

```
Lagrangian Dual and Central Path.min tf<sub>0</sub>(x)−∑i=1</sub> ln(−f<sub>i</sub>(x))
        Optimality condition? Take Derivative.<br>
t\nabla f_0(x) - \sum_{i=1} \frac{\nabla f_i(x)}{f_i(x)} = 0 \nabla f_0(x) - \sum_{i=1} \frac{1}{t f_i(x)} \nabla f_i(x) = 0Or, \nabla f_0(x) = \sum_{i=1} \frac{\nabla f_i(x)}{t_i(x)} (Opposing force fields.)<br>
Recall, Lagrangian: L(\lambda, x) = f_0(x) + \sum_i \lambda_i f_i(x).
         Fix λ, optimize for x
∗ give valid lower bound on solution.Optimality Condition.Derivative: \nabla f_0(x) + \sum_{i=1} \lambda_i \nabla f_i(x) = 0.Take \lambda_i^{(t)} = -\frac{1}{t_i(x)}. x(t) = x^*(\lambda^{(t)})! Same optimal point!
        Value? Found \lambda where:
           \min_{x} L(\lambda, x) = f_0(x) + \sum_{i=1}^{\infty} \lambda_i f_i(x) = f_0(x) - \frac{m}{t}Central point x(t) within \frac{m}{t} of optimal primal!!!!!
            L(\lambda, x(t)) \ge f_0(x) - \frac{m}{t} \implies \min_x L(\lambda, x) + \frac{m}{t} \ge f_0(x)<br>
\implies OPT + \frac{m}{t} \ge f_0(x)\implies OPT + \frac{m}{t} \geq f_0(x)
```
...Central Path Evolution

Old point $x = x(t)$ versus $x^+ = x(\mu t)$?
Minimizing: $F(x) = \mu t f_0(x) + \nabla^n$, In α point *x* = *x*(*t*) versus *x* ' = *x*(*μt*)*:*
Minimizing: *F*(*x*) = *μtf*₀(*x*) + ∑^{*n*}_{*i*=0} ln(−*f_i*(*t*)). We proved: *^F*(*x*)−*F*(*x*⁺) [≤] *^m*(^µ [−]1−lnµ). Choose $u = 1 + \delta$. $ln(1+x) \approx x - x^2/2.$ $\implies ln(1+\delta) = \delta - \delta^2/2$ ln(1+*x*) ≈ *x* − *x*²/2. ⇒ ln(1+δ) = δ − δ²/2
 F(*x*)−*F*(*x*⁺) = *m*(1+δ − 1 − (δ − δ²/2)) = *m*(δ²/2). Choose $\delta = \frac{1}{\sqrt{m}}$ or $\mu = (1 + \delta)$. $F(x) - F(x^+) = (\delta^2/2) = \frac{1}{2}$. Modifying *t* by factor of $(1 + \frac{1}{\sqrt{m}})$, optimal still close! *t* can be arbitrarily large! The value of the objective function can be gigantic and change by an enormous amount. but current point is very close to optimal.Intuition here?

Central path.

 $\min_{x} f_0(x), f_i(x) \leq 0.$ $\min_X tf_0(x) - \sum_{i>0} \ln(-f_i(x))$ Optimal: *^x*(*t*) is feasible. $f_0(x(t)) \leq OPT + \frac{m}{t}$ Algorithm: take $t \rightarrow \infty$. Finding *^x*(*t*)? Assume you have $x(t)$, change $t = \mu t$, for $\mu > 1$.
Find $x(\mu t)$ Find *^x*(µ*^t*). Idea: newton's method. Should show new optimal point not too different from old.Next.

An attempt at intuition.

 $min \sum_i x_i, x \geq 0.$ optimum is 0. \mathcal{L} Central path: $F_t(x) = t \sum_i x_i + \sum_i \ln x_i$ Optimum: $x_i = \frac{1}{t}$. *t* [→] ^µ*^t* New optimum: $x_i^+ = \frac{1}{\mu t}$. Notice: the change in *x* is quite small.
Roughly $(\mu - 1)^{\frac{1}{t}} = \frac{1}{\sqrt{mt}}$ where *t* is large. Intuitively: new point is very close to old point.

Slightly more generally. Only one vertex on polytope.*n* inequalities, *ⁿ* unkonwns: min*cx*,*Ax* [≥] *b*. Is solution bounded or unbounded? Alg: Linear equation solve for intersection of *ⁿ* inequalities, check if there is some direction of improvement.Evolution of central path.Optimal $x(t)$: $\nabla f_0(x) + \sum_{i=1}^{\infty} \frac{1}{t f_i(x)} \nabla f_i(x) = 0$ $tc = -\sum_{i} \frac{a_i}{a_i x - b_i}$ $s_i = a_i x - b_i$. "Distance' to constraint.
Recall previous example: $x > 0$, the Recall previous example: *^x* [≥] 0, the *^xⁱ* are slack variables. *s* ⁼ *Ax* [−]*b*. Given solution to $x(t)$ with $b - Ax(t) = s(t)$.
Then $Ax(u t) - b - s(t)/u$ works Then *Ax*(µ*^t*)−*^b* ⁼ *^s*(*t*)/^µ works. Since only *n* inequalities, can just solve to get next point. Answer is easy too.

Newton's Method.

 $f(x) = \log(a_i x - b_i)$ $s_i = b_i - a_i x$ $f'(x) = \frac{a_i}{s_i}$ $f''(x) = \frac{1}{s_i^2} a_i a_i^T$ $f'''(a) = a_i^{3/3} \frac{1}{s_i^3}$ *f*(*x* + *u*) = *f*(*x*) + *f*['](*x*)·*u* + *u*^{⊗2}·*f*^{''}(*x*) The minimizer? $-\frac{1}{2}(f''(x))^{-1}f'(x)$. Self-Concordance: $|f'''(x)| \leq 2f''(x)^{3/2}$. Newton: $x = x - \frac{f'(x)}{f''(x)}$
If f(*x*) is linear and If $f'(x)$ is linear, goes to $f'(x) = 0$.
Scaled by slope $f''(x)$ of $f'(x)$ Scaled by slope, $f''(x)$, of $f'(x)$. Another Newton Method Analysis: potential function: ∥*^f* ′(*x*)∥/∥*f*′′(*x*)∥.Idea: if $f''(x)$ does not change, then $f'(x) =$

```
f'''(x) does not change, then f'(x) = 0.<br>
f''(x) \le f'(x)^{3/2} \to f''(x) does not change much.<br>
notential ||f'(x')||/||f''(x')|| decreases
f'''(x) \le f'(x)^{3/2} \rightarrow f''(x) does not chapportial ||f'(x')||/||f''(x')|| decreases.
```
More generally.

General $Ax \ge b$, min*cx*. Given solution to $x(t)$ with $b - Ax(t) =$ *s*(*t*) = *s*(*t*) with *b* − *Ax*(*t*) = *s*(*t*).
Then *b* − *Ax*(μt) = *s*(*t*)/ μ is optimal: μt *c* = −∑*i* $\frac{a_i}{a_i x - b_i}$ Overdetermined if more than *ⁿ* inequalities, so maybe not possible.So, need to find solution to: μ *tc* = $-\sum_{i}\frac{a_{i}}{a_{i}x-b_{i}}$ Showed solution is at least close in value to old solution on*F*(*x*).One thing to note: if you know the optimal vertex (tight constraints).then you are done.Idea: close enough to tight constraints. Done. Close enough to a vertex, can jump to vertex.Cramer's rule, gives estimate of how close the closest twovertices can be.

Behavior of log barrier.

What about the ratio? $|\frac{g''(\psi)}{2g'(x_n)}|$ What if $f(x) = \log x$ and recall $g(x) = f'(x)$? $(\log x)' = 1/x$, $(\log x)'' = -1/x^2$, $(\log x)''' = 2/x^3$. $|(\log x)'''| = 2|(\log x)''|^{3/2}.$ Thus, this ratio is around 1/*^x*.Newton analysis we did: $\left|\frac{g''(\psi)}{2g'(x_0)}\right| (x - x^+) < 1$. Quadratic convergence: ratio is small.

Interior Point Method.

Find central point. $Recall: F(x) = tf_0(x) - \sum_i log(-f_i(x)).$ Find point: *^G*(*x*) = [∇]*F*(*x*) = 0. Newton: find all zeros of vector valued *^G*(*x*)! $g_1(x) = \frac{t\partial f_0(x)}{\partial x_1} - \sum_i \frac{\partial f_i(x)}{\partial x_1} \frac{1}{f_i(x)}$ Newton: $\implies |(x_{n+1}-\alpha)| \leq |\frac{g'(\psi)}{2g''(x_n)}|(x_n-\alpha)^2.$ Recall, distance for *x* to x^+ is pretty small. On the order of 1/*^t*.What about the ratio? $|\frac{g''(\psi)}{2g'(x_n)}|$

Another Type of IPM strategy.

min*xc*,*Ax* [≥] *b*. $F(x) = tcx - \sum_{i} \log(a_i x - b_i).$ $\nabla F(x) = t c - \sum_i \frac{a_i}{s_i}$ Introduce dual variables: ^λ*i*. Approximate Complementary slackness. $\lambda_i s_i = \frac{1}{t}$ verse $\lambda_i s_i = 0$
s = b = A x *s* ⁼ *^b* [−]*Ax* Predictor-Corrector:

 (1) decrease *^F*(*x*) (2) Fix complementary slackness.

Gives another possibility:Explicitly maintain primal-dual soluion: (*^x*,*^s*)

```
Gradient descent and Newton.minimize f(x).
     Gradient descent.x = x - \alpha f'(x).
       Decreases function until gradient changes sign.If f''(y) \leq M for y = x - \alpha f'(x).
         Improve when: f'(y) > f'(x) - \int_{x}^{y} f''(y) dx > 0.<br>Also: f'(y) > f'(x) - M(y - x) > 0.<br>When: (y - x) < f'(x)/MWhen: (y-x) \le f'(x)/M.<br>set \alpha = 1/Mset \alpha = 1/M.
      For linear function: f
′(x)? Optimum? Is infinitely far.
      Newton: x = x - \frac{f'(x)}{f''(x)}.
         If f''(x) \ge m, then f'(x) = 0. x: (x'-x) \le f'(x)/m.
      Estimate of how far is f'(x)/f''(x). Analysis: the estimate
     decreases.
```
does not change too much.

...as long as

 f ′′(*x*)