How do you minimize a function?

How do you minimize a function? $argmin_{x \in [a,b]} f(x)$?

How do you minimize a function? $argmin_{x \in [a,b]} f(x)$? Find *x*?

How do you minimize a function? $argmin_{x \in [a,b]} f(x)$? Find x? (1) f'(x) = 0 and check.

How do you minimize a function? $argmin_{x \in [a,b]} f(x)$? Find x? (1) f'(x) = 0 and check. (2) or at the endpoints of an interval.

How do you minimize a function? $argmin_{x \in [a,b]} f(x)$? Find x? (1) f'(x) = 0 and check. (2) or at the endpoints of an interval.

How do you minimize a function? $argmin_{x\in[a,b]}f(x)$? Find x? (1) f'(x) = 0 and check. (2) or at the endpoints of an interval.

Calculus.

How do you minimize a function? $argmin_{x \in [a,b]} f(x)$? Find x? (1) f'(x) = 0 and check. (2) or at the endpoints of an interval. Calculus.

Linear functions.

How do you minimize a function? $argmin_{x \in [a,b]} f(x)$? Find x? (1) f'(x) = 0 and check. (2) or at the endpoints of an interval. Calculus.

Linear functions. Derivative is constant, never/always 0.

How do you minimize a function? $argmin_{x \in [a,b]} f(x)$? Find x? (1) f'(x) = 0 and check. (2) or at the endpoints of an interval. Calculus.

Linear functions. Derivative is constant, never/always 0.

How do you minimize a function? $argmin_{x \in [a,b]} f(x)$? Find x? (1) f'(x) = 0 and check. (2) or at the endpoints of an interval.

Calculus.

Linear functions. Derivative is constant, never/always 0.

How do you minimize a function? $argmin_{x \in [a,b]} f(x)$? Find *x*? (1) f'(x) = 0 and check. (2) or at the endpoints of an interval.

Calculus.

Linear functions. Derivative is constant, never/always 0.

Unbounded unless restricted to an interval.

How do you minimize a function? $argmin_{x \in [a,b]} f(x)$? Find x? (1) f'(x) = 0 and check. (2) or at the endpoints of an interval.

Calculus.

Linear functions. Derivative is constant, never/always 0.

Unbounded unless restricted to an interval. Then "at" a vertex in one dimension.

How do you minimize a function? $argmin_{x \in [a,b]} f(x)$? Find x? (1) f'(x) = 0 and check. (2) or at the endpoints of an interval.

Calculus.

Linear functions. Derivative is constant, never/always 0.

Unbounded unless restricted to an interval. Then "at" a vertex in one dimension. At an endpoint.

How do you minimize a function? $argmin_{x \in [a,b]} f(x)$? Find x? (1) f'(x) = 0 and check. (2) or at the endpoints of an interval.

Calculus.

Linear functions. Derivative is constant, never/always 0.

Unbounded unless restricted to an interval.

Then "at" a vertex in one dimension.

At an endpoint.

Constrained optimization: calculus on an interval.

An argument, if not at a vertex can move in a direction.

So do it until you hit another constraint.

So do it until you hit another constraint.

Subtle: there may be no vertices.

So do it until you hit another constraint.

Subtle: there may be no vertices.

 $\max x_1, x_1 \le 4, x_2 \ge 0.$

So do it until you hit another constraint.

Subtle: there may be no vertices.

 $\max x_1, x_1 \le 4, x_2 \ge 0.$

There are no "vertices" in the "feasible region."

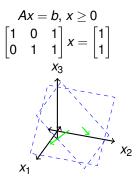
Convex hyperplane separator.

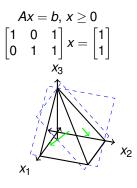
If a point $b \notin P$, for a set P which is convex.

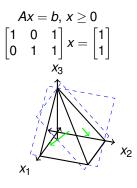
Convex hyperplane separator.

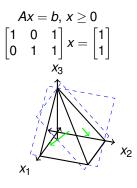
If a point $b \notin P$, for a set P which is convex. then there is y, s.t., $y^T x > y^T b$, $\forall x \in P$.

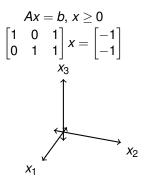


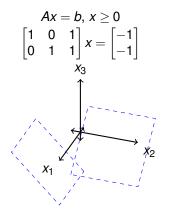


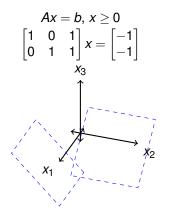


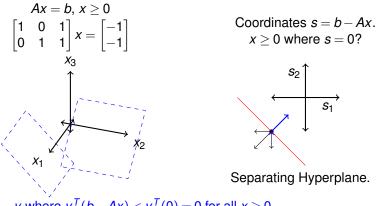




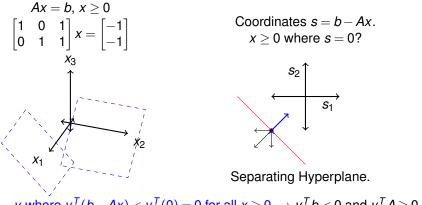




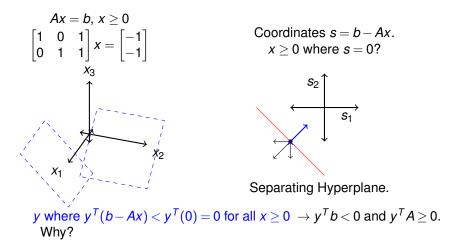


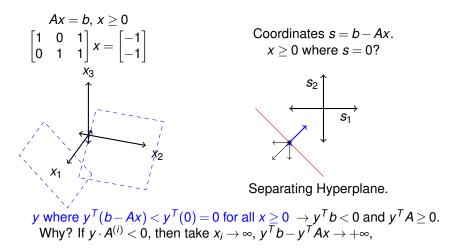


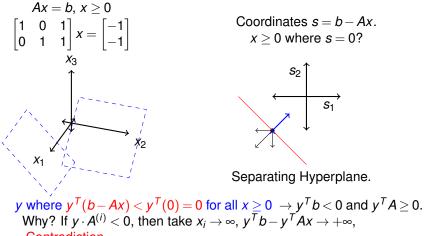
y where $y^T(b-Ax) < y^T(0) = 0$ for all $x \ge 0$



y where $y^T(b-Ax) < y^T(0) = 0$ for all $x \ge 0 \rightarrow y^T b < 0$ and $y^T A \ge 0$.

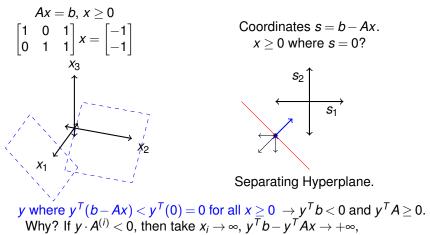






Contradiction.

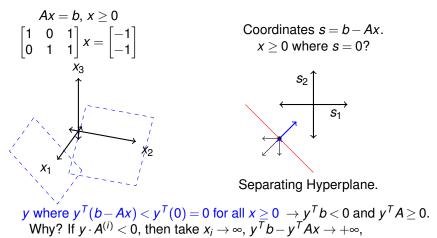
Geometry again.



Contradiction.

Farkas A: Solution for exactly one of:

Geometry again.

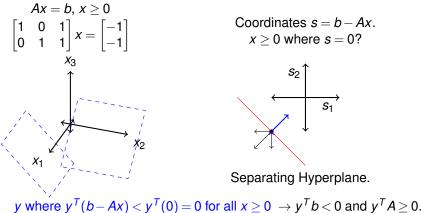


Contradiction.

Farkas A: Solution for exactly one of:

(1) $Ax = b, x \ge 0$

Geometry again.



Why? If $y \cdot A^{(i)} < 0$, then take $x_i \to \infty$, $y^T b - y^T A x \to +\infty$, Contradiction.

Farkas A: Solution for exactly one of:

(1) $Ax = b, x \ge 0$ or (2) $y^T A \ge 0, y^T b < 0$.

Farkas A: Solution for exactly one of:

Farkas A: Solution for exactly one of: (1) $Ax = b, x \ge 0$

Farkas A: Solution for exactly one of:

(1) $Ax = b, x \ge 0$ (2) $y^T A \ge 0, y^T b < 0.$

Farkas A: Solution for exactly one of: (1) $Ax = b, x \ge 0$

(2) $y^T A \ge 0, y^T b < 0.$

Farkas B: Solution for exactly one of:

Farkas A: Solution for exactly one of: (1) A: b $x \ge 0$

(1) $Ax = b, x \ge 0$ (2) $y^T A \ge 0, y^T b < 0.$

Farkas B: Solution for exactly one of: (1) $Ax \le b$

Farkas A: Solution for exactly one of:

(1) $Ax = b, x \ge 0$ (2) $y^T A \ge 0, y^T b < 0.$

Farkas B: Solution for exactly one of:

(1) $Ax \le b$ (2) $y^T A = 0, y^T b < 0, y \ge 0.$

(From Goemans notes.)

Primal P
$$z^* = \min c^T x$$

 $Ax = b$
 $x > 0$

Dual D: $w^* = \max b^T y$ $A^T y \le c$

(From Goemans notes.)

Primal P
$$z^* = \min c^T x$$
Dual $D: w^* = \max b^T y$ $Ax = b$ $A^T y \le c$ $x \ge 0$ $A^T y \le c$

Weak Duality: x, y- feasible P, D: $x^T c \ge b^T y$.

(From Goemans notes.)

Primal P
$$z^* = \min c^T x$$
Dual $D: w^* = \max b^T y$ $Ax = b$ $A^T y \le c$ $x \ge 0$ $A^T y \le c$

Weak Duality: x, y-feasible P, D: $x^T c \ge b^T y$.

$$x^{T}c - b^{T}y = x^{T}c - x^{T}A^{T}y$$
$$= x^{T}(c - A^{T}y)$$
$$\geq 0$$

P (Ax = b, min cx, $x \ge 0$): feasible, bounded $\implies z^* = w^*$.

P (Ax = b, min cx, $x \ge 0$): feasible, bounded $\implies z^* = w^*$.

Primal feasible, bounded, minimum value z^* .

P (Ax = b, min cx, $x \ge 0$): feasible, bounded $\implies z^* = w^*$.

Primal feasible, bounded, minimum value z^* .

Claim: Exists a solution to dual of value at least z^* .

P (Ax = b, min cx, $x \ge 0$): feasible, bounded $\implies z^* = w^*$.

Primal feasible, bounded, minimum value z^* .

Claim: Exists a solution to dual of value at least z^* .

 $\exists y, y^T A \leq c, b^T y \geq z^*.$

P (Ax = b, min cx, $x \ge 0$): feasible, bounded $\implies z^* = w^*$.

Primal feasible, bounded, minimum value z^* .

Claim: Exists a solution to dual of value at least z^* .

 $\exists y, y^T A \leq c, b^T y \geq z^*.$

Want y where

P (Ax = b, min cx, $x \ge 0$): feasible, bounded $\implies z^* = w^*$.

Primal feasible, bounded, minimum value z^* .

Claim: Exists a solution to dual of value at least z^* .

$$\exists y, y^T A \le c, b^T y \ge z^*.$$

Want y where $\begin{pmatrix} A^T \\ -b^T \end{pmatrix} y \le \begin{pmatrix} c \\ -z^* \end{pmatrix}.$

P (Ax = b, min cx, $x \ge 0$): feasible, bounded $\implies z^* = w^*$.

Primal feasible, bounded, minimum value z^* .

Claim: Exists a solution to dual of value at least z^* .

 $\exists y, y^T A \le c, b^T y \ge z^*.$ Want y where $\begin{pmatrix} A^T \\ -b^T \end{pmatrix} y \le \begin{pmatrix} c \\ -z^* \end{pmatrix}$. Let $A' = \begin{pmatrix} A^T \\ -b^T \end{pmatrix}$ Recall Farkas B: Either (1) $A'x' \le b'$ or (2) $y'^T A' = 0, y'^T b' < 0, y' \ge 0.$

P (Ax = b, min cx, $x \ge 0$): feasible, bounded $\implies z^* = w^*$.

Primal feasible, bounded, minimum value z^* .

Claim: Exists a solution to dual of value at least z^* .

 $\exists y, y^T A \le c, b^T y \ge z^*.$ Want y where $\begin{pmatrix} A^T \\ -b^T \end{pmatrix} y \le \begin{pmatrix} c \\ -z^* \end{pmatrix}$. Let $A' = \begin{pmatrix} A^T \\ -b^T \end{pmatrix}$ Recall Farkas B: Either (1) $A'x' \le b'$ or (2) $y'^T A' = 0, y'^T b' < 0, y' \ge 0$.
If (1) then done,

P (Ax = b, min cx, $x \ge 0$): feasible, bounded $\implies z^* = w^*$.

Primal feasible, bounded, minimum value z^* .

Claim: Exists a solution to dual of value at least z^* .

$$\begin{array}{l} \exists y, y^T A \leq c, b^T y \geq z^*. \\ \text{Want } y \text{ where } \begin{pmatrix} A^T \\ -b^T \end{pmatrix} y \leq \begin{pmatrix} c \\ -z^* \end{pmatrix}. \text{ Let } A' = \begin{pmatrix} A^T \\ -b^T \end{pmatrix} \\ \text{Recall Farkas B: Either (1) } A'x' \leq b' \text{ or (2) } y'^T A' = 0, y'^T b' < 0, y' \geq 0. \\ \text{If (1) then done, otherwise (2) } \implies \exists y' = [x, \lambda] \geq 0. \\ (A -b) \begin{pmatrix} x \\ \lambda \end{pmatrix} = 0 \qquad (c^T - z^*) \begin{pmatrix} x \\ \lambda \end{pmatrix} < 0 \end{array}$$

P (Ax = b, min cx, $x \ge 0$): feasible, bounded $\implies z^* = w^*$.

Primal feasible, bounded, minimum value z^* .

Claim: Exists a solution to dual of value at least z^* .

$$\exists y, y^T A \le c, b^T y \ge z^*.$$
Want y where $\begin{pmatrix} A^T \\ -b^T \end{pmatrix} y \le \begin{pmatrix} c \\ -z^* \end{pmatrix}$. Let $A' = \begin{pmatrix} A^T \\ -b^T \end{pmatrix}$
Recall Farkas B: Either (1) $A'x' \le b'$ or (2) $y'^T A' = 0, y'^T b' < 0, y' \ge 0.$
If (1) then done, otherwise (2) $\Longrightarrow \exists y' = [x, \lambda] \ge 0.$
 $(A -b) \begin{pmatrix} x \\ \lambda \end{pmatrix} = 0 \qquad (c^T -z^*) \begin{pmatrix} x \\ \lambda \end{pmatrix} < 0$

 $\exists x, \lambda \text{ with } Ax - b\lambda = 0 \text{ and } c^t x - z^* \lambda < 0$

P (Ax = b, min cx, $x \ge 0$): feasible, bounded $\implies z^* = w^*$.

Primal feasible, bounded, minimum value z^* .

Claim: Exists a solution to dual of value at least z^* .

 $\exists y, y^T A \le c, b^T y \ge z^*.$ Want y where $\begin{pmatrix} A^T \\ -b^T \end{pmatrix} y \le \begin{pmatrix} c \\ -z^* \end{pmatrix}$. Let $A' = \begin{pmatrix} A^T \\ -b^T \end{pmatrix}$ Recall Farkas B: Either (1) $A'x' \le b'$ or (2) $y'^T A' = 0, y'^T b' < 0, y' \ge 0$.
If (1) then done, otherwise (2) $\implies \exists y' = [x, \lambda] \ge 0$. $(A -b) \begin{pmatrix} x \\ \lambda \end{pmatrix} = 0$ $(c^T -z^*) \begin{pmatrix} x \\ \lambda \end{pmatrix} < 0$ $\exists x, \lambda \text{ with } Ax - b\lambda = 0 \text{ and } c^t x - z^* \lambda < 0$

Case 1: $\lambda > 0$.

P (Ax = b, min cx, $x \ge 0$): feasible, bounded $\implies z^* = w^*$.

Primal feasible, bounded, minimum value z^* .

Claim: Exists a solution to dual of value at least z^* .

 $\exists y, y^T A \le c, b^T y \ge z^*.$ Want y where $\begin{pmatrix} A^T \\ -b^T \end{pmatrix} y \le \begin{pmatrix} c \\ -z^* \end{pmatrix}$. Let $A' = \begin{pmatrix} A^T \\ -b^T \end{pmatrix}$ Recall Farkas B: Either (1) $A'x' \le b'$ or (2) $y'^T A' = 0, y'^T b' < 0, y' \ge 0.$ If (1) then done, otherwise (2) $\Longrightarrow \exists y' = [x, \lambda] \ge 0.$ $\begin{pmatrix} A & -b \end{pmatrix} \begin{pmatrix} x \\ \lambda \end{pmatrix} = 0$ $\begin{pmatrix} c^T & -z^* \end{pmatrix} \begin{pmatrix} x \\ \lambda \end{pmatrix} < 0$

 $\exists x, \lambda \text{ with } Ax - b\lambda = 0 \text{ and } c^t x - z^* \lambda < 0$ Case 1: $\lambda > 0$. $A(\frac{x}{\lambda}) = b$, $c^T(\frac{x}{\lambda}) < z^*$.

P (Ax = b, min cx, $x \ge 0$): feasible, bounded $\implies z^* = w^*$.

Primal feasible, bounded, minimum value z^* .

Claim: Exists a solution to dual of value at least z^* .

 $\exists y, y^T A \le c, b^T y \ge z^*.$ Want y where $\begin{pmatrix} A^T \\ -b^T \end{pmatrix} y \le \begin{pmatrix} c \\ -z^* \end{pmatrix}$. Let $A' = \begin{pmatrix} A^T \\ -b^T \end{pmatrix}$ Recall Farkas B: Either (1) $A'x' \le b'$ or (2) $y'^T A' = 0, y'^T b' < 0, y' \ge 0$.
If (1) then done, otherwise (2) $\implies \exists y' = [x, \lambda] \ge 0$. $(A -b) \begin{pmatrix} x \\ \lambda \end{pmatrix} = 0$ $(c^T -z^*) \begin{pmatrix} x \\ \lambda \end{pmatrix} < 0$

 $\exists x, \lambda \text{ with } Ax - b\lambda = 0 \text{ and } c^t x - z^* \lambda < 0$ Case 1: $\lambda > 0$. $A(\frac{x}{\lambda}) = b$, $c^T(\frac{x}{\lambda}) < z^*$. Better Primal!!

P (Ax = b, min cx, $x \ge 0$): feasible, bounded $\implies z^* = w^*$.

Primal feasible, bounded, minimum value z^* .

Claim: Exists a solution to dual of value at least z^* .

 $\exists v, v^T A \leq c, b^T v > z^*$. Want *y* where $\begin{pmatrix} A^T \\ -b^T \end{pmatrix} y \le \begin{pmatrix} c \\ -z^* \end{pmatrix}$. Let $A' = \begin{pmatrix} A^T \\ -b^T \end{pmatrix}$ **Recall Farkas B:** Either (1) A'x' < b' or (2) ${v'}^T A' = 0$, ${v'}^T b' < 0$, v' > 0. If (1) then done, otherwise (2) $\implies \exists y' = [x, \lambda] \ge 0$. $(A -b) \begin{pmatrix} x \\ \lambda \end{pmatrix} = 0 \qquad (c^{T} -z^{*}) \begin{pmatrix} x \\ \lambda \end{pmatrix} < 0$ $\exists x, \lambda \text{ with } Ax - b\lambda = 0 \text{ and } c^t x - z^* \lambda < 0$ Case 1: $\lambda > 0$. $A(\frac{x}{\lambda}) = b$, $c^T(\frac{x}{\lambda}) < z^*$. Better Primal!! Case 2: $\lambda = 0$. Ax = 0. $c^T x < 0$.

P (Ax = b, min cx, $x \ge 0$): feasible, bounded $\implies z^* = w^*$.

Primal feasible, bounded, minimum value z^* .

Claim: Exists a solution to dual of value at least z^* .

 $\exists v, v^T A \leq c, b^T v > z^*$. Want *y* where $\begin{pmatrix} A^T \\ -b^T \end{pmatrix} y \le \begin{pmatrix} c \\ -z^* \end{pmatrix}$. Let $A' = \begin{pmatrix} A^T \\ -b^T \end{pmatrix}$ **Recall Farkas B:** Either (1) A'x' < b' or (2) ${v'}^T A' = 0$, ${v'}^T b' < 0$, v' > 0. If (1) then done, otherwise (2) $\implies \exists y' = [x, \lambda] \ge 0$. $(A -b) \begin{pmatrix} x \\ \lambda \end{pmatrix} = 0 \qquad (c^{T} -z^{*}) \begin{pmatrix} x \\ \lambda \end{pmatrix} < 0$ $\exists x, \lambda \text{ with } Ax - b\lambda = 0 \text{ and } c^t x - z^* \lambda < 0$ Case 1: $\lambda > 0$. $A(\frac{x}{\lambda}) = b$, $c^T(\frac{x}{\lambda}) < z^*$. Better Primal!! Case 2: $\lambda = 0$. Ax = 0, $c^T x < 0$. Any feasible \tilde{x} for Primal.

P (Ax = b, min cx, $x \ge 0$): feasible, bounded $\implies z^* = w^*$.

Primal feasible, bounded, minimum value z^* .

Claim: Exists a solution to dual of value at least z^* .

 $\exists v, v^T A \leq c, b^T v > z^*$. Want *y* where $\begin{pmatrix} A^T \\ -b^T \end{pmatrix} y \le \begin{pmatrix} c \\ -z^* \end{pmatrix}$. Let $A' = \begin{pmatrix} A^T \\ -b^T \end{pmatrix}$ **Recall Farkas B:** Either (1) A'x' < b' or (2) ${v'}^T A' = 0$, ${v'}^T b' < 0$, v' > 0. If (1) then done, otherwise (2) $\implies \exists y' = [x, \lambda] \ge 0$. $(A -b) \begin{pmatrix} x \\ \lambda \end{pmatrix} = 0 \qquad (c^{T} -z^{*}) \begin{pmatrix} x \\ \lambda \end{pmatrix} < 0$ $\exists x, \lambda \text{ with } Ax - b\lambda = 0 \text{ and } c^t x - z^* \lambda < 0$ Case 1: $\lambda > 0$. $A(\frac{x}{\lambda}) = b$, $c^T(\frac{x}{\lambda}) < z^*$. Better Primal!! Case 2: $\lambda = 0$. Ax = 0, $c^T x < 0$. Any feasible \tilde{x} for Primal. (a) $\tilde{x} + \mu x > 0$ since $\tilde{x}, x, \mu > 0$.

P (Ax = b, min cx, $x \ge 0$): feasible, bounded $\implies z^* = w^*$.

Primal feasible, bounded, minimum value z^* .

Claim: Exists a solution to dual of value at least z^* .

 $\exists v, v^T A \leq c, b^T v > z^*$. Want *y* where $\begin{pmatrix} A^T \\ -b^T \end{pmatrix} y \le \begin{pmatrix} c \\ -z^* \end{pmatrix}$. Let $A' = \begin{pmatrix} A^T \\ -b^T \end{pmatrix}$ **Recall Farkas B:** Either (1) A'x' < b' or (2) ${v'}^T A' = 0$, ${v'}^T b' < 0$, v' > 0. If (1) then done, otherwise (2) $\implies \exists y' = [x, \lambda] \ge 0$. $(A -b) \begin{pmatrix} x \\ \lambda \end{pmatrix} = 0 \qquad (c^{T} -z^{*}) \begin{pmatrix} x \\ \lambda \end{pmatrix} < 0$ $\exists x, \lambda \text{ with } Ax - b\lambda = 0 \text{ and } c^t x - z^* \lambda < 0$ Case 1: $\lambda > 0$. $A(\frac{x}{\lambda}) = b$, $c^T(\frac{x}{\lambda}) < z^*$. Better Primal!! Case 2: $\lambda = 0$. Ax = 0, $c^T x < 0$. Any feasible \tilde{x} for Primal. (a) $\tilde{x} + \mu x > 0$ since $\tilde{x}, x, \mu > 0$. (b) $A(\tilde{x} + \mu x) = A\tilde{x} + \mu Ax = b + \mu \cdot 0 = b$.

P (Ax = b, min cx, $x \ge 0$): feasible, bounded $\implies z^* = w^*$.

Primal feasible, bounded, minimum value z^* .

Claim: Exists a solution to dual of value at least z^* .

 $\exists v, v^T A \leq c, b^T v > z^*$. Want *y* where $\begin{pmatrix} A^T \\ -b^T \end{pmatrix} y \le \begin{pmatrix} c \\ -z^* \end{pmatrix}$. Let $A' = \begin{pmatrix} A^T \\ -b^T \end{pmatrix}$ **Recall Farkas B:** Either (1) A'x' < b' or (2) ${v'}^T A' = 0$, ${v'}^T b' < 0$, v' > 0. If (1) then done, otherwise (2) $\implies \exists y' = [x, \lambda] \ge 0$. $(A -b) \begin{pmatrix} x \\ \lambda \end{pmatrix} = 0 \qquad (c^{T} -z^{*}) \begin{pmatrix} x \\ \lambda \end{pmatrix} < 0$ $\exists x, \lambda \text{ with } Ax - b\lambda = 0 \text{ and } c^t x - z^* \lambda < 0$ Case 1: $\lambda > 0$. $A(\frac{x}{\lambda}) = b$, $c^T(\frac{x}{\lambda}) < z^*$. Better Primal!! Case 2: $\lambda = 0$. Ax = 0, $c^T x < 0$. Any feasible \tilde{x} for Primal. (a) $\tilde{x} + \mu x > 0$ since $\tilde{x}, x, \mu > 0$. (b) $A(\tilde{x} + \mu x) = A\tilde{x} + \mu Ax = b + \mu \cdot 0 = b$. Feasible

P (Ax = b, min cx, $x \ge 0$): feasible, bounded $\implies z^* = w^*$.

Primal feasible, bounded, minimum value z^* .

Claim: Exists a solution to dual of value at least z^* .

 $\exists v, v^T A \leq c, b^T v > z^*$. Want y where $\begin{pmatrix} A^T \\ -b^T \end{pmatrix}$ $y \le \begin{pmatrix} c \\ -z^* \end{pmatrix}$. Let $A' = \begin{pmatrix} A^T \\ -b^T \end{pmatrix}$ **Recall Farkas B:** Either (1) A'x' < b' or (2) ${v'}^T A' = 0$, ${v'}^T b' < 0$, v' > 0. If (1) then done, otherwise (2) $\implies \exists y' = [x, \lambda] \ge 0$. $(A -b) \begin{pmatrix} x \\ \lambda \end{pmatrix} = 0 \qquad (c^{T} -z^{*}) \begin{pmatrix} x \\ \lambda \end{pmatrix} < 0$ $\exists x, \lambda \text{ with } Ax - b\lambda = 0 \text{ and } c^t x - z^* \lambda < 0$ Case 1: $\lambda > 0$. $A(\frac{x}{\lambda}) = b$, $c^T(\frac{x}{\lambda}) < z^*$. Better Primal!! Case 2: $\lambda = 0$. Ax = 0, $c^T x < 0$. Any feasible \tilde{x} for Primal. (a) $\tilde{x} + \mu x > 0$ since $\tilde{x}, x, \mu > 0$. (b) $A(\tilde{x} + \mu x) = A\tilde{x} + \mu Ax = b + \mu \cdot 0 = b$. Feasible $c^{T}(\tilde{x}+\mu x) = x^{T}\tilde{x}+\mu c^{T}x \rightarrow -\infty$ as $\mu \rightarrow \infty$

P (Ax = b, min cx, $x \ge 0$): feasible, bounded $\implies z^* = w^*$.

Primal feasible, bounded, minimum value z^* .

Claim: Exists a solution to dual of value at least z^* .

 $\exists v, v^T A \leq c, b^T v > z^*$. Want *y* where $\begin{pmatrix} A^T \\ -b^T \end{pmatrix} y \leq \begin{pmatrix} c \\ -z^* \end{pmatrix}$. Let $A' = \begin{pmatrix} A^T \\ -b^T \end{pmatrix}$ **Recall Farkas B:** Either (1) A'x' < b' or (2) ${v'}^T A' = 0$, ${v'}^T b' < 0$, v' > 0. If (1) then done, otherwise (2) $\implies \exists y' = [x, \lambda] \ge 0$. $(A -b) \begin{pmatrix} x \\ \lambda \end{pmatrix} = 0 \qquad (c^{T} -z^{*}) \begin{pmatrix} x \\ \lambda \end{pmatrix} < 0$ $\exists x, \lambda \text{ with } Ax - b\lambda = 0 \text{ and } c^t x - z^* \lambda < 0$ Case 1: $\lambda > 0$. $A(\frac{x}{\lambda}) = b$, $c^T(\frac{x}{\lambda}) < z^*$. Better Primal!! Case 2: $\lambda = 0$. Ax = 0, $c^T x < 0$. Any feasible \tilde{x} for Primal. (a) $\tilde{x} + \mu x > 0$ since $\tilde{x}, x, \mu > 0$. (b) $A(\tilde{x} + \mu x) = A\tilde{x} + \mu Ax = b + \mu \cdot 0 = b$. Feasible $c^{T}(\tilde{x}+\mu x) = x^{T}\tilde{x}+\mu c^{T}x \rightarrow -\infty$ as $\mu \rightarrow \infty$ Primal unbounded!

Find x, subject to

Find x, subject to $f_i(x) \le 0, i = 1, \dots m.$

Find x, subject to

 $f_i(x) \leq 0, i = 1, \ldots m.$

Remember calculus (constrained optimization.)

Find x, subject to

 $f_i(x) \leq 0, i = 1, \ldots m.$

Remember calculus (constrained optimization.)

Lagrangian:

Find x, subject to

 $f_i(x) \leq 0, i = 1, \ldots m.$

Remember calculus (constrained optimization.)

Lagrangian: $L(x,\lambda) = \sum_{i=1}^{m} \lambda_i f_i(x)$

Find x, subject to

 $f_i(x) \leq 0, i = 1, \ldots m.$

Remember calculus (constrained optimization.)

Lagrangian: $L(x,\lambda) = \sum_{i=1}^{m} \lambda_i f_i(x)$

 λ_i - Lagrangian multiplier for inequality *i*, must be positive.

Find x, subject to

 $f_i(x) \leq 0, i = 1, \ldots m.$

Remember calculus (constrained optimization.)

Lagrangian: $L(x,\lambda) = \sum_{i=1}^{m} \lambda_i f_i(x)$

 λ_i - Lagrangian multiplier for inequality *i*, must be positive.

For feasible solution x, $L(x, \lambda)$ is

Find x, subject to

 $f_i(x) \leq 0, i = 1, \ldots m.$

Remember calculus (constrained optimization.)

Lagrangian: $L(x,\lambda) = \sum_{i=1}^{m} \lambda_i f_i(x)$

 λ_i - Lagrangian multiplier for inequality *i*, must be positive.

For feasible solution x, $L(x, \lambda)$ is

Find x, subject to

 $f_i(x) \leq 0, i = 1, \ldots m.$

Remember calculus (constrained optimization.)

Lagrangian: $L(x,\lambda) = \sum_{i=1}^{m} \lambda_i f_i(x)$

 λ_i - Lagrangian multiplier for inequality *i*, must be positive.

For feasible solution x, $L(x, \lambda)$ is

(A) non-negative in expectation

Find x, subject to

 $f_i(x) \leq 0, i = 1, \ldots m.$

Remember calculus (constrained optimization.)

Lagrangian: $L(x,\lambda) = \sum_{i=1}^{m} \lambda_i f_i(x)$

 λ_i - Lagrangian multiplier for inequality *i*, must be positive.

For feasible solution x, $L(x,\lambda)$ is

(A) non-negative in expectation

(B) positive for any λ .

Find x, subject to

 $f_i(x) \leq 0, i = 1, \ldots m.$

Remember calculus (constrained optimization.)

Lagrangian: $L(x,\lambda) = \sum_{i=1}^{m} \lambda_i f_i(x)$

 λ_i - Lagrangian multiplier for inequality *i*, must be positive.

For feasible solution x, $L(x,\lambda)$ is

- (A) non-negative in expectation
- (B) positive for any λ .
- (C) non-positive for any valid λ .

Find x, subject to

 $f_i(x) \leq 0, i = 1, \ldots m.$

Remember calculus (constrained optimization.)

Lagrangian: $L(x,\lambda) = \sum_{i=1}^{m} \lambda_i f_i(x)$

 λ_i - Lagrangian multiplier for inequality *i*, must be positive.

For feasible solution x, $L(x,\lambda)$ is

- (A) non-negative in expectation
- (B) positive for any λ .
- (C) non-positive for any valid λ .

If λ , where $L(x,\lambda)$ is positive for all x

Find x, subject to

 $f_i(x) \leq 0, i = 1, \ldots m.$

Remember calculus (constrained optimization.)

Lagrangian: $L(x,\lambda) = \sum_{i=1}^{m} \lambda_i f_i(x)$

 λ_i - Lagrangian multiplier for inequality *i*, must be positive.

For feasible solution x, $L(x,\lambda)$ is

- (A) non-negative in expectation
- (B) positive for any λ .
- (C) non-positive for any valid λ .

If λ , where $L(x,\lambda)$ is positive for all x

Find x, subject to

 $f_i(x) \leq 0, i = 1, \ldots m.$

Remember calculus (constrained optimization.)

Lagrangian: $L(x,\lambda) = \sum_{i=1}^{m} \lambda_i f_i(x)$

 λ_i - Lagrangian multiplier for inequality *i*, must be positive.

For feasible solution x, $L(x,\lambda)$ is

- (A) non-negative in expectation
- (B) positive for any λ .
- (C) non-positive for any valid λ .
- If λ , where $L(x,\lambda)$ is positive for all x
 - (A) there is no feasible x.

Find x, subject to

 $f_i(x) \leq 0, i = 1, \ldots m.$

Remember calculus (constrained optimization.)

Lagrangian: $L(x,\lambda) = \sum_{i=1}^{m} \lambda_i f_i(x)$

 λ_i - Lagrangian multiplier for inequality *i*, must be positive.

For feasible solution x, $L(x,\lambda)$ is

- (A) non-negative in expectation
- (B) positive for any λ .
- (C) non-positive for any valid λ .
- If λ , where $L(x,\lambda)$ is positive for all x
 - (A) there is no feasible x.
 - (B) there is no x, λ with $L(x, \lambda) < 0$.

 $\begin{array}{ll} \min & f(x) \\ \text{subject to } f_i(x) \leq 0, & i=1,...,m \end{array}$

 $\begin{array}{ll} \min & f(x) \\ \text{subject to } f_i(x) \leq 0, & i=1,...,m \end{array}$

Lagrangian function:

 $\begin{array}{ll} \min & f(x) \\ \text{subject to } f_i(x) \leq 0, & i=1,...,m \end{array}$

Lagrangian function:

 $L(x,\lambda) = f(x) + \sum_{i=1}^{m} \lambda_i f_i(x)$

 $\begin{array}{ll} \min & f(x) \\ \text{subject to } f_i(x) \leq 0, & i=1,...,m \end{array}$

Lagrangian function:

 $L(x,\lambda) = f(x) + \sum_{i=1}^{m} \lambda_i f_i(x)$

If (primal) x value v

 $\begin{array}{ll} \min & f(x) \\ \text{subject to } f_i(x) \leq 0, & i=1,...,m \end{array}$

Lagrangian function:

 $L(x,\lambda) = f(x) + \sum_{i=1}^{m} \lambda_i f_i(x)$

If (primal) x value v For all $\lambda \ge 0$ with $L(x,\lambda) \le v$

 $\begin{array}{ll} \min & f(x) \\ \text{subject to } f_i(x) \leq 0, & i = 1, ..., m \end{array}$

Lagrangian function:

 $L(x,\lambda) = f(x) + \sum_{i=1}^{m} \lambda_i f_i(x)$

If (primal) x value v For all $\lambda \ge 0$ with $L(x,\lambda) \le v$ Maximizing: λ only positive when?

 $\begin{array}{ll} \min & f(x) \\ \text{subject to } f_i(x) \leq 0, & i = 1, ..., m \end{array}$

Lagrangian function:

 $L(x,\lambda) = f(x) + \sum_{i=1}^{m} \lambda_i f_i(x)$

If (primal) x value v For all $\lambda \ge 0$ with $L(x,\lambda) \le v$ Maximizing: λ only positive when? $f_i(x) = 0$.

 $\begin{array}{ll} \min & f(x) \\ \text{subject to } f_i(x) \leq 0, & i = 1, ..., m \end{array}$

Lagrangian function:

 $L(x,\lambda) = f(x) + \sum_{i=1}^{m} \lambda_i f_i(x)$

If (primal) x value v For all $\lambda \ge 0$ with $L(x,\lambda) \le v$ Maximizing: λ only positive when? $f_i(x) = 0$.

 $\begin{array}{ll} \min & f(x) \\ \text{subject to } f_i(x) \leq 0, & i = 1, ..., m \end{array}$

Lagrangian function:

 $L(x,\lambda) = f(x) + \sum_{i=1}^{m} \lambda_i f_i(x)$

If (primal) x value v For all $\lambda \ge 0$ with $L(x,\lambda) \le v$ Maximizing: λ only positive when? $f_i(x) = 0$.

If there is λ with $L(x,\lambda) \ge \alpha$ for all x

 $\begin{array}{ll} \min & f(x) \\ \text{subject to } f_i(x) \leq 0, & i = 1, ..., m \end{array}$

Lagrangian function:

$$L(x,\lambda) = f(x) + \sum_{i=1}^{m} \lambda_i f_i(x)$$

If (primal) x value v For all $\lambda \ge 0$ with $L(x,\lambda) \le v$ Maximizing: λ only positive when? $f_i(x) = 0$.

If there is λ with $L(x,\lambda) \ge \alpha$ for all x Optimum value of program is at least α

 $\begin{array}{ll} \min & f(x) \\ \text{subject to } f_i(x) \leq 0, & i = 1, ..., m \end{array}$

Lagrangian function:

 $L(x,\lambda) = f(x) + \sum_{i=1}^{m} \lambda_i f_i(x)$

- If (primal) x value v For all $\lambda \ge 0$ with $L(x,\lambda) \le v$ Maximizing: λ only positive when? $f_i(x) = 0$.
- If there is λ with $L(x,\lambda) \ge \alpha$ for all x Optimum value of program is at least α

Primal problem:

x, that minimizes $L(x, \lambda)$ over all $\lambda \ge 0$.

 $\begin{array}{ll} \min & f(x) \\ \text{subject to } f_i(x) \leq 0, & i = 1, ..., m \end{array}$

Lagrangian function:

$$L(x,\lambda) = f(x) + \sum_{i=1}^{m} \lambda_i f_i(x)$$

If (primal) x value v For all $\lambda \ge 0$ with $L(x,\lambda) \le v$ Maximizing: λ only positive when? $f_i(x) = 0$.

If there is λ with $L(x,\lambda) \ge \alpha$ for all x Optimum value of program is at least α

Primal problem:

x, that minimizes $L(x, \lambda)$ over all $\lambda \ge 0$.

Dual problem:

 λ , that maximizes $L(x,\lambda)$ over all x.

 $\min cx, Ax \ge b$

 $\min cx, Ax \ge b$

$$\begin{array}{ll} \mbox{min} & c \cdot x \\ \mbox{subject to } b_i - a_i \cdot x \leq 0, & i = 1, ..., m \end{array}$$

 $\min cx, Ax \ge b$

$$\begin{array}{ll} \min & c \cdot x \\ \text{subject to } b_i - a_i \cdot x \leq 0, & i = 1, ..., m \end{array}$$

Lagrangian (Dual):

 $\min cx, Ax \ge b$

$$\begin{array}{ll} \min & c \cdot x \\ \text{subject to } b_i - a_i \cdot x \leq 0, & i = 1, ..., m \end{array}$$

Lagrangian (Dual):

 $L(\lambda, x) = cx + \sum_i \lambda_i (b_i - a_i x_i).$

 $\min cx, Ax \ge b$

$$\begin{array}{ll} \min & c \cdot x \\ \text{subject to } b_i - a_i \cdot x \leq 0, & i = 1, ..., m \end{array}$$

Lagrangian (Dual):

$$L(\lambda, x) = cx + \sum_i \lambda_i (b_i - a_i x_i).$$

or

 $\min cx, Ax \ge b$

$$\begin{array}{ll} \min & c \cdot x \\ \text{subject to } b_i - a_i \cdot x \leq 0, & i = 1,...,m \end{array}$$

Lagrangian (Dual):

$$L(\lambda, x) = cx + \sum_i \lambda_i (b_i - a_i x_i).$$

or

$$L(\lambda, x) = -(\sum_j x_j(a_j\lambda - c_j)) + b\lambda.$$

 $\min cx, Ax \ge b$

$$\begin{array}{ll} \min & c \cdot x \\ \text{subject to } b_i - a_i \cdot x \leq 0, & i = 1, ..., m \end{array}$$

Lagrangian (Dual):

$$L(\lambda, x) = cx + \sum_i \lambda_i (b_i - a_i x_i).$$

or

$$L(\lambda, x) = -(\sum_j x_j(a_j\lambda - c_j)) + b\lambda.$$

Best λ ?

 $\min cx, Ax \ge b$

$$\begin{array}{ll} \min & c \cdot x \\ \text{subject to } b_i - a_i \cdot x \leq 0, & i = 1, ..., m \end{array}$$

Lagrangian (Dual):

$$L(\lambda, x) = cx + \sum_i \lambda_i (b_i - a_i x_i).$$

or

 $L(\lambda, x) = -(\sum_{j} x_{j}(a_{j}\lambda - c_{j})) + b\lambda.$ Best λ ? Good against every *x*?

 $\min cx, Ax \ge b$

$$\begin{array}{ll} \min & c \cdot x \\ \text{subject to } b_i - a_i \cdot x \leq 0, & i = 1, ..., m \end{array}$$

Lagrangian (Dual):

$$L(\lambda, x) = cx + \sum_i \lambda_i (b_i - a_i x_i).$$

or

$$L(\lambda, x) = -(\sum_j x_j(a_j\lambda - c_j)) + b\lambda.$$

Best λ ? Good against every *x*? Any term $(a_i\lambda - c_i) \neq 0$ is bad.

 $\min cx, Ax \ge b$

$$\begin{array}{ll} \min & c \cdot x \\ \text{subject to } b_i - a_i \cdot x \leq 0, & i = 1, ..., m \end{array}$$

Lagrangian (Dual):

$$L(\lambda, x) = cx + \sum_i \lambda_i (b_i - a_i x_i).$$

or

$$L(\lambda, x) = -(\sum_j x_j(a_j\lambda - c_j)) + b\lambda.$$

Best λ ? Good against every x? Any term $(a_j\lambda - c_j) \neq 0$ is bad. max $b \cdot \lambda$

 $\min cx, Ax \ge b$

$$\begin{array}{ll} \min & c \cdot x \\ \text{subject to } b_i - a_i \cdot x \leq 0, & i = 1, ..., m \end{array}$$

Lagrangian (Dual):

$$L(\lambda, x) = cx + \sum_i \lambda_i (b_i - a_i x_i).$$

or

$$L(\lambda, x) = -(\sum_j x_j(a_j\lambda - c_j)) + b\lambda.$$

Best λ ? Good against every x? Any term $(a_j\lambda - c_j) \neq 0$ is bad. max $b \cdot \lambda$ where $a_j\lambda = c_j$.

 $\min cx, Ax \ge b$

$$\begin{array}{ll} \min & c \cdot x \\ \text{subject to } b_i - a_i \cdot x \leq 0, & i = 1, ..., m \end{array}$$

Lagrangian (Dual):

$$L(\lambda, x) = cx + \sum_i \lambda_i (b_i - a_i x_i).$$

or

$$L(\lambda, x) = -(\sum_j x_j(a_j\lambda - c_j)) + b\lambda.$$

Best λ ? Good against every x? Any term $(a_j\lambda - c_j) \neq 0$ is bad. max $b \cdot \lambda$ where $a_j\lambda = c_j$. Why is this good?

 $\min cx, Ax \ge b$

$$\begin{array}{ll} \min & c \cdot x \\ \text{subject to } b_i - a_i \cdot x \leq 0, & i = 1, ..., m \end{array}$$

Lagrangian (Dual):

$$L(\lambda, x) = cx + \sum_i \lambda_i (b_i - a_i x_i).$$

or

$$L(\lambda, x) = -(\sum_j x_j(a_j\lambda - c_j)) + b\lambda.$$

Best λ ? Good against every x? Any term $(a_j\lambda - c_j) \neq 0$ is bad. max $b \cdot \lambda$ where $a_j\lambda = c_j$. Why is this good? Every x is the same.

 $\min cx, Ax \ge b$

$$\begin{array}{ll} \min & c \cdot x \\ \text{subject to } b_i - a_i \cdot x \leq 0, & i = 1, ..., m \end{array}$$

Lagrangian (Dual):

$$L(\lambda, x) = cx + \sum_i \lambda_i (b_i - a_i x_i).$$

or

$$L(\lambda, x) = -(\sum_j x_j(a_j\lambda - c_j)) + b\lambda.$$

Best λ ? Good against every x? Any term $(a_j\lambda - c_j) \neq 0$ is bad. max $b \cdot \lambda$ where $a_j\lambda = c_j$. Why is this good? Every x is the same.

 $\min cx, Ax \ge b$

$$\begin{array}{ll} \min & c \cdot x \\ \text{subject to } b_i - a_i \cdot x \leq 0, & i = 1, ..., m \end{array}$$

Lagrangian (Dual):

$$L(\lambda, x) = cx + \sum_i \lambda_i (b_i - a_i x_i).$$

or

$$L(\lambda, x) = -(\sum_j x_j(a_j\lambda - c_j)) + b\lambda.$$

Best λ ? Good against every x? Any term $(a_j\lambda - c_j) \neq 0$ is bad. max $b \cdot \lambda$ where $a_j\lambda = c_j$. Why is this good? Every x is the same.

 $\max b\lambda$,

 $\min cx, Ax \ge b$

$$\begin{array}{ll} \min & c \cdot x \\ \text{subject to } b_i - a_i \cdot x \leq 0, & i = 1, ..., m \end{array}$$

Lagrangian (Dual):

$$L(\lambda, x) = cx + \sum_i \lambda_i (b_i - a_i x_i).$$

or

$$L(\lambda, x) = -(\sum_j x_j(a_j\lambda - c_j)) + b\lambda.$$

Best λ ? Good against every x? Any term $(a_j\lambda - c_j) \neq 0$ is bad. max $b \cdot \lambda$ where $a_j\lambda = c_j$. Why is this good? Every x is the same.

 $\max b\lambda, \lambda^T A = c,$

 $\min cx, Ax \ge b$

$$\begin{array}{ll} \min & c \cdot x \\ \text{subject to } b_i - a_i \cdot x \leq 0, & i = 1, ..., m \end{array}$$

Lagrangian (Dual):

$$L(\lambda, x) = cx + \sum_i \lambda_i (b_i - a_i x_i).$$

or

$$L(\lambda, x) = -(\sum_j x_j(a_j\lambda - c_j)) + b\lambda.$$

Best λ ? Good against every x? Any term $(a_j\lambda - c_j) \neq 0$ is bad. max $b \cdot \lambda$ where $a_j\lambda = c_j$. Why is this good? Every x is the same.

 $\max b\lambda, \lambda^T A = c, \lambda \ge 0$

 $\min cx, Ax \ge b$

$$\begin{array}{ll} \mbox{min} & c \cdot x \\ \mbox{subject to } b_i - a_i \cdot x \leq 0, & i = 1, ..., m \end{array}$$

Lagrangian (Dual):

$$L(\lambda, x) = cx + \sum_i \lambda_i (b_i - a_i x_i).$$

or

$$L(\lambda, x) = -(\sum_j x_j(a_j\lambda - c_j)) + b\lambda.$$

Best λ ? Good against every x? Any term $(a_j\lambda - c_j) \neq 0$ is bad. max $b \cdot \lambda$ where $a_j\lambda = c_j$. Why is this good? Every x is the same.

 $\max b\lambda, \lambda^T A = c, \lambda \ge 0$ Dual to linear program.

Find x, that minimizes $f_0(x)$ subject to

Find x, that minimizes $f_0(x)$ subject to

 $f_i(x) \leq 0, i = 1, \ldots m.$

Find x, that minimizes $f_0(x)$ subject to

 $f_i(x) \leq 0, i = 1, \ldots m.$

Central path:

Find x, that minimizes $f_0(x)$ subject to

 $f_i(x) \leq 0, i = 1, \ldots m.$

Central path:

 $\min t f_0(x) - \sum_{i=1} m \ln(-f_i(x))$

Find x, that minimizes $f_0(x)$ subject to

 $f_i(x) \leq 0, i = 1, \ldots m.$

Central path:

 $\min t f_0(x) - \sum_{i=1} m \ln(-f_i(x))$

The minimizer, x(t), form the **central path.**

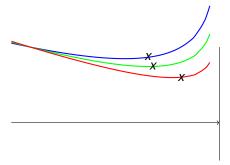
Find x, that minimizes $f_0(x)$ subject to

$$f_i(x) \leq 0, i = 1, \ldots m.$$

Central path:

 $\min t f_0(x) - \sum_{i=1} m \ln(-f_i(x))$

The minimizer, x(t), form the **central path.**



The sequence of *x*'s are "central path".

 $\min t f_0(x) - \sum_{i=1} \ln(-f_i(x))$

 $\min tf_0(x) - \sum_{i=1} \ln(-f_i(x))$

Optimality condition?

 $\min tf_0(x) - \sum_{i=1} \ln(-f_i(x))$

Optimality condition?

 $\min t f_0(x) - \sum_{i=1} \ln(-f_i(x))$

Optimality condition?

Derivative:

 $\min t f_0(x) - \sum_{i=1} \ln(-f_i(x))$

Optimality condition?

Derivative:
$$t\nabla f_0(x) + \sum_{i=1} \frac{\nabla f_i(x)}{f_i(x)} = 0$$

 $\min t f_0(x) - \sum_{i=1} \ln(-f_i(x))$

Optimality condition?

Derivative: $t\nabla f_0(x) + \sum_{i=1} \frac{\nabla f_i(x)}{f_i(x)} = 0$

Or, $\nabla f_0(x) = -\sum_{i=1} \frac{\nabla f_i(x)}{tf_i(x)}$

 $\min t f_0(x) - \sum_{i=1} \ln(-f_i(x))$

Optimality condition?

Derivative: $t\nabla f_0(x) + \sum_{i=1} \frac{\nabla f_i(x)}{f_i(x)} = 0$

Or, $\nabla f_0(x) = -\sum_{i=1} \frac{\nabla f_i(x)}{tf_i(x)}$ (Opposing force fields.)

 $\min t f_0(x) - \sum_{i=1} \ln(-f_i(x))$

Optimality condition?

Derivative: $t\nabla f_0(x) + \sum_{i=1} \frac{\nabla f_i(x)}{f_i(x)} = 0$

Or, $\nabla f_0(x) = -\sum_{i=1} \frac{\nabla f_i(x)}{t f_i(x)}$ (Opposing force fields.) Recall, Lagrangian: $L(\lambda, x) = f_0(x) + \sum_i \lambda_i f_i(x)$.

 $\min t f_0(x) - \sum_{i=1} \ln(-f_i(x))$

Optimality condition?

Derivative: $t\nabla f_0(x) + \sum_{i=1} \frac{\nabla f_i(x)}{f_i(x)} = 0$ Or, $\nabla f_0(x) = -\sum_{i=1} \frac{\nabla f_i(x)}{tf_i(x)}$ (Opposing force fields.) Recall, Lagrangian: $L(\lambda, x) = f_0(x) + \sum_i \lambda_i f_i(x)$.

Fix λ , optimize for x^* give valid lower bound on solution.

 $\min t f_0(x) - \sum_{i=1} \ln(-f_i(x))$

Optimality condition?

Derivative: $t\nabla f_0(x) + \sum_{i=1} \frac{\nabla f_i(x)}{f_i(x)} = 0$

Or, $\nabla f_0(x) = -\sum_{i=1} \frac{\nabla f_i(x)}{tf_i(x)}$ (Opposing force fields.)

Recall, Lagrangian: $L(\lambda, x) = f_0(x) + \sum_i \lambda_i f_i(x)$.

Fix λ , optimize for x^* give valid lower bound on solution. Optimality Condition.

 $\min t f_0(x) - \sum_{i=1} \ln(-f_i(x))$

Optimality condition?

Derivative:
$$t\nabla f_0(x) + \sum_{i=1} \frac{\nabla f_i(x)}{f_i(x)} = 0$$

Or, $\nabla f_0(x) = -\sum_{i=1} \frac{\nabla f_i(x)}{t f_i(x)}$ (Opposing force fields.)

Recall, Lagrangian: $L(\lambda, x) = f_0(x) + \sum_i \lambda_i f_i(x)$.

Fix λ , optimize for x^* give valid lower bound on solution. Optimality Condition.

Derivative:

 $\min t f_0(x) - \sum_{i=1} \ln(-f_i(x))$

Optimality condition?

Derivative: $t\nabla f_0(x) + \sum_{i=1} \frac{\nabla f_i(x)}{f_i(x)} = 0$

Or, $\nabla f_0(x) = -\sum_{i=1} \frac{\nabla f_i(x)}{tf_i(x)}$ (Opposing force fields.)

Recall, Lagrangian: $L(\lambda, x) = f_0(x) + \sum_i \lambda_i f_i(x)$.

Fix λ , optimize for x^* give valid lower bound on solution. Optimality Condition.

Derivative: $\nabla f_0(x) + \sum_{i=1} \lambda_i \nabla f_i(x) = 0.$

 $\min t f_0(x) - \sum_{i=1} \ln(-f_i(x))$

Optimality condition?

Derivative:
$$t\nabla f_0(x) + \sum_{i=1} \frac{\nabla f_i(x)}{f_i(x)} = 0$$

Or, $\nabla f_0(x) = -\sum_{i=1} \frac{\nabla f_i(x)}{t f_i(x)}$ (Opposing force fields.)

Recall, Lagrangian: $L(\lambda, x) = f_0(x) + \sum_i \lambda_i f_i(x)$.

Fix λ , optimize for x^* give valid lower bound on solution. Optimality Condition.

Derivative: $\nabla f_0(x) + \sum_{i=1} \lambda_i \nabla f_i(x) = 0.$

Take $\lambda_i^{(t)} = -\frac{1}{tf_i(x)}$.

 $\min t f_0(x) - \sum_{i=1} \ln(-f_i(x))$

Optimality condition?

Derivative:
$$t\nabla f_0(x) + \sum_{i=1} \frac{\nabla f_i(x)}{f_i(x)} = 0$$

Or, $\nabla f_0(x) = -\sum_{i=1} \frac{\nabla f_i(x)}{t f_i(x)}$ (Opposing force fields.)

Recall, Lagrangian: $L(\lambda, x) = f_0(x) + \sum_i \lambda_i f_i(x)$.

Fix λ , optimize for x^* give valid lower bound on solution. Optimality Condition.

Derivative: $\nabla f_0(x) + \sum_{i=1} \lambda_i \nabla f_i(x) = 0.$

Take $\lambda_i^{(t)} = -\frac{1}{tf_i(x)}$. $x(t) = x^*(\lambda^{(t)})!$

 $\min t f_0(x) - \sum_{i=1} \ln(-f_i(x))$

Optimality condition?

Derivative: $t \nabla f_0(x) + \sum_{i=1} \frac{\nabla f_i(x)}{f_i(x)} = 0 \nabla f_0(x) + \sum_{i=1} \frac{1}{t f_i(x)} \nabla f_i(x) = 0$

Or, $\nabla f_0(x) = -\sum_{i=1} \frac{\nabla f_i(x)}{tf_i(x)}$ (Opposing force fields.)

Recall, Lagrangian: $L(\lambda, x) = f_0(x) + \sum_i \lambda_i f_i(x)$.

Fix λ , optimize for x^* give valid lower bound on solution. Optimality Condition.

Derivative: $\nabla f_0(x) + \sum_{i=1} \lambda_i \nabla f_i(x) = 0.$

Take $\lambda_i^{(t)} = -\frac{1}{tf_i(x)}$. $x(t) = x^*(\lambda^{(t)})!$ Same optimal point!

 $\min t f_0(x) - \sum_{i=1} \ln(-f_i(x))$

Optimality condition?

Derivative:
$$t\nabla f_0(x) + \sum_{i=1} \frac{\nabla f_i(x)}{f_i(x)} = 0$$

Or, $\nabla f_0(x) = -\sum_{i=1} \frac{\nabla f_i(x)}{t f_i(x)}$ (Opposing force fields.)

Recall, Lagrangian: $L(\lambda, x) = f_0(x) + \sum_i \lambda_i f_i(x)$.

Fix λ , optimize for x^* give valid lower bound on solution. Optimality Condition.

Derivative: $\nabla f_0(x) + \sum_{i=1} \lambda_i \nabla f_i(x) = 0.$

Take $\lambda_i^{(t)} = -\frac{1}{tf_i(x)}$. $x(t) = x^*(\lambda^{(t)})!$ Same optimal point! Value?

 $\min t f_0(x) - \sum_{i=1} \ln(-f_i(x))$

Optimality condition?

Derivative:
$$t\nabla f_0(x) + \sum_{i=1} \frac{\nabla f_i(x)}{f_i(x)} = 0$$

Or, $\nabla f_0(x) = -\sum_{i=1} \frac{\nabla f_i(x)}{t f_i(x)}$ (Opposing force fields.)

Recall, Lagrangian: $L(\lambda, x) = f_0(x) + \sum_i \lambda_i f_i(x)$.

Fix λ , optimize for x^* give valid lower bound on solution. Optimality Condition.

Derivative: $\nabla f_0(x) + \sum_{i=1} \lambda_i \nabla f_i(x) = 0.$

Take $\lambda_i^{(t)} = -\frac{1}{tf_i(x)}$. $x(t) = x^*(\lambda^{(t)})!$ Same optimal point!

Value? $f_0(x) + \sum_{i=1} \lambda_i f_i(x) = f_0(x) - \frac{m}{t}$.

 $\min t f_0(x) - \sum_{i=1} \ln(-f_i(x))$

Optimality condition?

Derivative:
$$t\nabla f_0(x) + \sum_{i=1} \frac{\nabla f_i(x)}{f_i(x)} = 0$$

Or, $\nabla f_0(x) = -\sum_{i=1} \frac{\nabla f_i(x)}{t f_i(x)}$ (Opposing force fields.)

Recall, Lagrangian: $L(\lambda, x) = f_0(x) + \sum_i \lambda_i f_i(x)$.

Fix λ , optimize for x^* give valid lower bound on solution. Optimality Condition.

Derivative: $\nabla f_0(x) + \sum_{i=1} \lambda_i \nabla f_i(x) = 0.$

Take $\lambda_i^{(t)} = -\frac{1}{tf_i(x)}$. $x(t) = x^*(\lambda^{(t)})!$ Same optimal point!

Value? $f_0(x) + \sum_{i=1} \lambda_i f_i(x) = f_0(x) - \frac{m}{t}$.

Central point x(t) within $\frac{m}{t}$ of optimal!!!!

 $\min t f_0(x) - \sum_{i=1} \ln(-f_i(x))$

Optimality condition?

Derivative:
$$t\nabla f_0(x) + \sum_{i=1} \frac{\nabla f_i(x)}{f_i(x)} = 0$$

Or, $\nabla f_0(x) = -\sum_{i=1} \frac{\nabla f_i(x)}{t f_i(x)}$ (Opposing force fields.)

Recall, Lagrangian: $L(\lambda, x) = f_0(x) + \sum_i \lambda_i f_i(x)$.

Fix λ , optimize for x^* give valid lower bound on solution. Optimality Condition.

Derivative: $\nabla f_0(x) + \sum_{i=1} \lambda_i \nabla f_i(x) = 0.$

Take $\lambda_i^{(t)} = -\frac{1}{tf_i(x)}$. $x(t) = x^*(\lambda^{(t)})!$ Same optimal point!

Value? $f_0(x) + \sum_{i=1} \lambda_i f_i(x) = f_0(x) - \frac{m}{t}$.

Central point x(t) within $\frac{m}{t}$ of optimal!!!!

 $L(\lambda, x(t)) \geq f_0(x) - \frac{m}{t}$

 $\min t f_0(x) - \sum_{i=1} \ln(-f_i(x))$

Optimality condition?

Derivative:
$$t\nabla f_0(x) + \sum_{i=1} \frac{\nabla f_i(x)}{f_i(x)} = 0$$

Or, $\nabla f_0(x) = -\sum_{i=1} \frac{\nabla f_i(x)}{t f_i(x)}$ (Opposing force fields.)

Recall, Lagrangian: $L(\lambda, x) = f_0(x) + \sum_i \lambda_i f_i(x)$.

Fix λ , optimize for x^* give valid lower bound on solution. Optimality Condition.

Derivative: $\nabla f_0(x) + \sum_{i=1} \lambda_i \nabla f_i(x) = 0.$

Take $\lambda_i^{(t)} = -\frac{1}{tf_i(x)}$. $x(t) = x^*(\lambda^{(t)})!$ Same optimal point!

Value? $f_0(x) + \sum_{i=1} \lambda_i f_i(x) = f_0(x) - \frac{m}{t}$.

Central point x(t) within $\frac{m}{t}$ of optimal!!!!

 $L(\lambda, x(t)) \ge f_0(x) - \frac{m}{t} \implies \min_x L(\lambda, x) + \frac{m}{t} \ge f_0(x)$

 $\min t f_0(x) - \sum_{i=1} \ln(-f_i(x))$

Optimality condition?

Derivative:
$$t\nabla f_0(x) + \sum_{i=1} \frac{\nabla f_i(x)}{f_i(x)} = 0$$

Or, $\nabla f_0(x) = -\sum_{i=1} \frac{\nabla f_i(x)}{t f_i(x)}$ (Opposing force fields.)

Recall, Lagrangian: $L(\lambda, x) = f_0(x) + \sum_i \lambda_i f_i(x)$.

Fix λ , optimize for x^* give valid lower bound on solution. Optimality Condition.

Derivative: $\nabla f_0(x) + \sum_{i=1} \lambda_i \nabla f_i(x) = 0.$

Take $\lambda_i^{(t)} = -\frac{1}{tf_i(x)}$. $x(t) = x^*(\lambda^{(t)})!$ Same optimal point!

Value? $f_0(x) + \sum_{i=1} \lambda_i f_i(x) = f_0(x) - \frac{m}{t}$.

Central point x(t) within $\frac{m}{t}$ of optimal!!!!

$$L(\lambda, x(t)) \ge f_0(x) - \frac{m}{t} \implies \min_x L(\lambda, x) + \frac{m}{t} \ge f_0(x)$$
$$\implies OPT + \frac{m}{t} \ge f_0(x)$$

 $\min_{x} f_0(x), f_i(x) \leq 0.$

 $\min_{x} f_0(x), f_i(x) \leq 0.$ $\min_{x} t f_0(x) - \sum_{i>0} \ln(-f_i(x))$

$$\begin{split} \min_{x} f_{0}(x), f_{i}(x) &\leq 0.\\ \min_{x} t f_{0}(x) - \sum_{i > 0} \ln(-f_{i}(x))\\ \end{split} \\ \end{split} \\ \begin{aligned} \text{Optimal: } x(t) \text{ is feasible.} \end{split}$$

$$\begin{split} \min_{x} f_{0}(x), f_{i}(x) &\leq 0.\\ \min_{x} t f_{0}(x) - \sum_{i > 0} \ln(-f_{i}(x))\\ \text{Optimal: } x(t) \text{ is feasible.}\\ f_{0}(x(t)) &\geq OPT - \frac{m}{t} \end{split}$$

$$\begin{split} \min_{x} f_{0}(x), f_{i}(x) &\leq 0.\\ \min_{x} t f_{0}(x) - \sum_{i > 0} \ln(-f_{i}(x))\\ \text{Optimal: } x(t) \text{ is feasible.}\\ f_{0}(x(t)) &\geq OPT - \frac{m}{t}\\ \text{Algorithm: take } t \to \infty. \end{split}$$

$$\begin{split} \min_{x} f_{0}(x), f_{i}(x) &\leq 0.\\ \min_{x} t f_{0}(x) - \sum_{i > 0} \ln(-f_{i}(x))\\ \text{Optimal: } x(t) \text{ is feasible.}\\ f_{0}(x(t)) &\geq OPT - \frac{m}{t}\\ \text{Algorithm: take } t \to \infty.\\ \text{Finding } x(t)? \end{split}$$

$$\begin{split} \min_{x} f_{0}(x), f_{i}(x) &\leq 0.\\ \min_{x} t f_{0}(x) - \sum_{i \geq 0} \ln(-f_{i}(x))\\ \text{Optimal: } x(t) \text{ is feasible.}\\ f_{0}(x(t)) &\geq OPT - \frac{m}{t}\\ \text{Algorithm: take } t \to \infty.\\ \text{Finding } x(t)?\\ \text{Next.} \end{split}$$