Today	Perceptron Guarantees.	Margin and Perceptron		
Other algorithms. For linear programming. Online.	Separable set of points. Perceptron. Prove a performance bound.	Labelled points with x_1, \ldots, x_n . Hyperplane separator. Margins. Inside unit ball. Margin γ Hyperplane: $w \cdot x \ge \gamma$ for + points. $w \cdot x \le -\gamma$ for - points. Put points on unit ball. $w \cdot x = cos\theta$ Will assume positive labels! negate the negative: $(x, -1) \rightarrow (-x, 1)$		
Perceptron Algorithm An aside: a hyperplane is a perceptron. (single layer neural network, do you see? Linear programming!) Alg: Given x_1, \dots, x_n . Let $w_1 = x_1$. For each x_i where $w_t \cdot x_i$ has wrong sign (negative) Mistake $w_{t+1} = w_t + x_i$ t = t + 1 Theorem: Algorithm only makes $\frac{1}{\gamma^2}$ mistakes. Idea: Mistake on positive x_i : $w_{t+1} \cdot x_i = (w_t + x_i) \cdot x_i = w_t x_i + 1$. A step in the right direction! $w_{t+1} \cdot x_i$ is bigger. Claim 1: $w_{t+1} \cdot w \ge w_t \cdot w + \gamma$. A γ in the right direction! w_{t+1} is more like w . Mistake on positive x_i ; $w_{t+1} \cdot w = (w_t + x_i) \cdot w = w_t \cdot w + x_i \cdot w$ $\ge w_t \cdot w + \gamma$.	Proof:continued. Alg: Given $x_1,, x_n$. Let $w_1 = x_1$. For each x_i where $w_i \cdot x_i$ has wrong sign (negative) Mistake $w_{t+1} = w_t + x_i$ t = t + 1 Claim 2: $ w_{t+1} ^2 \le w_t ^2 + 1$ $w_{t+1} = w_t + x_i$ Less than a right angle! $\rightarrow w_{t+1} ^2 \le w_t ^2 + x_i ^2 \le w_t ^2 + 1$. Algebraically. Positive $x_i, w_t \cdot x_i \le 0$. $(w_t + x_i)^2 = w_t ^2 + 2w_t \cdot x_i + x_i ^2$. $\le w_t ^2 + x_i ^2 = w_t ^2 + 1$. Claim 2 holds even if no separating hyperplane!	Putting it together Claim 1: $w_{t+1} \cdot w \ge w_t \cdot w + \gamma$. $\implies w_t \cdot w \ge t\gamma$ Claim 2: $ w_{t+1} ^2 \le w_t ^2 + 1$. $\implies w_t ^2 \le t$ <i>M</i> -number of mistakes in algorithm. Let $t = M$. $\gamma M \le w_M \cdot w$ $\le w_M \le \sqrt{M}$. $\Rightarrow M \le \frac{1}{\gamma^2}$		

Finding fat separator. There is a γ separating hyperplane. We might find the one. May have bad margin. Does perceptron find big margin separator. The multiplicative weights framework. n experts. Sort of.

Approximately Maximizing Margin Algorithm

There is a γ separating hyperplane. Any point within $\gamma/2$ is still a mistake. Let $w_1 = x_1$, For each $x_2, \ldots x_n$, if $w_t \cdot x_i < \gamma/2$, $w_{t+1} = w_t + x_i$, t = t+1Claim 1: $w_{t+1} \cdot w \ge w_t \cdot w + \gamma$. Same (ish) as before.

Experts framework.

Every day, each offers a prediction.

"Rain" or "Shine."

		Day 1	Day 2	Day 3	 Day T
	Expert 1	Shine	Rain	Shine	
	Expert 2	Shine	Shine	Shine	
	Expert 3	Rain	Rain	Rain	
	:	:	:	Shine	

Rained! Shined! Shined!

Whose advice do you follow?

```
"The one who is correct most often."
```

How well do you do?

Margin Approximation: Claim 2

Claim 2(?): $|w_{t+1}|^2 \le |w_t|^2 + 1$??

Adding x_i to w_t even if in correct direction.

Obtuse triangle. $|v|^2 \le |w_t|^2 + 1$

$$\begin{split} |V|^{2} &\leq |W_{t}|^{2} + 1 \\ \rightarrow |V| &\leq |W_{t}| + \frac{1}{2|W_{t}|} \\ & (\text{square right hand side.}) \\ \text{Red bit is at most } \gamma/2. \\ \text{Together: } |W_{t+1}| &\leq |W_{t}| + \frac{1}{2|W_{t}|} + \frac{\gamma}{2} \end{split}$$

If $|w_t| \ge \frac{2}{\gamma}$, then $|w_{t+1}| \le |w_t| + \frac{3}{4}\gamma$. *M* updates $|w_M| \leq \frac{2}{\gamma} + \frac{3}{4}\gamma M$. Claim 1: Implies $|w_M| \ge \gamma M$. $\gamma M \leq \frac{2}{\gamma} + \frac{3}{4}\gamma M \rightarrow M \leq \frac{8}{\gamma^2}$

Infallible expert.

One of the experts is infallible! Your strategy? Choose any expert that has not made a mistake! How long to find perfect expert? Maybe..never! Never see a mistake. Better model? How many mistakes could you make? Mistake Bound. (A) 1 (B) 2 (C) log *n* (D) *n*−1 Adversary designs setup to watch who you choose, and make that expert make a mistake. *n* – 1!

Concept Alert.

Note.

Adversary: makes you want to look bad. "You could have done so well"... but you didn't! ha..ha! Analysis of Algorithms: do as well as possible!

Imperfect Experts

Goal? Do as well as the best expert! Algorithm. Suggestions? Go with majority? Penalize inaccurate experts? Best expert is penalized the least.

Initially: w_i = 1.
 Predict with weighted majority of experts.

3. $w_i \rightarrow w_i/2$ if wrong.

Back to mistake bound.

Infallible Experts. Alg: Choose one of the perfect experts. Mistake Bound: n-1 Lower bound: adversary argument. Upper bound: every mistake finds fallible expert. Better Algorithm? Making decision, not trying to find expert! Algorithm: Go with the majority of previously correct experts. What you would do anyway!

Analysis: weighted majority

Goal: Best expert makes *m* mistakes. Potential function: $\sum_{i} w_{i}$. Initially *n*. For best expert, *b*, $w_{b} \geq \frac{1}{2^{m}}$. Each mistake: total weight of incorrect experts reduced by -1? -2? factor of $\frac{1}{2}$? each incorrect expert weight multiplied by $\frac{1}{2}$! total weight decreases by factor of $\frac{1}{2}$? factor of $\frac{3}{4}$? mistake $\rightarrow \geq$ half weight with incorrect experts ($\geq \frac{1}{2}$ total. Mistake \rightarrow potential function decreased by $\frac{3}{4}$. \implies for *M* is number of mistakes that: $\frac{1}{2^{m}} \leq \sum_{i} w_{i} \leq \left(\frac{3}{4}\right)^{M} n.$

 Initially: w_i = 1.
 Predict with weighted majority of everythe

experts. 3. $w_i \rightarrow w_i/2$ if

wrong.

Massa

Alg 2: find majority of the perfect How many mistakes could you make? (A) 1 (B) 2 (C) log n (D) n-1At most log n! When alg makes a *mistake*, |"perfect" experts| drops by a factor of two. Initially n perfect experts mistake $\rightarrow \leq n/2$ perfect experts mistake $\rightarrow \leq n/4$ perfect experts : mistake $\rightarrow \leq 1$ perfect expert

 \geq 1 perfect expert \rightarrow at most log *n* mistakes!

Analysis: continued.

 $\frac{1}{2^m} \leq \sum_i w_i \leq \left(\frac{3}{4}\right)^M n.$ *m* - best expert mistakes *M* algorithm mistakes. $\frac{1}{2^m} \leq \left(\frac{3}{4}\right)^M n.$ Take log of both sides. $-m \leq -M \log(4/3) + \log n.$ Solve for *M*. $M \leq (m + \log n) / \log(4/3) \leq 2.4(m + \log n)$ Multiple by $1 - \varepsilon$ for incorrect experts... $(1 - \varepsilon)^m \leq (1 - \frac{\varepsilon}{2})^M n.$ Massage... $M \leq 2(1 + \varepsilon)m + \frac{2\ln n}{\varepsilon}$ Approaches a factor of two of best expert performance!

Best Analysis?

Consider two experts: A,B Bad example? Which is worse? (A) A correct even days, B correct odd days (B) A correct first half of days, B correct second Best expert peformance: *T*/2 mistakes.

Pattern (A): T - 1 mistakes. Factor of (almost) two worse!

Randomized algorithm Expert *i* loses $\ell_i^i \in [0, 1]$ in round t.

1. Initially $w_i = 1$ for expert *i*. 2. Choose expert *i* with prob $\frac{w_i}{W}$, $W = \sum_i w_i$. 3. $w_i \leftarrow w_i (1 - \varepsilon)^{\ell_i^i}$ W(t) sum of w_i at time *t*. W(0) = nBest expert, *b*, loses L^* total. $\rightarrow W(T) \ge w_b \ge (1 - \varepsilon)^{L^*}$. $L_t = \sum_i \frac{w_i \ell_i^i}{W}$ expected loss of alg. in time *t*. Claim: $W(t+1) \le W(t)(1 - \varepsilon L_t)$ Loss \rightarrow weight loss. Proof: $W(t+1) = \sum_i (1 - \varepsilon)^{\ell_i^i} w_i \le \sum_i (1 - \varepsilon \ell_i^i) w_i = \sum_i w_i - \varepsilon \sum_i w_i \ell_i^i$ $= \sum_i w_i \left(1 - \varepsilon \frac{\sum_i w_i \ell_i^i}{\sum_i w_i} \right)$ $= W(t)(1 - \varepsilon L_t)$

Randomization!!!!

Better approach? Use? Randomization! That is, choose expert *i* with prob $\propto w_i$ Bad example: A,B,A,B,A... After a bit, A and B make nearly the same number of mistakes. Choose each with approximately the same probabilty. Make a mistake around 1/2 of the time. Best expert makes T/2 mistakes. Roughly optimal!

Analysis

$$\begin{split} (1-\varepsilon)^{L^*} &\leq W(T) \leq n \ \prod_t (1-\varepsilon L_t) \\ \text{Take logs} \\ (L^*) \ln(1-\varepsilon) &\leq \ln n + \sum \ln(1-\varepsilon L_t) \\ \text{Use} &-\varepsilon - \varepsilon^2 \leq \ln(1-\varepsilon) \leq -\varepsilon \\ &-(L^*)(\varepsilon + \varepsilon^2) \leq \ln n - \varepsilon \sum L_t \\ \text{And} \\ &\sum_t L_t \leq (1+\varepsilon) L^* + \frac{\ln n}{\varepsilon}. \\ &\sum_t L_t \text{ is total expected loss of algorithm.} \\ \text{Within } (1+\varepsilon) \text{ ish of the best expert!} \\ \text{No factor of 2 loss!} \end{split}$$

Randomized analysis.

Some formulas:

$$\begin{split} & \text{For } \varepsilon \leq 1, x \in [0, 1], \\ & (1 + \varepsilon)^x \leq (1 + \varepsilon x) \\ & (1 - \varepsilon)^x \leq (1 - \varepsilon x) \\ & \text{For } \varepsilon \in [0, \frac{1}{2}], \\ & -\varepsilon - \varepsilon^2 \leq \ln(1 - \varepsilon) \leq -\varepsilon \\ & \varepsilon - \varepsilon^2 \leq \ln(1 + \varepsilon) \leq \varepsilon \\ & \text{Proof Idea: } \ln(1 + x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \cdots \end{split}$$

Gains.

Why so negative? Each day, each expert gives gain in [0,1]. Multiplicative weights with $(1 + \varepsilon)^{g_i^t}$.

 $G \ge (1-\varepsilon)G^* - rac{\log n}{\varepsilon}$

where G^* is payoff of best expert. Scaling: Not [0, 1], say [0, ρ].

 $L \leq (1+\varepsilon)L^* + \frac{\rho \log n}{\varepsilon}$

Summary: multiplicative weights.

Framework: *n* experts, each loses different amount every day. Perfect Expert: log *n* mistakes. Imperfect Expert: best makes *m* mistakes. Deterministic Strategy: $2(1 + \varepsilon)m + \frac{\log n}{\varepsilon}$ Real numbered losses: Best loses *L** total. Randomized Strategy: $(1 + \varepsilon)L^* + \frac{\log n}{\varepsilon}$ Strategy: Choose proportional to weights multiply weight by $(1 - \varepsilon)^{IOSS}$. Multiplicative weights framework! Applications next!

Digression..

What situations?
Prisoner's dilemma:
Two prisoners separated by jailors and asked to betray partner.
Basis of the free market.
Companies compete, don't cooperate.
No Monopoly:
E.G., OPEC, Airlines, .
Should defect.
Why don't they?
Free market economics ...not so much?
More sophisticated models ,e.g, iterated dominance, coalitions, complexity..
Lots of interesting Game Theory!
This class(today): simpler version.

Strategic Games.

N players.

Two Person Zero Sum Games

2 players.

Each player has strategy set: *m* strategies for player 1 *n* strategies for player 2

Payoff function: u(i,j) = (-a,a) (or just *a*). "Player 1 pays *a* to player 2."

Zero Sum: Payoff for any pair of strategies sums to 0.

Payoffs by *m* by *n* matrix: *A*. Row player minimizes, column player maximizes.

Roshambo: rock,paper, scissors.

 R
 P
 S

 R
 0
 1
 -1

 P
 -1
 0
 1

 S
 1
 -1
 0

Any Nash Equilibrium?

(R,R)? no. (R,P)? no. (R,S)? no.

Famous because?

Mixed Strategies.

Player 1: play each strategy with equal probability. Player 2: play each strategy with equal probability.

Definitions.

Mixed strategies: Each player plays distribution over strategies.

Pure strategies: Each player plays single strategy.

Note: column knows row cheats Why play? Row is column's advisor. ... boss.

Equilibrium

Expected payoffs for pure strategies for player 1. Expected payoff of Rock? $\frac{1}{3} \times 0 + \frac{1}{3} \times 1 + \frac{1}{3} \times -1 = 0$. Expected payoff of Paper? $\frac{1}{3} \times -1 + \frac{1}{3} \times 0 + \frac{1}{3} \times 1 = 0$. Expected payoff of Scissors? $\frac{1}{3} \times 1 + \frac{1}{3} \times -1 + \frac{1}{3} \times 0 = 0$. No better pure strategy. \implies No better mixed strategy! Mixed strat. payoff is weighted av. of payoffs of pure strats. $E[X] = \sum_{(i,j)} (Pr[i] \times Pr[j])X(i,j) = \sum_i Pr[i](\sum_j Pr[j] \times X(i,j))$ Mixed strategy can't be better than the best pure strategy. Player 1 has no incentive to change! Same for player 2. Equilibrium!

Equilibrium: play the boss...

```
A = \begin{bmatrix} 0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}
```

```
Equilibrium:

Row: (0, \frac{1}{3}, \frac{1}{6}, \frac{1}{2}). Column: (\frac{1}{3}, \frac{1}{2}, \frac{1}{6}).

Payoff? Remember: weighted average of pure strategies.

Row Player.
```

Strategy 1: $\frac{1}{3} \times 0 + \frac{1}{2} \times 1 + \frac{1}{6} \times -1 = \frac{1}{3}$ Strategy 2: $\frac{1}{3} \times -1 + \frac{1}{2} \times 0 + \frac{1}{6} \times 1 = -\frac{1}{6}$ Strategy 3: $\frac{1}{3} \times 1 + \frac{1}{2} \times -1 + \frac{1}{6} \times 0 = -\frac{1}{6}$ Strategy 4: $\frac{1}{3} \times 0 + \frac{1}{2} \times 0 + \frac{1}{6} \times -1 = -\frac{1}{6}$

Payoff is $0 \times \frac{1}{3} + \frac{1}{3} \times (-\frac{1}{6}) + \frac{1}{6} \times (-\frac{1}{6}) + \frac{1}{2} \times (-\frac{1}{6}) = -\frac{1}{6}$

Column player: every column payoff is $-\frac{1}{6}$. Both only play optimal strategies! Complementary slackness. Why not play just one? Change payoff for other guy!

Another example plus notation.

```
Rock, Paper, Scissors, prEempt.
PreEmpt ties preEmpt, beats everything else.
Payoffs.
      R P S E
 R 0 1 -1 1
 Р
     -1 0 1
                    1
 S 1 -1 0
                    1
 E -1 -1 -1 0
Equilibrium? (E,E). Pure strategy equilibrium.
Notation: Rock is 1, Paper is 2, Scissors is 3, prEmpt is 4.
Pavoff Matrix.
                  A = \begin{bmatrix} 0 & 1 & -1 & 1 \\ -1 & 0 & 1 & 1 \\ 1 & -1 & 0 & 1 \\ -1 & -1 & -1 & 0 \end{bmatrix}
Next time: Multiplicative weights and games.
```