
Lagrangian Dual.

Find x , subject to

fi(x)≤ 0, i = 1, . . .m.

Remember calculus (constrained optimization.)

Lagrangian: L(x ,λ ) = ∑m
i=1 λi fi(x)

λi ≥ 0 - Lagrangian multiplier for inequality i .

For feasible solution x , L(x ,λ ) is

(A) non-negative in expectation

(B) positive for any λ .

(C) non-positive for any valid λ .

If λ , where L(x ,λ ) is positive for all x

(A) there is no feasible x .

(B) there is no x ,λ with L(x ,λ )< 0.

Lagrangian:constrained optimization.

min f (x)
subject to fi(x)≤ 0, i = 1, ...,m

Lagrangian function:

L(x ,λ ) = f (x)+∑m
i=1 λi fi(x)

If (primal) x value v
For all λ ≥ 0 with L(x ,λ )≤ v

Maximizing λ only positive when fi(x) = 0.

If there is λ with L(x ,λ )≥ α for all x
Optimum value of program is at least α. OPT ≥minx L(x ,λ )
Why? A feasible solution has fi(x)≤ 0, so L(x ,λ )≤ f (x).

Saddle point.

Lagrangian function:

L(x ,λ ) = f (x)+∑m
i=1 λi fi(x)

Primal problem.
x-player “best defense”:

minx maxλ L(x ,λ ).
x , that minimizes L(x ,λ ) over all λ ≥ 0.

Dual problem:
λ -player “best defense”:

maxλ minx L(x ,λ ).
λ , that maximizes L(x ,λ ) over all x .

Saddle point: (x ,y) with both conditions:

For x-player: ∇λ L′(x ,λ )≤ 0 =⇒ f ′i (x)≤ 0.

For λ player: L′(x ,λ ) = ∇x f (x)+∑m
i=1 λi∇x fi(x) = 0.

At saddle point. Is λi ≥ 0 only if fi(x) = 0? Yes.

Linear Program.

mincx ,Ax ≥ b

min c ·x
subject to bi −ai ·x ≤ 0, i = 1, ...,m

Lagrangian (Dual):

L(λ ,x) = cx +∑i λi(bi −aix).

or

L(λ ,x) =−(∑j xj(ajλ −cj))+bλ .

Best λ?
maxb ·λ where ajλ = cj .

maxbλ ,λ T A = c,λ ≥ 0
Saddle point: complementary slackness.

Newton’s method for root finding.

Find a root of f (x).

At x .

0 = f (x)+ f ′(x)(t −x). =⇒ t = x − f (x)
f ′(x)

xn+1 = xn − f (x)
f ′(x) .

Convergence Analysis.

Choose α where f (α) = 0.

f (α) = f (x)+ f ′(xn)(α −x)+R

R = 1
2! f

′′(ψ)(α −x)2

For some ψ ∈ [α,x ]. (Assume α < x .)

Lagrange form of Taylor’s series.

0 = f (α) = f (x)+ f ′(x)(α −x)+ 1
2 f ′′(ψ)(α −x)2

Rearrange:
f (x)
f ′(x) +(α −x) = −f ′′(ψ)

2f ′(x) (α −x)2

Let x ′ = x − f (x)
f ′(x)

α −x ′ = −f ′′(ψ)
2f ′(x) (α −x)2

|α −x ′|= | f ′′(ψ)
2f ′(x) |(α −x)2.

If |α −x |< ε =⇒ |α −x | ≤ | f ′′(ψ)
2f ′(x) |ε2



Lagrange form for Taylor’s Theorem: skipping.
F (t) = f (t)+ f ′(t)(x − t)+ f ′′(t)

2! (x − t)2 · · · f (k)
k ! (x − t)k for t ∈ [a,x ].

Note F (x)−F (a) = f (x)−F (a) = R(x). Remainder in Taylor’s.

The mean value theorem: There is ψ ∈ [a,x ], where
F ′(ψ)
G′(ψ)

= F (x)−F (a)
G(x)−G(a)

General version of G(x) = x : ψ has slope equal to average slope.

F ′(t)? Use product rule on k th term:
f (k+1)(t)

k ! (x − t)k − f (i)(t)
(k−1)! (x − t)k−1.

Successive terms telescope: E.g.,

f ′(t)+(f ′′(t)(x − t)− f ′(t)(x − t)0) = f ′′(t)(x − t).

So, F ′(t) = f (k+1)(t)
k ! (x − t)k .

R(x) = F (x)−F (a) = f (k+1)(ψ)
k ! (x −ψ)k G(x)−G(a)

G′(ψ)

Set G(t) = (x − t)k+1, G′(ψ) =−(k +1)(x − t)k , G(a) = (x −a)k+1,
G(x) = 0.

R(x) = F (x)−F (a) = f (k+1)(ψ)
(k+1)! (x −a)k+1

Multivariate version.

Vector x , functions: f1(x), f2(x), . . . fk (x).

xn+1 = xn −J−1(n)F (xn), where F (x) = (f1(x), . . . , fn(x)).

where

J =




∇f1(x)
∇f2(x)

...




Interior point on the central path.

Find x , that minimizes f0(x) subject to

fi(x)≤ 0, i = 1, . . .m.

Central path:

min tf0(x)−∑m
i=1 ln(−fi(x))

The minimizer, x(t), form the central path.

x
x

x

The sequence of x ’s are “central path”.

Lagrangian Dual and Central Path.

min tf0(x)−∑i=1 ln(−fi(x))

Optimality condition?

Derivative: t∇f0(x)−∑i=1
∇fi (x)
fi (x)

= 0 ∇f0(x)−∑i=1
1

tfi (x)
∇fi(x) = 0

Or, ∇f0(x) = ∑i=1
∇fi (x)
tfi (x)

(Opposing force fields.)

Recall, Lagrangian: L(λ ,x) = f0(x)+∑i λi fi(x).

Fix λ , optimize for x∗ give valid lower bound on solution.
Optimality Condition.

Derivative: ∇f0(x)+∑i=1 λi∇fi(x) = 0.

Take λ (t)
i =− 1

tfi (x)
. x(t) = x∗(λ (t))! Same optimal point!

Value? Found λ where:
minx L(λ ,x) = f0(x)+∑i=1 λi fi(x) = f0(x)− m

t ≤minx maxλ L(λ ,x).

Central point x(t) within m
t of optimal primal!!!!

L(λ ,x(t))≥ f0(x)− m
t =⇒ minx L(λ ,x)+ m

t ≥ f0(x)
=⇒ OPT + m

t ≥ f0(x)

Central path.

minx f0(x), fi(x)≤ 0.

minx tf0(x)−∑i>0 ln(−fi(x))

Optimal: x(t) is feasible.

f0(x(t))≤ OPT + m
t

Algorithm: take t → ∞.

Finding x(t)?

Assume you have x(t), change t = µt , for µ > 1.
Find x(µt).
Idea: newton’s method.

Should show new optimal point not too different from old.

Next.

Central Path evolution.
Old point x = x(t) versus x+ = x(µt)? Minimizing:
µtf0(x)−∑n

i=1 ln(−fi(t)).

Difference in new objective from old optimal point to new:
µtf0(x)−∑m

i=1 ln(−fi(x))−µtf0(x+)+∑m
i=1 ln(−fi(x+))

Simplify: µtf0(x)−µtf0(x+)+∑i ln(− fi (x+)
fi (x)

)

Let λi =− 1
tfi (x)

. Remember: L(λ ,x) = f0(x)+∑i λi fi(x).
f0(x)−L(λ ,x ′)≤ m

t since ∑i λi fi(x) =−m
t .

µtf0(x)−µtf0(x+)+∑i ln(−µtλi fi(x+))−m lnµ
ln(−x) = ln(1− (1+x))≤−(1+x)

≤ µtf0(x)−µtf0(x+)−∑i(1+λi µtfi(x+))−m lnµ
= µtf0(x)−µtf0(x+)−µt ∑i λi fi(x+)−m−m lnµ
= µt(f0(x)− (f0(x+)+∑i λi fi(x+))−m−m lnµ

= µt(f0(x)−L(λ ,x+))−m−m lnµ
≤ µt(m

t )−m−m lnµ
= m(µ −1− lnµ)



...Central Path Evolution

Old point x = x(t) versus x+ = x(µt)?
Minimizing: F (x) = µtf0(x)+∑n

i=0 ln(−fi(t)).

We proved: F (x)−F (x+)≤ m(µ −1− lnµ).

Choose µ = 1+δ .
ln(1+x)≈ x −x2/2. =⇒ ln(1+δ ) = δ −δ 2/2

F (x)−F (x+) = m(1+δ −1− (δ −δ 2/2)) = m(δ 2/2).

Choose δ = 1√
m or µ = (1+δ ).

F (x)−F (x+) = (δ 2/2)) = 1
2 .

Modifying t by factor of (1+ 1√
m ), optimal still close!

t can be arbitrarily large!

The value of the objective function can be gigantic
and change by an enormous amount.

but current point is very close to optimal.

Intuition here?

An attempt at intuition.

min∑i xi ,x ≥ 0.

optimum is 0.

Central path: Ft(x) = t ∑i xi +∑i lnxi

Optimum: xi =
1
t .

t → µt

New optimum: x+
i = 1

µt .

Notice: the change in x is quite small.
Roughly (µ −1)1

t = 1√
mt where t is large.

Intuitively: new point is very close to old point.

Slightly more generally.
Only one vertex on polytope.

n inequalities, n unkonwns: mincx ,Ax ≥ b.

Is solution bounded or unbounded?

Alg: Linear equation solve for intersection of n inequalities, check if
there is some direction of improvement.

Evolution of central path.

Optimal x(t): ∇f0(x)+∑i=1
1

tfi (x)
∇fi(x) = 0

tc =−∑i
ai

ai x−bi

si = aix −bi . “Distance’ to constraint.
Recall previous example: x ≥ 0, the xi are slack variables.
s = Ax −b.

Given solution to x(t) with b−Ax(t) = s(t).
Then Ax(µt)−b = s(t)/µ works.

Since only n inequalities, can just solve to get next point.

Answer is easy too.

More generally.

General Ax ≥ b,mincx .

Given solution to x(t) with b−Ax(t) = s(t).
Then b−Ax(µt) = s(t)/µ works.

Overdetermined if more than n inequalities, so maybe not possible.

So, need to find solution to: µtc =−∑i
ai

ai x−bi

Showed solution is at least close in value to old solution on F (x).

One thing to note:
if you know the optimal vertex (tight constraints).
then you are done.

Idea: close enough to tight constraints. Done.

Close enough to a vertex, can jump to vertex.

Cramer’s rule, gives estimate of how close the closest two vertices
can be.

Interior Point Method.

Find central point.

Recall: F (x) = tf0(x)−∑i log(−fi(x)).

Find point: G(x) = ∇F (x) = 0.

Newton: find all zeros of vector valued G(x)!

g1(x) =
t∂ f0(x)

∂x1
−∑i

∂ fi (x)
∂x1

1
fi (x)

Newton:
=⇒ |(xn+1 −α)| ≤ | g′(ψ)

2g′′(xn)
|(xn −α)2.

Recall, distance for x to x+ is pretty small.
On the order of 1/t .

What about the ratio? | g′′(ψ)
2g′(xn)

|

Behavior of log barrier.

What about the ratio? | g′′(ψ)
2g′(xn)

|
What if f (x) = logx and recall g(x) = f ′(x)?

(logx)′ = 1/x , (logx)′′ =−1/x2, (logx)′′′ = 2/x3.

|(logx)′′′|= | x
2 (logx)′′|.

Thus, this ratio is around 1/x .

Thus, | g′′(ψ)
2g′(xn)

|(x −x+)≤ 1/2.

Quadratic convergence: ratio is small.



Newton’s Method.

f (x) = log(aix −bi)

si = aix −bi

f ′(x) = ai
si

f ′′(x) = 1
s2

i
aiaT

i f ′′′(a) = a⊗3
i

1
s3

i

f (x +u) = f (x)+ f ′(x) ·u+u⊗2 · f ′′(x)
The minimizer? −1

2 (f
′′(x))−1f ′(x).

Self-Concordance: |f ′′′(x)| ≤ 2f ′′(x)3/2.

Newton Method: f (x)− f (x∗)≤ 1/2, it converges quadratically.

Another Type of IPM strategy.

minxc,Ax ≥ b.

F (x) = tcx −∑i log(aix −bi).

∇F (x) = tc−∑i
ai
si

Introduce dual variables: λi .
Approximate Complementary slackness.
λisi =

1
t verse λisi = 0

s = b−Ax

Gives another possibility:
Explicitly maintain primal-dual soluion: (x ,s)


