ω= {(i , j) : i , j ∈ [1, ..,3]}
Random variable X (payoff).

E [X ] = ∑
(i ,j)

X (i , j)Pr [(i , j)].

Each player chooses independently:
Pr [(i , j)] = 1

3 ×
1
3 = 1

9 .

E [X ] = 0.1

1Remember zero sum games have one payoff.
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Equilibrium
R P S
.33 .33 .33

R .33 0 1 -1
P .33 -1 0 1
S .33 1 -1 0

Will Player 1 change strategy?

Mixed strategies uncountable!

Expected payoffs for pure strategies for player 1.

Expected payoff of Rock? 1
3 ×0+ 1

3 ×1+ 1
3 ×−1 = 0.

Expected payoff of Paper? 1
3 ×−1+ 1

3 ×0+ 1
3 ×1 = 0.

Expected payoff of Scissors? 1
3 ×1+ 1

3 ×−1+ 1
3 ×0 = 0.

No better pure strategy. =⇒ No better mixed strategy!

Mixed strat. payoff is weighted av. of payoffs of pure strats.

E [X ] = ∑(i ,j)(Pr [i]×Pr [j])X (i , j) = ∑i Pr [i](∑j Pr [j]×X (i , j))

Mixed strategy can’t be better than the best pure strategy.

Player 1 has no incentive to change! Same for player 2.

Equilibrium!
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Another example plus notation.

Rock, Paper, Scissors, prEempt.

PreEmpt ties preEmpt, beats everything else.
Payoffs.

R P S E
R 0 1 -1 1
P -1 0 1 1
S 1 -1 0 1
E -1 -1 -1 0

Equilibrium? (E,E). Pure strategy equilibrium.
Notation: Rock is 1, Paper is 2, Scissors is 3, prEmpt is 4.
Payoff Matrix.

A =


0 1 −1 1
−1 0 1 1
1 −1 0 1
−1 −1 −1 0
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Playing the boss...

Row has extra strategy:Cheat.

Ties with Rock, Paper, beats scissors.
Payoff matrix:
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Equilibrium: play the boss...

A =


0 1 −1
−1 0 1
1 −1 0
0 0 −1


Equilibrium:

Row: (0, 1
3 ,

1
6 ,

1
2 ). Column: (1

3 ,
1
2 ,

1
6 ).

Payoff? Remember: weighted average of pure strategies.

Row Player.

Strategy 1: 1
3 ×0+ 1

2 ×1+ 1
6 ×−1 = 1

3
Strategy 2: 1

3 ×−1+ 1
2 ×0+ 1

6 ×1 =−1
6

Strategy 3: 1
3 ×1+ 1

2 ×−1+ 1
6 ×0 =−1

6
Strategy 4: 1

3 ×0+ 1
2 ×0+ 1

6 ×−1 =−1
6

Payoff is 0× 1
3 +

1
3 × (−1

6 )+
1
6 × (−1

6 )+
1
2 × (−1

6 ) =−
1
6

Column player: every column payoff is −1
6 .

Both only play optimal strategies! Complementary slackness.

Why not play just one? Change payoff for other player!
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6 ) =−
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Column player: every column payoff is −1
6 .

Both only play optimal strategies! Complementary slackness.

Why not play just one? Change payoff for other player!
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Two person zero sum games.
m×n payoff matrix A.

Row mixed strategy: x = (x1, . . . ,xm).
Column mixed strategy: y = (y1, . . . ,yn).

Payoff for strategy pair (x ,y):

p(x ,y) = x tAy

That is,

∑
i

xi

(
∑
j

ai ,jyj

)
= ∑

j

(
∑
i

xiai ,j

)
yj .

Recall row minimizes, column maximizes.

Equilibrium pair: (x∗,y∗)?

(x∗)tAy∗ =max
y

(x∗)tAy =min
x

x tAy∗.

(No better column strategy, no better row strategy.)
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Equilibrium.

Equilibrium pair: (x∗,y∗)?

p(x ,y) = (x∗)tAy∗ =max
y

(x∗)tAy =min
x

x tAy∗.

(No better column strategy, no better row strategy.)

No row is better:
mini A(i) ·y = (x∗)tAy∗. 2

No column is better:
maxj(At)(j) ·x = (x∗)tAy∗.

2A(i) is i th row.
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Best Response

Column goes first:

Find y , where best row is not too low..

R =max
y

min
x
(x tAy).

Note: x can be (0,0, . . . ,1, . . .0).

Example: Roshambo. Value of R?

Row goes first:
Find x , where best column is not high.

C =min
x

max
y

(x tAy).

Agin: y of form (0,0, . . . ,1, . . .0).

Example: Roshambo. Value of C?
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Duality.

R =max
y

min
x
(x tAy).

C =min
x

max
y

(x tAy).

Weak Duality: R ≤ C.
Proof: Better to go second.
Blindly play go-first strategy.

At Equilibrium (x∗,y∗), payoff v :
row payoffs (Ay∗) all ≥ v =⇒ R ≥ v .
column payoffs ((x∗)tA) all ≤ v =⇒ v ≥ C.
=⇒ R ≥ C

Equilibrium =⇒ R = C!

Strong Duality: There is an equilibrium point! and R = C!

Doesn’t matter who plays first!
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Equilibrium existence.

Linear programs.

Column player: find y to maximize row payoffs.
maxz,Ay ≥ z,∑i yi = 1

Row player: find x to minimize column payoffs.
minz,AT x ≤ z,∑i xj = 1.

Primal dual optimal are equilibrium solution.

Strong Duality: linear program.



Equilibrium existence.

Linear programs.

Column player: find y to maximize row payoffs.

maxz,Ay ≥ z,∑i yi = 1
Row player: find x to minimize column payoffs.

minz,AT x ≤ z,∑i xj = 1.

Primal dual optimal are equilibrium solution.

Strong Duality: linear program.



Equilibrium existence.

Linear programs.

Column player: find y to maximize row payoffs.
maxz,Ay ≥ z,∑i yi = 1

Row player: find x to minimize column payoffs.

minz,AT x ≤ z,∑i xj = 1.

Primal dual optimal are equilibrium solution.

Strong Duality: linear program.



Equilibrium existence.

Linear programs.

Column player: find y to maximize row payoffs.
maxz,Ay ≥ z,∑i yi = 1

Row player: find x to minimize column payoffs.
minz,AT x ≤ z,∑i xj = 1.

Primal dual optimal are equilibrium solution.

Strong Duality: linear program.



Equilibrium existence.

Linear programs.

Column player: find y to maximize row payoffs.
maxz,Ay ≥ z,∑i yi = 1

Row player: find x to minimize column payoffs.
minz,AT x ≤ z,∑i xj = 1.

Primal dual optimal are equilibrium solution.

Strong Duality: linear program.



Equilibrium existence.

Linear programs.

Column player: find y to maximize row payoffs.
maxz,Ay ≥ z,∑i yi = 1

Row player: find x to minimize column payoffs.
minz,AT x ≤ z,∑i xj = 1.

Primal dual optimal are equilibrium solution.

Strong Duality: linear program.



Equilibrium existence.

Linear programs.

Column player: find y to maximize row payoffs.
maxz,Ay ≥ z,∑i yi = 1

Row player: find x to minimize column payoffs.
minz,AT x ≤ z,∑i xj = 1.

Primal dual optimal are equilibrium solution.

Strong Duality: linear program.



Aproximate equilibrium ...

C(x) = maxy x tAy

R(y) = minx x tAy

Always: R(y)≤ C(x)
For R(y), minimizer x “goes second”, but goes first for C(x).

Strategy pair: (x ,y)

Equilibrium: (x ,y)

R(y) = C(x)→ C(x)−R(y) = 0.

Approximate Equilibrium: C(x)−R(y)≤ ε.

With R(y)< C(x)
→ “Response y to x is within ε of best response”
→ “Response x to y is within ε of best response”
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Games and experts

Again: find (x∗,y∗), such that

(maxy x∗Ay)− (minx xAy∗)≤ ε
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——————————————————————–

Experts Framework:
n Experts, T days, L∗ -total loss of best expert.

Multiplicative Weights Method yields loss L where

L≤ (1+ ε)L∗+ logn
ε
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Games and Experts.

Assume: A has payoffs in [0,1].

For T = logn
ε2 days:

1) m pure row strategies are experts.
Use multiplicative weights, produce row distribution.

Let xt be distribution (row strategy) on day t .

2) Each day, adversary plays best column response to xt .
Choose column of A that maximizes row’s expected loss.

Let yt be indicator vector for “best” response column.
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Approximate Equilibrium!
Experts: xt is strategy on day t , yt is best column against xt .

Let y∗ = 1
T ∑t yt and x∗ = argminxt

xtAyt .

Claim: (x∗,y∗) are 2ε-optimal for matrix A.

Column payoff: C(x∗) = maxy x∗Ay .
Loss on day t , xtAyt ≥ x∗Ayt∗ = C(x∗) by the choice of x∗ .
Thus, algorithm loss, L, is ≥ T ×C(x∗).

Best expert: L∗- best row against all the columns played.

best row against ∑t Ayt and T ×y∗ = ∑t yt
→ best row against T ×Ay∗.
→ L∗ ≤ T ×R(y∗).

Multiplicative Weights: L≤ (1+ ε)L∗+ lnn
ε

T ×C(x∗)≤ (1+ ε)T ×R(y∗)+ lnn
ε
→ C(x∗)≤ (1+ ε)R(y∗)+ lnn

εT
→ C(x∗)−R(y∗)≤ εR(y∗)+ lnn

εT .

T = lnn
ε2 , R(y∗)≤ 1
→ C(x∗)−R(y∗)≤ 2ε.
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More comments

Complexity?

T = lnn
ε2 → O(nm logn

ε2 ). Basically linear!

Versus Linear Programming: O(n3m) Basically quadratic.
(Faster linear programming: O(

√
n+m) linear system solves.)

Still much slower ... and more complicated.

Dynamics: best response, update weight according to loss, ...

Near integrality.
Only lnn/ε2 non-zero column variables.
Average 1/T , so not too many nonzeros and not too small.

Not stochastic at all here, the column responses are adversarial.

Various assumptions: [0,1] losses, other ranges takes some work.



More comments

Complexity?
T = lnn

ε2

→ O(nm logn
ε2 ). Basically linear!

Versus Linear Programming: O(n3m) Basically quadratic.
(Faster linear programming: O(

√
n+m) linear system solves.)

Still much slower ... and more complicated.

Dynamics: best response, update weight according to loss, ...

Near integrality.
Only lnn/ε2 non-zero column variables.
Average 1/T , so not too many nonzeros and not too small.

Not stochastic at all here, the column responses are adversarial.

Various assumptions: [0,1] losses, other ranges takes some work.



More comments

Complexity?
T = lnn

ε2 → O(nm logn
ε2 ).

Basically linear!

Versus Linear Programming: O(n3m) Basically quadratic.
(Faster linear programming: O(

√
n+m) linear system solves.)

Still much slower ... and more complicated.

Dynamics: best response, update weight according to loss, ...

Near integrality.
Only lnn/ε2 non-zero column variables.
Average 1/T , so not too many nonzeros and not too small.

Not stochastic at all here, the column responses are adversarial.

Various assumptions: [0,1] losses, other ranges takes some work.



More comments

Complexity?
T = lnn

ε2 → O(nm logn
ε2 ). Basically linear!

Versus Linear Programming: O(n3m) Basically quadratic.
(Faster linear programming: O(

√
n+m) linear system solves.)

Still much slower ... and more complicated.

Dynamics: best response, update weight according to loss, ...

Near integrality.
Only lnn/ε2 non-zero column variables.
Average 1/T , so not too many nonzeros and not too small.

Not stochastic at all here, the column responses are adversarial.

Various assumptions: [0,1] losses, other ranges takes some work.



More comments

Complexity?
T = lnn

ε2 → O(nm logn
ε2 ). Basically linear!

Versus Linear Programming: O(n3m)

Basically quadratic.
(Faster linear programming: O(

√
n+m) linear system solves.)

Still much slower ... and more complicated.

Dynamics: best response, update weight according to loss, ...

Near integrality.
Only lnn/ε2 non-zero column variables.
Average 1/T , so not too many nonzeros and not too small.

Not stochastic at all here, the column responses are adversarial.

Various assumptions: [0,1] losses, other ranges takes some work.



More comments

Complexity?
T = lnn

ε2 → O(nm logn
ε2 ). Basically linear!

Versus Linear Programming: O(n3m) Basically quadratic.

(Faster linear programming: O(
√

n+m) linear system solves.)
Still much slower ... and more complicated.

Dynamics: best response, update weight according to loss, ...

Near integrality.
Only lnn/ε2 non-zero column variables.
Average 1/T , so not too many nonzeros and not too small.

Not stochastic at all here, the column responses are adversarial.

Various assumptions: [0,1] losses, other ranges takes some work.



More comments

Complexity?
T = lnn

ε2 → O(nm logn
ε2 ). Basically linear!

Versus Linear Programming: O(n3m) Basically quadratic.
(Faster linear programming: O(

√
n+m) linear system solves.)

Still much slower ... and more complicated.

Dynamics: best response, update weight according to loss, ...

Near integrality.
Only lnn/ε2 non-zero column variables.
Average 1/T , so not too many nonzeros and not too small.

Not stochastic at all here, the column responses are adversarial.

Various assumptions: [0,1] losses, other ranges takes some work.



More comments

Complexity?
T = lnn

ε2 → O(nm logn
ε2 ). Basically linear!

Versus Linear Programming: O(n3m) Basically quadratic.
(Faster linear programming: O(

√
n+m) linear system solves.)

Still much slower

... and more complicated.

Dynamics: best response, update weight according to loss, ...

Near integrality.
Only lnn/ε2 non-zero column variables.
Average 1/T , so not too many nonzeros and not too small.

Not stochastic at all here, the column responses are adversarial.

Various assumptions: [0,1] losses, other ranges takes some work.



More comments

Complexity?
T = lnn

ε2 → O(nm logn
ε2 ). Basically linear!

Versus Linear Programming: O(n3m) Basically quadratic.
(Faster linear programming: O(

√
n+m) linear system solves.)

Still much slower ... and more complicated.

Dynamics: best response, update weight according to loss, ...

Near integrality.
Only lnn/ε2 non-zero column variables.
Average 1/T , so not too many nonzeros and not too small.

Not stochastic at all here, the column responses are adversarial.

Various assumptions: [0,1] losses, other ranges takes some work.



More comments

Complexity?
T = lnn

ε2 → O(nm logn
ε2 ). Basically linear!

Versus Linear Programming: O(n3m) Basically quadratic.
(Faster linear programming: O(

√
n+m) linear system solves.)

Still much slower ... and more complicated.

Dynamics: best response, update weight according to loss, ...

Near integrality.
Only lnn/ε2 non-zero column variables.
Average 1/T , so not too many nonzeros and not too small.

Not stochastic at all here, the column responses are adversarial.

Various assumptions: [0,1] losses, other ranges takes some work.



More comments

Complexity?
T = lnn

ε2 → O(nm logn
ε2 ). Basically linear!

Versus Linear Programming: O(n3m) Basically quadratic.
(Faster linear programming: O(

√
n+m) linear system solves.)

Still much slower ... and more complicated.

Dynamics: best response, update weight according to loss, ...

Near integrality.

Only lnn/ε2 non-zero column variables.
Average 1/T , so not too many nonzeros and not too small.

Not stochastic at all here, the column responses are adversarial.

Various assumptions: [0,1] losses, other ranges takes some work.



More comments

Complexity?
T = lnn

ε2 → O(nm logn
ε2 ). Basically linear!

Versus Linear Programming: O(n3m) Basically quadratic.
(Faster linear programming: O(

√
n+m) linear system solves.)

Still much slower ... and more complicated.

Dynamics: best response, update weight according to loss, ...

Near integrality.
Only lnn/ε2 non-zero column variables.

Average 1/T , so not too many nonzeros and not too small.

Not stochastic at all here, the column responses are adversarial.

Various assumptions: [0,1] losses, other ranges takes some work.



More comments

Complexity?
T = lnn

ε2 → O(nm logn
ε2 ). Basically linear!

Versus Linear Programming: O(n3m) Basically quadratic.
(Faster linear programming: O(

√
n+m) linear system solves.)

Still much slower ... and more complicated.

Dynamics: best response, update weight according to loss, ...

Near integrality.
Only lnn/ε2 non-zero column variables.
Average 1/T , so not too many nonzeros and not too small.

Not stochastic at all here, the column responses are adversarial.

Various assumptions: [0,1] losses, other ranges takes some work.



More comments

Complexity?
T = lnn

ε2 → O(nm logn
ε2 ). Basically linear!

Versus Linear Programming: O(n3m) Basically quadratic.
(Faster linear programming: O(

√
n+m) linear system solves.)

Still much slower ... and more complicated.

Dynamics: best response, update weight according to loss, ...

Near integrality.
Only lnn/ε2 non-zero column variables.
Average 1/T , so not too many nonzeros and not too small.

Not stochastic at all here, the column responses are adversarial.

Various assumptions: [0,1] losses, other ranges takes some work.



More comments

Complexity?
T = lnn

ε2 → O(nm logn
ε2 ). Basically linear!

Versus Linear Programming: O(n3m) Basically quadratic.
(Faster linear programming: O(

√
n+m) linear system solves.)

Still much slower ... and more complicated.

Dynamics: best response, update weight according to loss, ...

Near integrality.
Only lnn/ε2 non-zero column variables.
Average 1/T , so not too many nonzeros and not too small.

Not stochastic at all here, the column responses are adversarial.

Various assumptions: [0,1] losses, other ranges takes some work.



Toll/Congestion

Given: G = (V ,E).
Given (s1, t1) . . .(sk , tk ).
Row: choose routing of all paths.
Column: choose edge.
Row pays if column chooses edge on any path.

Matrix:
row for each routing: r
column for each edge: e

A[r ,e] is congestion on edge e by routing r

Offense: (Best Response.)
Router: route along shortest paths.
Toll: charge most loaded edge.

Defense: Toll: maximize shortest path under tolls.
Route: minimize max congestion on any edge.
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Two person game.

Row is router.

An exponential number of rows!

Two person game with experts won’t be so easy to implement.

Version with row and column flipped may work.

A[e, r ] - congestion of edge e on routing r .

m rows. Exponential number of columns.

Multiplicative Weights only maintains m weights.

Adversary only needs to provide best column each day.

Runtime only dependent on m and T (number of days.)
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Congestion minimization and Experts.
Will use gain and [0,ρ] version of experts:

G ≥ (1− ε)G∗− ρ logn
ε

.

Let T = k logn
ε2

1. Row player runs multiplicative weights on edges:
wi = wi(1+ ε)gi/k .

2. Column routes all paths along shortest paths.

3. Output the average of all routings: 1
T ∑t f (t).

Claim: The congestion, cmax is at most C∗+2kε.

Proof:
G ≥G∗(1− ε)− k logn

εT →G∗−G ≤ εG∗+ k logn
ε

G∗ = T ∗cmax – Best row payoff against average routing (times T ).

G ≤ T ×C∗ – each day, gain is avg. congestion ≤ opt congestion.

T = k logn
ε2 → Tc∗max−TC ≤ εTC∗+ k logn

ε
→

cmax −C∗ ≤ εC∗+ ε



Congestion minimization and Experts.
Will use gain and [0,ρ] version of experts:

G ≥ (1− ε)G∗− ρ logn
ε

.

Let T = k logn
ε2

1. Row player runs multiplicative weights on edges:
wi = wi(1+ ε)gi/k .

2. Column routes all paths along shortest paths.

3. Output the average of all routings: 1
T ∑t f (t).

Claim: The congestion, cmax is at most C∗+2kε.

Proof:
G ≥G∗(1− ε)− k logn

εT →G∗−G ≤ εG∗+ k logn
ε

G∗ = T ∗cmax – Best row payoff against average routing (times T ).

G ≤ T ×C∗ – each day, gain is avg. congestion ≤ opt congestion.

T = k logn
ε2 → Tc∗max−TC ≤ εTC∗+ k logn

ε
→

cmax −C∗ ≤ εC∗+ ε



Congestion minimization and Experts.
Will use gain and [0,ρ] version of experts:

G ≥ (1− ε)G∗− ρ logn
ε

.

Let T = k logn
ε2

1. Row player runs multiplicative weights on edges:
wi = wi(1+ ε)gi/k .

2. Column routes all paths along shortest paths.

3. Output the average of all routings: 1
T ∑t f (t).

Claim: The congestion, cmax is at most C∗+2kε.

Proof:
G ≥G∗(1− ε)− k logn

εT →G∗−G ≤ εG∗+ k logn
ε

G∗ = T ∗cmax – Best row payoff against average routing (times T ).

G ≤ T ×C∗ – each day, gain is avg. congestion ≤ opt congestion.

T = k logn
ε2 → Tc∗max−TC ≤ εTC∗+ k logn

ε
→

cmax −C∗ ≤ εC∗+ ε



Congestion minimization and Experts.
Will use gain and [0,ρ] version of experts:

G ≥ (1− ε)G∗− ρ logn
ε

.

Let T = k logn
ε2

1. Row player runs multiplicative weights on edges:

wi = wi(1+ ε)gi/k .

2. Column routes all paths along shortest paths.

3. Output the average of all routings: 1
T ∑t f (t).

Claim: The congestion, cmax is at most C∗+2kε.

Proof:
G ≥G∗(1− ε)− k logn

εT →G∗−G ≤ εG∗+ k logn
ε

G∗ = T ∗cmax – Best row payoff against average routing (times T ).

G ≤ T ×C∗ – each day, gain is avg. congestion ≤ opt congestion.

T = k logn
ε2 → Tc∗max−TC ≤ εTC∗+ k logn

ε
→

cmax −C∗ ≤ εC∗+ ε



Congestion minimization and Experts.
Will use gain and [0,ρ] version of experts:

G ≥ (1− ε)G∗− ρ logn
ε

.

Let T = k logn
ε2

1. Row player runs multiplicative weights on edges:
wi = wi(1+ ε)gi/k .

2. Column routes all paths along shortest paths.

3. Output the average of all routings: 1
T ∑t f (t).

Claim: The congestion, cmax is at most C∗+2kε.

Proof:
G ≥G∗(1− ε)− k logn

εT →G∗−G ≤ εG∗+ k logn
ε

G∗ = T ∗cmax – Best row payoff against average routing (times T ).

G ≤ T ×C∗ – each day, gain is avg. congestion ≤ opt congestion.

T = k logn
ε2 → Tc∗max−TC ≤ εTC∗+ k logn

ε
→

cmax −C∗ ≤ εC∗+ ε



Congestion minimization and Experts.
Will use gain and [0,ρ] version of experts:

G ≥ (1− ε)G∗− ρ logn
ε

.

Let T = k logn
ε2

1. Row player runs multiplicative weights on edges:
wi = wi(1+ ε)gi/k .

2. Column routes all paths along shortest paths.

3. Output the average of all routings: 1
T ∑t f (t).

Claim: The congestion, cmax is at most C∗+2kε.

Proof:
G ≥G∗(1− ε)− k logn

εT →G∗−G ≤ εG∗+ k logn
ε

G∗ = T ∗cmax – Best row payoff against average routing (times T ).

G ≤ T ×C∗ – each day, gain is avg. congestion ≤ opt congestion.

T = k logn
ε2 → Tc∗max−TC ≤ εTC∗+ k logn

ε
→

cmax −C∗ ≤ εC∗+ ε



Congestion minimization and Experts.
Will use gain and [0,ρ] version of experts:

G ≥ (1− ε)G∗− ρ logn
ε

.

Let T = k logn
ε2

1. Row player runs multiplicative weights on edges:
wi = wi(1+ ε)gi/k .

2. Column routes all paths along shortest paths.

3. Output the average of all routings: 1
T ∑t f (t).

Claim: The congestion, cmax is at most C∗+2kε.

Proof:
G ≥G∗(1− ε)− k logn

εT →G∗−G ≤ εG∗+ k logn
ε

G∗ = T ∗cmax – Best row payoff against average routing (times T ).

G ≤ T ×C∗ – each day, gain is avg. congestion ≤ opt congestion.

T = k logn
ε2 → Tc∗max−TC ≤ εTC∗+ k logn

ε
→

cmax −C∗ ≤ εC∗+ ε



Congestion minimization and Experts.
Will use gain and [0,ρ] version of experts:

G ≥ (1− ε)G∗− ρ logn
ε

.

Let T = k logn
ε2

1. Row player runs multiplicative weights on edges:
wi = wi(1+ ε)gi/k .

2. Column routes all paths along shortest paths.

3. Output the average of all routings: 1
T ∑t f (t).

Claim: The congestion, cmax is at most C∗+2kε.

Proof:
G ≥G∗(1− ε)− k logn

εT →G∗−G ≤ εG∗+ k logn
ε

G∗ = T ∗cmax – Best row payoff against average routing (times T ).

G ≤ T ×C∗ – each day, gain is avg. congestion ≤ opt congestion.

T = k logn
ε2 → Tc∗max−TC ≤ εTC∗+ k logn

ε
→

cmax −C∗ ≤ εC∗+ ε



Congestion minimization and Experts.
Will use gain and [0,ρ] version of experts:

G ≥ (1− ε)G∗− ρ logn
ε

.

Let T = k logn
ε2

1. Row player runs multiplicative weights on edges:
wi = wi(1+ ε)gi/k .

2. Column routes all paths along shortest paths.

3. Output the average of all routings: 1
T ∑t f (t).

Claim: The congestion, cmax is at most C∗+2kε.

Proof:

G ≥G∗(1− ε)− k logn
εT →G∗−G ≤ εG∗+ k logn

ε

G∗ = T ∗cmax – Best row payoff against average routing (times T ).

G ≤ T ×C∗ – each day, gain is avg. congestion ≤ opt congestion.

T = k logn
ε2 → Tc∗max−TC ≤ εTC∗+ k logn

ε
→

cmax −C∗ ≤ εC∗+ ε



Congestion minimization and Experts.
Will use gain and [0,ρ] version of experts:

G ≥ (1− ε)G∗− ρ logn
ε

.

Let T = k logn
ε2

1. Row player runs multiplicative weights on edges:
wi = wi(1+ ε)gi/k .

2. Column routes all paths along shortest paths.

3. Output the average of all routings: 1
T ∑t f (t).

Claim: The congestion, cmax is at most C∗+2kε.

Proof:
G ≥G∗(1− ε)− k logn

εT

→G∗−G ≤ εG∗+ k logn
ε

G∗ = T ∗cmax – Best row payoff against average routing (times T ).

G ≤ T ×C∗ – each day, gain is avg. congestion ≤ opt congestion.

T = k logn
ε2 → Tc∗max−TC ≤ εTC∗+ k logn

ε
→

cmax −C∗ ≤ εC∗+ ε



Congestion minimization and Experts.
Will use gain and [0,ρ] version of experts:

G ≥ (1− ε)G∗− ρ logn
ε

.

Let T = k logn
ε2

1. Row player runs multiplicative weights on edges:
wi = wi(1+ ε)gi/k .

2. Column routes all paths along shortest paths.

3. Output the average of all routings: 1
T ∑t f (t).

Claim: The congestion, cmax is at most C∗+2kε.

Proof:
G ≥G∗(1− ε)− k logn

εT →G∗−G ≤ εG∗+ k logn
ε

G∗ = T ∗cmax – Best row payoff against average routing (times T ).

G ≤ T ×C∗ – each day, gain is avg. congestion ≤ opt congestion.

T = k logn
ε2 → Tc∗max−TC ≤ εTC∗+ k logn

ε
→

cmax −C∗ ≤ εC∗+ ε



Congestion minimization and Experts.
Will use gain and [0,ρ] version of experts:

G ≥ (1− ε)G∗− ρ logn
ε

.

Let T = k logn
ε2

1. Row player runs multiplicative weights on edges:
wi = wi(1+ ε)gi/k .

2. Column routes all paths along shortest paths.

3. Output the average of all routings: 1
T ∑t f (t).

Claim: The congestion, cmax is at most C∗+2kε.

Proof:
G ≥G∗(1− ε)− k logn

εT →G∗−G ≤ εG∗+ k logn
ε

G∗ = T ∗cmax – Best row payoff against average routing (times T ).

G ≤ T ×C∗ – each day, gain is avg. congestion ≤ opt congestion.

T = k logn
ε2 → Tc∗max−TC ≤ εTC∗+ k logn

ε
→

cmax −C∗ ≤ εC∗+ ε



Congestion minimization and Experts.
Will use gain and [0,ρ] version of experts:

G ≥ (1− ε)G∗− ρ logn
ε

.

Let T = k logn
ε2

1. Row player runs multiplicative weights on edges:
wi = wi(1+ ε)gi/k .

2. Column routes all paths along shortest paths.

3. Output the average of all routings: 1
T ∑t f (t).

Claim: The congestion, cmax is at most C∗+2kε.

Proof:
G ≥G∗(1− ε)− k logn

εT →G∗−G ≤ εG∗+ k logn
ε

G∗ = T ∗cmax – Best row payoff against average routing (times T ).

G ≤ T ×C∗ – each day, gain is avg. congestion ≤ opt congestion.

T = k logn
ε2 → Tc∗max−TC ≤ εTC∗+ k logn

ε
→

cmax −C∗ ≤ εC∗+ ε



Congestion minimization and Experts.
Will use gain and [0,ρ] version of experts:

G ≥ (1− ε)G∗− ρ logn
ε

.

Let T = k logn
ε2

1. Row player runs multiplicative weights on edges:
wi = wi(1+ ε)gi/k .

2. Column routes all paths along shortest paths.

3. Output the average of all routings: 1
T ∑t f (t).

Claim: The congestion, cmax is at most C∗+2kε.

Proof:
G ≥G∗(1− ε)− k logn

εT →G∗−G ≤ εG∗+ k logn
ε

G∗ = T ∗cmax – Best row payoff against average routing (times T ).

G ≤ T ×C∗ – each day, gain is avg. congestion ≤ opt congestion.

T = k logn
ε2 → Tc∗max−TC ≤ εTC∗+ k logn

ε
→

cmax −C∗ ≤ εC∗+ ε



Congestion minimization and Experts.
Will use gain and [0,ρ] version of experts:

G ≥ (1− ε)G∗− ρ logn
ε

.

Let T = k logn
ε2

1. Row player runs multiplicative weights on edges:
wi = wi(1+ ε)gi/k .

2. Column routes all paths along shortest paths.

3. Output the average of all routings: 1
T ∑t f (t).

Claim: The congestion, cmax is at most C∗+2kε.

Proof:
G ≥G∗(1− ε)− k logn

εT →G∗−G ≤ εG∗+ k logn
ε

G∗ = T ∗cmax – Best row payoff against average routing (times T ).

G ≤ T ×C∗ – each day, gain is avg. congestion ≤ opt congestion.

T = k logn
ε2 → Tc∗max−TC ≤ εTC∗+ k logn

ε
→

cmax −C∗ ≤ εC∗+ ε



Congestion minimization and Experts.
Will use gain and [0,ρ] version of experts:

G ≥ (1− ε)G∗− ρ logn
ε

.

Let T = k logn
ε2

1. Row player runs multiplicative weights on edges:
wi = wi(1+ ε)gi/k .

2. Column routes all paths along shortest paths.

3. Output the average of all routings: 1
T ∑t f (t).

Claim: The congestion, cmax is at most C∗+2kε.

Proof:
G ≥G∗(1− ε)− k logn

εT →G∗−G ≤ εG∗+ k logn
ε

G∗ = T ∗cmax – Best row payoff against average routing (times T ).

G ≤ T ×C∗ – each day, gain is avg. congestion ≤ opt congestion.

T = k logn
ε2 → Tc∗max−TC ≤ εTC∗+ k logn

ε
→

cmax −C∗ ≤ εC∗+ ε



Better setup.

Runtime: O(km logn) to route in each step (using Dijkstra’s)

O( k logn
ε2 ) steps

to get cmax−C∗ < εC∗ (assuming C∗ > 1) approximation.

To get constant c error.
→O(k2m logn/ε2) to get a constant approximation.

Exercise: O(km logn/ε2) algorithm ! ! !
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Fractional versus Integer.

Did we (approximately) solve path routing?

Yes? No?

No! Average of T routings.
We approximately solved fractional routing problem.

No solution to the path routing problem that is (1+ ε) optimal!

Decent solution to path routing problem?

For each si , ti , choose path pi uniformly at random from “daily”
paths.

Congestion c(e) edge has expected congestion, c̃(e), of c(e).

“Concentration” (law of large numbers)
c(e) is relatively large (Ω(logn))
→ c̃(e)≈ c(e).

Concentration results? later.
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Weak Learner/Strong Learner

Input: n labelled points.

Weak Learner:
produce hypothesis correctly classifies 1

2 + ε fraction

Strong Learner:
produce hyp. correctly classifies 1+µ fraction

That’s a really strong learner!
Strong Learner:

produce hypothesis correctly classifies 1−µ fraction

Same thing?

Can one use weak learning to produce strong learner?

Boosting: use a weak learner to produce strong learner.



Weak Learner/Strong Learner

Input: n labelled points.

Weak Learner:

produce hypothesis correctly classifies 1
2 + ε fraction

Strong Learner:
produce hyp. correctly classifies 1+µ fraction

That’s a really strong learner!
Strong Learner:

produce hypothesis correctly classifies 1−µ fraction

Same thing?

Can one use weak learning to produce strong learner?

Boosting: use a weak learner to produce strong learner.



Weak Learner/Strong Learner

Input: n labelled points.

Weak Learner:
produce hypothesis correctly classifies 1

2 + ε fraction

Strong Learner:
produce hyp. correctly classifies 1+µ fraction

That’s a really strong learner!
Strong Learner:

produce hypothesis correctly classifies 1−µ fraction

Same thing?

Can one use weak learning to produce strong learner?

Boosting: use a weak learner to produce strong learner.



Weak Learner/Strong Learner

Input: n labelled points.

Weak Learner:
produce hypothesis correctly classifies 1

2 + ε fraction

Strong Learner:

produce hyp. correctly classifies 1+µ fraction
That’s a really strong learner!

Strong Learner:
produce hypothesis correctly classifies 1−µ fraction

Same thing?

Can one use weak learning to produce strong learner?

Boosting: use a weak learner to produce strong learner.



Weak Learner/Strong Learner

Input: n labelled points.

Weak Learner:
produce hypothesis correctly classifies 1

2 + ε fraction

Strong Learner:
produce hyp. correctly classifies 1+µ fraction

That’s a really strong learner!
Strong Learner:

produce hypothesis correctly classifies 1−µ fraction

Same thing?

Can one use weak learning to produce strong learner?

Boosting: use a weak learner to produce strong learner.



Weak Learner/Strong Learner

Input: n labelled points.

Weak Learner:
produce hypothesis correctly classifies 1

2 + ε fraction

Strong Learner:
produce hyp. correctly classifies 1+µ fraction

That’s a really strong learner!

Strong Learner:
produce hypothesis correctly classifies 1−µ fraction

Same thing?

Can one use weak learning to produce strong learner?

Boosting: use a weak learner to produce strong learner.



Weak Learner/Strong Learner

Input: n labelled points.

Weak Learner:
produce hypothesis correctly classifies 1

2 + ε fraction

Strong Learner:
produce hyp. correctly classifies 1+µ fraction

produce hyp.
correctly classifies 1+µ fraction

That’s a really strong learner!

Strong Learner:

produce hypothesis correctly classifies 1−µ fraction

Same thing?

Can one use weak learning to produce strong learner?

Boosting: use a weak learner to produce strong learner.



Weak Learner/Strong Learner

Input: n labelled points.

Weak Learner:
produce hypothesis correctly classifies 1

2 + ε fraction

Strong Learner:
produce hyp. correctly classifies 1+µ fraction

produce hyp.
correctly classifies 1+µ fraction

That’s a really strong learner!

Strong Learner:
produce hypothesis correctly classifies 1−µ fraction

Same thing?

Can one use weak learning to produce strong learner?

Boosting: use a weak learner to produce strong learner.



Weak Learner/Strong Learner

Input: n labelled points.

Weak Learner:
produce hypothesis correctly classifies 1

2 + ε fraction

Strong Learner:
produce hyp. correctly classifies 1+µ fraction

produce hyp.
correctly classifies 1+µ fraction

That’s a really strong learner!

Strong Learner:
produce hypothesis correctly classifies 1−µ fraction

Same thing?

Can one use weak learning to produce strong learner?

Boosting: use a weak learner to produce strong learner.



Weak Learner/Strong Learner

Input: n labelled points.

Weak Learner:
produce hypothesis correctly classifies 1

2 + ε fraction

Strong Learner:
produce hyp. correctly classifies 1+µ fraction

produce hyp.
correctly classifies 1+µ fraction

That’s a really strong learner!

Strong Learner:
produce hypothesis correctly classifies 1−µ fraction

Same thing?

Can one use weak learning to produce strong learner?

Boosting: use a weak learner to produce strong learner.



Weak Learner/Strong Learner

Input: n labelled points.

Weak Learner:
produce hypothesis correctly classifies 1

2 + ε fraction

Strong Learner:
produce hyp. correctly classifies 1+µ fraction

produce hyp.
correctly classifies 1+µ fraction

That’s a really strong learner!

Strong Learner:
produce hypothesis correctly classifies 1−µ fraction

Same thing?

Can one use weak learning to produce strong learner?

Boosting: use a weak learner to produce strong learner.



Poll.

Given a weak learning method (produce ok hypotheses.)

produce a great hypothesis.
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(B) No

If yes. How?

The idea: Multiplicative Weights.
Standard online optimization method reinvented in many areas.
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Boosting/MW Framework

Points lose when classified correctly.
The little devils want to fool the learner.

Learner classifies weighted majority of points correctly.

Strong learner algorithm from many weak learners!

Initialize: all points have weight 1.

Do T = 2
ε2 ln

1
µ

rounds

1. Find ht(·) correct on 1/2+ γ of weighted points.
2. Multiply each point that is correct by ( 1− ε).

Output hypotheses h(x): majority of h1(x),h2(x), . . . ,hT (x).

Claim: h(x) is correct on 1−µ of the points ! ! !

Cool!

Really? Proof?
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Logarithm

ln(1−x) = (−x−x2/2−x3/3....) Taylors formula for |x |< 1.

Implies: for x ≤ 1/2, that −x−x2 ≤ ln(1−x)≤−x .

The first inequality is from geometric series.

x3/3+ ...= x2(x/3+x2/4+ ..)≤ x2(1/2) for |x |< 1/2.

The second is from truncation.

Second implies: (1− ε)x ≤ e−εx , by exponentiation.
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Adaboost proof.

Claim: h(x) is correct on 1−µ of the points!

Let Sbad be the set of points where h(x) is incorrect.

majority of ht(x) are wrong for x ∈ Sbad .

point x ∈ Sbad is winning – loses less than 1
2 the time.

W (T )≥ (1− ε)
T
2 |Sbad |

Each day t , weak learner penalizes ≥ 1
2 + γ of the weight.

Loss Lt ≥ (1/2+ γ)

→W (t +1)≤W (t)(1− ε(Lt))≤W (t)e−εLt

→W (T )≤ ne−ε ∑t Lt ≤ ne−ε( 1
2+γ)T

Combining

|Sbad |(1− ε)T/2 ≤W (T )≤ ne−ε( 1
2+γ)T
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Calculation..

|Sbad |(1− ε)T/2 ≤ ne−ε( 1
2+γ)T

Set ε = γ, take logs.

ln
(
|Sbad |

n

)
+ T

2 ln(1− γ)≤−γT (1
2 + γ)

Again, −γ− γ2 ≤ ln(1− γ),

ln
(
|Sbad |

n

)
+ T

2 (−γ− γ2)≤−γT (1
2 + γ)→ ln

(
|Sbad |

n

)
≤− γ2T

2

And T = 2
γ2 logµ,

→ ln
(
|Sbad |

n

)
≤ logµ → |Sbad |

n ≤ µ.

The misclassified set is at most µ fraction of all the points.

The hypothesis correctly classifies 1−µ of the points !

Claim: Multiplicative weights: h(x) is correct on 1−µ of the points!
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Some details...

Weak learner learns over distributions of points not points.

Make copies of points to simulate distributions.

Used often in machine learning.
Blending learning methods.
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