
An aside.

How do you minimize a function?

argminx∈[a,b]f (x)?

Find x?
(1) f ′(x) = 0 and check.
(2) or at the endpoints of an interval.

Calculus.

Linear functions. Derivative is constant, never/always 0.

Unbounded unless restricted to an interval.
Then “at” a vertex in one dimension.
At an endpoint.

Constrained optimization: calculus on an interval.
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Vertex solution.

An argument, if not at a vertex can move in a direction.

Keeping current constraints tight.

So do it until you hit another constraint.

Subtle: there may be no vertices.
maxx1,x1 ≤ 4,x2 ≥ 0.

There are no “vertices” in the “feasible region.”
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Geometry again.

Ax = b, x ≥ 0[
1 0 1
0 1 1

]
x =

[
1
1

]

[
1 0 1
0 1 1

]
x =

[
−1
−1

]

x1

x2

x3

Coordinates s = b−Ax .
x ≥ 0 where s = 0?

s1

s2

Separating Hyperplane.

y where yT (b−Ax)< yT (0) = 0 for all x ≥ 0 → yT b < 0 and yT A ≥ 0.
Why? If y ·A(i) < 0, then take xi → ∞, yT b−yT Ax →+∞,
Contradiction.

Farkas A: Solution for exactly one of:
(1) Ax = b,x ≥ 0 or (2) yT A ≥ 0,yT b < 0.
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Strong Duality

(From Goemans notes.)

Primal P z∗ =mincT x
Ax = b
x ≥ 0

Dual D :w∗ =maxbT y

AT y ≤ c

Weak Duality: x ,y - feasible P, D: xT c ≥ bT y .

xT c−bT y = xT c−xT AT y

= xT (c−AT y)
≥ 0
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Strong Duality
P (Ax = b,mincx ,x ≥ 0): feasible, bounded =⇒ z∗ = w∗.

Primal feasible, bounded, minimum value z∗.

Claim: Exists a solution to dual of value at least z∗.

∃y ,yT A ≤ c,bT y ≥ z∗.

Want y where
(

AT

−bT

)
y ≤

(
c

−z∗

)
. Let A′ =

(
AT

−bT

)
Recall Farkas B: Either (1) A′x ′ ≤ b′ or (2) y ′T A′ = 0,y ′T b′ < 0,y ′ ≥ 0.

If (1) then done, otherwise (2) =⇒ ∃y ′ = [x ,λ ]≥ 0.(
A −b

)(x
λ

)
= 0

(
cT −z∗)(x

λ

)
< 0

∃x ,λ with Ax −bλ = 0 and ctx −z∗λ < 0

Case 1: λ > 0. A( x
λ
) = b, cT ( x

λ
)< z∗. Better Primal!!

Case 2: λ = 0. Ax = 0,cT x < 0. Any feasible x̃ for Primal.
(a) x̃ +µx ≥ 0 since x̃ ,x ,µ ≥ 0.
(b) A(x̃ +µx) = Ax̃ +µAx = b+µ ·0 = b. Feasible

cT (x̃ +µx) = xT x̃ +µcT x →−∞ as µ → ∞ Primal unbounded!
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Lagrangian Dual.

Find x , subject to

fi(x)≤ 0, i = 1, . . .m.

Remember calculus (constrained optimization.)

Lagrangian: L(x ,λ ) = ∑
m
i=1 λi fi(x)

λi - Lagrangian multiplier for inequality i , must be positive.

For feasible solution x , L(x ,λ ) is

(A) non-negative in expectation

(B) positive for any λ .

(C) non-positive for any valid λ .

If λ , where L(x ,λ ) is positive for all x

(A) there is no feasible x .

(B) there is no x ,λ with L(x ,λ )< 0.



Lagrangian Dual.

Find x , subject to

fi(x)≤ 0, i = 1, . . .m.

Remember calculus (constrained optimization.)

Lagrangian: L(x ,λ ) = ∑
m
i=1 λi fi(x)

λi - Lagrangian multiplier for inequality i , must be positive.

For feasible solution x , L(x ,λ ) is

(A) non-negative in expectation

(B) positive for any λ .

(C) non-positive for any valid λ .

If λ , where L(x ,λ ) is positive for all x

(A) there is no feasible x .

(B) there is no x ,λ with L(x ,λ )< 0.



Lagrangian Dual.

Find x , subject to

fi(x)≤ 0, i = 1, . . .m.

Remember calculus (constrained optimization.)

Lagrangian: L(x ,λ ) = ∑
m
i=1 λi fi(x)

λi - Lagrangian multiplier for inequality i , must be positive.

For feasible solution x , L(x ,λ ) is

(A) non-negative in expectation

(B) positive for any λ .

(C) non-positive for any valid λ .

If λ , where L(x ,λ ) is positive for all x

(A) there is no feasible x .

(B) there is no x ,λ with L(x ,λ )< 0.



Lagrangian Dual.

Find x , subject to

fi(x)≤ 0, i = 1, . . .m.

Remember calculus (constrained optimization.)

Lagrangian:

L(x ,λ ) = ∑
m
i=1 λi fi(x)

λi - Lagrangian multiplier for inequality i , must be positive.

For feasible solution x , L(x ,λ ) is

(A) non-negative in expectation

(B) positive for any λ .

(C) non-positive for any valid λ .

If λ , where L(x ,λ ) is positive for all x

(A) there is no feasible x .

(B) there is no x ,λ with L(x ,λ )< 0.



Lagrangian Dual.

Find x , subject to

fi(x)≤ 0, i = 1, . . .m.

Remember calculus (constrained optimization.)

Lagrangian: L(x ,λ ) = ∑
m
i=1 λi fi(x)

λi - Lagrangian multiplier for inequality i , must be positive.

For feasible solution x , L(x ,λ ) is

(A) non-negative in expectation

(B) positive for any λ .

(C) non-positive for any valid λ .

If λ , where L(x ,λ ) is positive for all x

(A) there is no feasible x .

(B) there is no x ,λ with L(x ,λ )< 0.



Lagrangian Dual.

Find x , subject to

fi(x)≤ 0, i = 1, . . .m.

Remember calculus (constrained optimization.)

Lagrangian: L(x ,λ ) = ∑
m
i=1 λi fi(x)

λi - Lagrangian multiplier for inequality i , must be positive.

For feasible solution x , L(x ,λ ) is

(A) non-negative in expectation

(B) positive for any λ .

(C) non-positive for any valid λ .

If λ , where L(x ,λ ) is positive for all x

(A) there is no feasible x .

(B) there is no x ,λ with L(x ,λ )< 0.



Lagrangian Dual.

Find x , subject to

fi(x)≤ 0, i = 1, . . .m.

Remember calculus (constrained optimization.)

Lagrangian: L(x ,λ ) = ∑
m
i=1 λi fi(x)

λi - Lagrangian multiplier for inequality i , must be positive.

For feasible solution x , L(x ,λ ) is

(A) non-negative in expectation

(B) positive for any λ .

(C) non-positive for any valid λ .

If λ , where L(x ,λ ) is positive for all x

(A) there is no feasible x .

(B) there is no x ,λ with L(x ,λ )< 0.



Lagrangian Dual.

Find x , subject to

fi(x)≤ 0, i = 1, . . .m.

Remember calculus (constrained optimization.)

Lagrangian: L(x ,λ ) = ∑
m
i=1 λi fi(x)

λi - Lagrangian multiplier for inequality i , must be positive.

For feasible solution x , L(x ,λ ) is

(A) non-negative in expectation

(B) positive for any λ .

(C) non-positive for any valid λ .

If λ , where L(x ,λ ) is positive for all x

(A) there is no feasible x .

(B) there is no x ,λ with L(x ,λ )< 0.



Lagrangian Dual.

Find x , subject to

fi(x)≤ 0, i = 1, . . .m.

Remember calculus (constrained optimization.)

Lagrangian: L(x ,λ ) = ∑
m
i=1 λi fi(x)

λi - Lagrangian multiplier for inequality i , must be positive.

For feasible solution x , L(x ,λ ) is

(A) non-negative in expectation

(B) positive for any λ .

(C) non-positive for any valid λ .

If λ , where L(x ,λ ) is positive for all x

(A) there is no feasible x .

(B) there is no x ,λ with L(x ,λ )< 0.



Lagrangian Dual.

Find x , subject to

fi(x)≤ 0, i = 1, . . .m.

Remember calculus (constrained optimization.)

Lagrangian: L(x ,λ ) = ∑
m
i=1 λi fi(x)

λi - Lagrangian multiplier for inequality i , must be positive.

For feasible solution x , L(x ,λ ) is

(A) non-negative in expectation

(B) positive for any λ .

(C) non-positive for any valid λ .

If λ , where L(x ,λ ) is positive for all x

(A) there is no feasible x .

(B) there is no x ,λ with L(x ,λ )< 0.



Lagrangian Dual.

Find x , subject to

fi(x)≤ 0, i = 1, . . .m.

Remember calculus (constrained optimization.)

Lagrangian: L(x ,λ ) = ∑
m
i=1 λi fi(x)

λi - Lagrangian multiplier for inequality i , must be positive.

For feasible solution x , L(x ,λ ) is

(A) non-negative in expectation

(B) positive for any λ .

(C) non-positive for any valid λ .

If λ , where L(x ,λ ) is positive for all x

(A) there is no feasible x .

(B) there is no x ,λ with L(x ,λ )< 0.



Lagrangian Dual.

Find x , subject to

fi(x)≤ 0, i = 1, . . .m.

Remember calculus (constrained optimization.)

Lagrangian: L(x ,λ ) = ∑
m
i=1 λi fi(x)

λi - Lagrangian multiplier for inequality i , must be positive.

For feasible solution x , L(x ,λ ) is

(A) non-negative in expectation

(B) positive for any λ .

(C) non-positive for any valid λ .

If λ , where L(x ,λ ) is positive for all x

(A) there is no feasible x .

(B) there is no x ,λ with L(x ,λ )< 0.



Lagrangian Dual.

Find x , subject to

fi(x)≤ 0, i = 1, . . .m.

Remember calculus (constrained optimization.)

Lagrangian: L(x ,λ ) = ∑
m
i=1 λi fi(x)

λi - Lagrangian multiplier for inequality i , must be positive.

For feasible solution x , L(x ,λ ) is

(A) non-negative in expectation

(B) positive for any λ .

(C) non-positive for any valid λ .

If λ , where L(x ,λ ) is positive for all x

(A) there is no feasible x .

(B) there is no x ,λ with L(x ,λ )< 0.



Lagrangian Dual.

Find x , subject to

fi(x)≤ 0, i = 1, . . .m.

Remember calculus (constrained optimization.)

Lagrangian: L(x ,λ ) = ∑
m
i=1 λi fi(x)

λi - Lagrangian multiplier for inequality i , must be positive.

For feasible solution x , L(x ,λ ) is

(A) non-negative in expectation

(B) positive for any λ .

(C) non-positive for any valid λ .

If λ , where L(x ,λ ) is positive for all x

(A) there is no feasible x .

(B) there is no x ,λ with L(x ,λ )< 0.



Lagrangian Dual.

Find x , subject to

fi(x)≤ 0, i = 1, . . .m.

Remember calculus (constrained optimization.)

Lagrangian: L(x ,λ ) = ∑
m
i=1 λi fi(x)

λi - Lagrangian multiplier for inequality i , must be positive.

For feasible solution x , L(x ,λ ) is

(A) non-negative in expectation

(B) positive for any λ .

(C) non-positive for any valid λ .

If λ , where L(x ,λ ) is positive for all x

(A) there is no feasible x .

(B) there is no x ,λ with L(x ,λ )< 0.



Lagrangian:constrained optimization.

min f (x)
subject to fi(x)≤ 0, i = 1, ...,m

Lagrangian function:

L(x ,λ ) = f (x)+∑
m
i=1 λi fi(x)

If (primal) x value v
For all λ ≥ 0 with L(x ,λ )≤ v
Maximizing: λ only positive when? fi(x) = 0.

If there is λ with L(x ,λ )≥ α for all x
Optimum value of program is at least α

Primal problem:
x , that minimizes L(x ,λ ) over all λ ≥ 0.

Dual problem:
λ , that maximizes L(x ,λ ) over all x .
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Linear Program.

mincx ,Ax ≥ b

min c ·x
subject to bi −ai ·x ≤ 0, i = 1, ...,m

Lagrangian (Dual):

L(λ ,x) = cx +∑i λi(bi −aixi).

or

L(λ ,x) =−(∑j xj(ajλ −cj))+bλ .

Best λ? Good against every x? Any term (ajλ −cj) ̸= 0 is bad.
maxb ·λ where ajλ = cj .

Why is this good? Every x is the same.

maxbλ ,λ T A = c,λ ≥ 0
Dual to linear program.
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Interior point on the central path.

Find x , that minimizes f0(x) subject to

fi(x)≤ 0, i = 1, . . .m.

Central path:

min tf0(x)−∑i=1 m ln(−fi(x))

The minimizer, x(t), form the central path.

x
x

x

The sequence of x ’s are “central path”.



Interior point on the central path.

Find x , that minimizes f0(x) subject to

fi(x)≤ 0, i = 1, . . .m.

Central path:

min tf0(x)−∑i=1 m ln(−fi(x))

The minimizer, x(t), form the central path.

x
x

x

The sequence of x ’s are “central path”.



Interior point on the central path.

Find x , that minimizes f0(x) subject to

fi(x)≤ 0, i = 1, . . .m.

Central path:

min tf0(x)−∑i=1 m ln(−fi(x))

The minimizer, x(t), form the central path.

x
x

x

The sequence of x ’s are “central path”.



Interior point on the central path.

Find x , that minimizes f0(x) subject to

fi(x)≤ 0, i = 1, . . .m.

Central path:

min tf0(x)−∑i=1 m ln(−fi(x))

The minimizer, x(t), form the central path.

x
x

x

The sequence of x ’s are “central path”.



Interior point on the central path.

Find x , that minimizes f0(x) subject to

fi(x)≤ 0, i = 1, . . .m.

Central path:

min tf0(x)−∑i=1 m ln(−fi(x))

The minimizer, x(t), form the central path.

x
x

x

The sequence of x ’s are “central path”.



Interior point on the central path.

Find x , that minimizes f0(x) subject to

fi(x)≤ 0, i = 1, . . .m.

Central path:

min tf0(x)−∑i=1 m ln(−fi(x))

The minimizer, x(t), form the central path.

x
x

x

The sequence of x ’s are “central path”.



Lagrangian Dual and Central Path.

min tf0(x)−∑i=1 ln(−fi(x))

Optimality condition?

Derivative: t∇f0(x)+∑i=1
∇fi (x)
fi (x)

= 0

∇f0(x)+∑i=1
1

tfi (x)
∇fi(x) = 0

Or, ∇f0(x) =−∑i=1
∇fi (x)
tfi (x)

(Opposing force fields.)

Recall, Lagrangian: L(λ ,x) = f0(x)+∑i λi fi(x).

Fix λ , optimize for x∗ give valid lower bound on solution.
Optimality Condition.
Derivative: ∇f0(x)+∑i=1 λi∇fi(x) = 0.

Take λ
(t)
i =− 1

tfi (x)
. x(t) = x∗(λ (t))! Same optimal point!

Value? f0(x)+∑i=1 λi fi(x) = f0(x)− m
t .

Central point x(t) within m
t of optimal!!!!

L(λ ,x(t))≥ f0(x)− m
t =⇒ minx L(λ ,x)+ m

t ≥ f0(x)
=⇒ OPT + m

t ≥ f0(x)



Lagrangian Dual and Central Path.

min tf0(x)−∑i=1 ln(−fi(x))

Optimality condition?

Derivative: t∇f0(x)+∑i=1
∇fi (x)
fi (x)

= 0

∇f0(x)+∑i=1
1

tfi (x)
∇fi(x) = 0

Or, ∇f0(x) =−∑i=1
∇fi (x)
tfi (x)

(Opposing force fields.)

Recall, Lagrangian: L(λ ,x) = f0(x)+∑i λi fi(x).

Fix λ , optimize for x∗ give valid lower bound on solution.
Optimality Condition.
Derivative: ∇f0(x)+∑i=1 λi∇fi(x) = 0.

Take λ
(t)
i =− 1

tfi (x)
. x(t) = x∗(λ (t))! Same optimal point!

Value? f0(x)+∑i=1 λi fi(x) = f0(x)− m
t .

Central point x(t) within m
t of optimal!!!!

L(λ ,x(t))≥ f0(x)− m
t =⇒ minx L(λ ,x)+ m

t ≥ f0(x)
=⇒ OPT + m

t ≥ f0(x)



Lagrangian Dual and Central Path.

min tf0(x)−∑i=1 ln(−fi(x))

Optimality condition?

Derivative: t∇f0(x)+∑i=1
∇fi (x)
fi (x)

= 0

∇f0(x)+∑i=1
1

tfi (x)
∇fi(x) = 0

Or, ∇f0(x) =−∑i=1
∇fi (x)
tfi (x)

(Opposing force fields.)

Recall, Lagrangian: L(λ ,x) = f0(x)+∑i λi fi(x).

Fix λ , optimize for x∗ give valid lower bound on solution.
Optimality Condition.
Derivative: ∇f0(x)+∑i=1 λi∇fi(x) = 0.

Take λ
(t)
i =− 1

tfi (x)
. x(t) = x∗(λ (t))! Same optimal point!

Value? f0(x)+∑i=1 λi fi(x) = f0(x)− m
t .

Central point x(t) within m
t of optimal!!!!

L(λ ,x(t))≥ f0(x)− m
t =⇒ minx L(λ ,x)+ m

t ≥ f0(x)
=⇒ OPT + m

t ≥ f0(x)



Lagrangian Dual and Central Path.

min tf0(x)−∑i=1 ln(−fi(x))

Optimality condition?

Derivative:

t∇f0(x)+∑i=1
∇fi (x)
fi (x)

= 0

∇f0(x)+∑i=1
1

tfi (x)
∇fi(x) = 0

Or, ∇f0(x) =−∑i=1
∇fi (x)
tfi (x)

(Opposing force fields.)

Recall, Lagrangian: L(λ ,x) = f0(x)+∑i λi fi(x).

Fix λ , optimize for x∗ give valid lower bound on solution.
Optimality Condition.
Derivative: ∇f0(x)+∑i=1 λi∇fi(x) = 0.

Take λ
(t)
i =− 1

tfi (x)
. x(t) = x∗(λ (t))! Same optimal point!

Value? f0(x)+∑i=1 λi fi(x) = f0(x)− m
t .

Central point x(t) within m
t of optimal!!!!

L(λ ,x(t))≥ f0(x)− m
t =⇒ minx L(λ ,x)+ m

t ≥ f0(x)
=⇒ OPT + m

t ≥ f0(x)



Lagrangian Dual and Central Path.

min tf0(x)−∑i=1 ln(−fi(x))

Optimality condition?

Derivative: t∇f0(x)+∑i=1
∇fi (x)
fi (x)

= 0

∇f0(x)+∑i=1
1

tfi (x)
∇fi(x) = 0

Or, ∇f0(x) =−∑i=1
∇fi (x)
tfi (x)

(Opposing force fields.)

Recall, Lagrangian: L(λ ,x) = f0(x)+∑i λi fi(x).

Fix λ , optimize for x∗ give valid lower bound on solution.
Optimality Condition.
Derivative: ∇f0(x)+∑i=1 λi∇fi(x) = 0.

Take λ
(t)
i =− 1

tfi (x)
. x(t) = x∗(λ (t))! Same optimal point!

Value? f0(x)+∑i=1 λi fi(x) = f0(x)− m
t .

Central point x(t) within m
t of optimal!!!!

L(λ ,x(t))≥ f0(x)− m
t =⇒ minx L(λ ,x)+ m

t ≥ f0(x)
=⇒ OPT + m

t ≥ f0(x)



Lagrangian Dual and Central Path.

min tf0(x)−∑i=1 ln(−fi(x))

Optimality condition?

Derivative: t∇f0(x)+∑i=1
∇fi (x)
fi (x)

= 0

∇f0(x)+∑i=1
1

tfi (x)
∇fi(x) = 0

Or, ∇f0(x) =−∑i=1
∇fi (x)
tfi (x)

(Opposing force fields.)

Recall, Lagrangian: L(λ ,x) = f0(x)+∑i λi fi(x).

Fix λ , optimize for x∗ give valid lower bound on solution.
Optimality Condition.
Derivative: ∇f0(x)+∑i=1 λi∇fi(x) = 0.

Take λ
(t)
i =− 1

tfi (x)
. x(t) = x∗(λ (t))! Same optimal point!

Value? f0(x)+∑i=1 λi fi(x) = f0(x)− m
t .

Central point x(t) within m
t of optimal!!!!

L(λ ,x(t))≥ f0(x)− m
t =⇒ minx L(λ ,x)+ m

t ≥ f0(x)
=⇒ OPT + m

t ≥ f0(x)



Lagrangian Dual and Central Path.

min tf0(x)−∑i=1 ln(−fi(x))

Optimality condition?

Derivative: t∇f0(x)+∑i=1
∇fi (x)
fi (x)

= 0

∇f0(x)+∑i=1
1

tfi (x)
∇fi(x) = 0

Or, ∇f0(x) =−∑i=1
∇fi (x)
tfi (x)

(Opposing force fields.)

Recall, Lagrangian: L(λ ,x) = f0(x)+∑i λi fi(x).

Fix λ , optimize for x∗ give valid lower bound on solution.
Optimality Condition.
Derivative: ∇f0(x)+∑i=1 λi∇fi(x) = 0.

Take λ
(t)
i =− 1

tfi (x)
. x(t) = x∗(λ (t))! Same optimal point!

Value? f0(x)+∑i=1 λi fi(x) = f0(x)− m
t .

Central point x(t) within m
t of optimal!!!!

L(λ ,x(t))≥ f0(x)− m
t =⇒ minx L(λ ,x)+ m

t ≥ f0(x)
=⇒ OPT + m

t ≥ f0(x)



Lagrangian Dual and Central Path.

min tf0(x)−∑i=1 ln(−fi(x))

Optimality condition?

Derivative: t∇f0(x)+∑i=1
∇fi (x)
fi (x)

= 0

∇f0(x)+∑i=1
1

tfi (x)
∇fi(x) = 0

Or, ∇f0(x) =−∑i=1
∇fi (x)
tfi (x)

(Opposing force fields.)

Recall, Lagrangian: L(λ ,x) = f0(x)+∑i λi fi(x).

Fix λ , optimize for x∗ give valid lower bound on solution.
Optimality Condition.
Derivative: ∇f0(x)+∑i=1 λi∇fi(x) = 0.

Take λ
(t)
i =− 1

tfi (x)
. x(t) = x∗(λ (t))! Same optimal point!

Value? f0(x)+∑i=1 λi fi(x) = f0(x)− m
t .

Central point x(t) within m
t of optimal!!!!

L(λ ,x(t))≥ f0(x)− m
t =⇒ minx L(λ ,x)+ m

t ≥ f0(x)
=⇒ OPT + m

t ≥ f0(x)



Lagrangian Dual and Central Path.

min tf0(x)−∑i=1 ln(−fi(x))

Optimality condition?

Derivative: t∇f0(x)+∑i=1
∇fi (x)
fi (x)

= 0

∇f0(x)+∑i=1
1

tfi (x)
∇fi(x) = 0

Or, ∇f0(x) =−∑i=1
∇fi (x)
tfi (x)

(Opposing force fields.)

Recall, Lagrangian: L(λ ,x) = f0(x)+∑i λi fi(x).

Fix λ , optimize for x∗ give valid lower bound on solution.

Optimality Condition.
Derivative: ∇f0(x)+∑i=1 λi∇fi(x) = 0.

Take λ
(t)
i =− 1

tfi (x)
. x(t) = x∗(λ (t))! Same optimal point!

Value? f0(x)+∑i=1 λi fi(x) = f0(x)− m
t .

Central point x(t) within m
t of optimal!!!!

L(λ ,x(t))≥ f0(x)− m
t =⇒ minx L(λ ,x)+ m

t ≥ f0(x)
=⇒ OPT + m

t ≥ f0(x)



Lagrangian Dual and Central Path.

min tf0(x)−∑i=1 ln(−fi(x))

Optimality condition?

Derivative: t∇f0(x)+∑i=1
∇fi (x)
fi (x)

= 0

∇f0(x)+∑i=1
1

tfi (x)
∇fi(x) = 0

Or, ∇f0(x) =−∑i=1
∇fi (x)
tfi (x)

(Opposing force fields.)

Recall, Lagrangian: L(λ ,x) = f0(x)+∑i λi fi(x).

Fix λ , optimize for x∗ give valid lower bound on solution.
Optimality Condition.

Derivative: ∇f0(x)+∑i=1 λi∇fi(x) = 0.

Take λ
(t)
i =− 1

tfi (x)
. x(t) = x∗(λ (t))! Same optimal point!

Value? f0(x)+∑i=1 λi fi(x) = f0(x)− m
t .

Central point x(t) within m
t of optimal!!!!

L(λ ,x(t))≥ f0(x)− m
t =⇒ minx L(λ ,x)+ m

t ≥ f0(x)
=⇒ OPT + m

t ≥ f0(x)



Lagrangian Dual and Central Path.

min tf0(x)−∑i=1 ln(−fi(x))

Optimality condition?

Derivative: t∇f0(x)+∑i=1
∇fi (x)
fi (x)

= 0

∇f0(x)+∑i=1
1

tfi (x)
∇fi(x) = 0

Or, ∇f0(x) =−∑i=1
∇fi (x)
tfi (x)

(Opposing force fields.)

Recall, Lagrangian: L(λ ,x) = f0(x)+∑i λi fi(x).

Fix λ , optimize for x∗ give valid lower bound on solution.
Optimality Condition.

Derivative:

∇f0(x)+∑i=1 λi∇fi(x) = 0.

Take λ
(t)
i =− 1

tfi (x)
. x(t) = x∗(λ (t))! Same optimal point!

Value? f0(x)+∑i=1 λi fi(x) = f0(x)− m
t .

Central point x(t) within m
t of optimal!!!!

L(λ ,x(t))≥ f0(x)− m
t =⇒ minx L(λ ,x)+ m

t ≥ f0(x)
=⇒ OPT + m

t ≥ f0(x)



Lagrangian Dual and Central Path.

min tf0(x)−∑i=1 ln(−fi(x))

Optimality condition?

Derivative: t∇f0(x)+∑i=1
∇fi (x)
fi (x)

= 0

∇f0(x)+∑i=1
1

tfi (x)
∇fi(x) = 0

Or, ∇f0(x) =−∑i=1
∇fi (x)
tfi (x)

(Opposing force fields.)

Recall, Lagrangian: L(λ ,x) = f0(x)+∑i λi fi(x).

Fix λ , optimize for x∗ give valid lower bound on solution.
Optimality Condition.

Derivative: ∇f0(x)+∑i=1 λi∇fi(x) = 0.

Take λ
(t)
i =− 1

tfi (x)
. x(t) = x∗(λ (t))! Same optimal point!

Value? f0(x)+∑i=1 λi fi(x) = f0(x)− m
t .

Central point x(t) within m
t of optimal!!!!

L(λ ,x(t))≥ f0(x)− m
t =⇒ minx L(λ ,x)+ m

t ≥ f0(x)
=⇒ OPT + m

t ≥ f0(x)



Lagrangian Dual and Central Path.

min tf0(x)−∑i=1 ln(−fi(x))

Optimality condition?

Derivative: t∇f0(x)+∑i=1
∇fi (x)
fi (x)

= 0

∇f0(x)+∑i=1
1

tfi (x)
∇fi(x) = 0

Or, ∇f0(x) =−∑i=1
∇fi (x)
tfi (x)

(Opposing force fields.)

Recall, Lagrangian: L(λ ,x) = f0(x)+∑i λi fi(x).

Fix λ , optimize for x∗ give valid lower bound on solution.
Optimality Condition.

Derivative: ∇f0(x)+∑i=1 λi∇fi(x) = 0.

Take λ
(t)
i =− 1

tfi (x)
.

x(t) = x∗(λ (t))! Same optimal point!

Value? f0(x)+∑i=1 λi fi(x) = f0(x)− m
t .

Central point x(t) within m
t of optimal!!!!

L(λ ,x(t))≥ f0(x)− m
t =⇒ minx L(λ ,x)+ m

t ≥ f0(x)
=⇒ OPT + m

t ≥ f0(x)



Lagrangian Dual and Central Path.

min tf0(x)−∑i=1 ln(−fi(x))

Optimality condition?

Derivative: t∇f0(x)+∑i=1
∇fi (x)
fi (x)

= 0

∇f0(x)+∑i=1
1

tfi (x)
∇fi(x) = 0

Or, ∇f0(x) =−∑i=1
∇fi (x)
tfi (x)

(Opposing force fields.)

Recall, Lagrangian: L(λ ,x) = f0(x)+∑i λi fi(x).

Fix λ , optimize for x∗ give valid lower bound on solution.
Optimality Condition.

Derivative: ∇f0(x)+∑i=1 λi∇fi(x) = 0.

Take λ
(t)
i =− 1

tfi (x)
. x(t) = x∗(λ (t))!

Same optimal point!

Value? f0(x)+∑i=1 λi fi(x) = f0(x)− m
t .

Central point x(t) within m
t of optimal!!!!

L(λ ,x(t))≥ f0(x)− m
t =⇒ minx L(λ ,x)+ m

t ≥ f0(x)
=⇒ OPT + m

t ≥ f0(x)



Lagrangian Dual and Central Path.

min tf0(x)−∑i=1 ln(−fi(x))

Optimality condition?

Derivative: t∇f0(x)+∑i=1
∇fi (x)
fi (x)

= 0 ∇f0(x)+∑i=1
1

tfi (x)
∇fi(x) = 0

Or, ∇f0(x) =−∑i=1
∇fi (x)
tfi (x)

(Opposing force fields.)

Recall, Lagrangian: L(λ ,x) = f0(x)+∑i λi fi(x).

Fix λ , optimize for x∗ give valid lower bound on solution.
Optimality Condition.

Derivative: ∇f0(x)+∑i=1 λi∇fi(x) = 0.

Take λ
(t)
i =− 1

tfi (x)
. x(t) = x∗(λ (t))! Same optimal point!

Value? f0(x)+∑i=1 λi fi(x) = f0(x)− m
t .

Central point x(t) within m
t of optimal!!!!

L(λ ,x(t))≥ f0(x)− m
t =⇒ minx L(λ ,x)+ m

t ≥ f0(x)
=⇒ OPT + m

t ≥ f0(x)



Lagrangian Dual and Central Path.

min tf0(x)−∑i=1 ln(−fi(x))

Optimality condition?

Derivative: t∇f0(x)+∑i=1
∇fi (x)
fi (x)

= 0

∇f0(x)+∑i=1
1

tfi (x)
∇fi(x) = 0

Or, ∇f0(x) =−∑i=1
∇fi (x)
tfi (x)

(Opposing force fields.)

Recall, Lagrangian: L(λ ,x) = f0(x)+∑i λi fi(x).

Fix λ , optimize for x∗ give valid lower bound on solution.
Optimality Condition.

Derivative: ∇f0(x)+∑i=1 λi∇fi(x) = 0.

Take λ
(t)
i =− 1

tfi (x)
. x(t) = x∗(λ (t))! Same optimal point!

Value?

f0(x)+∑i=1 λi fi(x) = f0(x)− m
t .

Central point x(t) within m
t of optimal!!!!

L(λ ,x(t))≥ f0(x)− m
t =⇒ minx L(λ ,x)+ m

t ≥ f0(x)
=⇒ OPT + m

t ≥ f0(x)



Lagrangian Dual and Central Path.

min tf0(x)−∑i=1 ln(−fi(x))

Optimality condition?

Derivative: t∇f0(x)+∑i=1
∇fi (x)
fi (x)

= 0

∇f0(x)+∑i=1
1

tfi (x)
∇fi(x) = 0

Or, ∇f0(x) =−∑i=1
∇fi (x)
tfi (x)

(Opposing force fields.)

Recall, Lagrangian: L(λ ,x) = f0(x)+∑i λi fi(x).

Fix λ , optimize for x∗ give valid lower bound on solution.
Optimality Condition.

Derivative: ∇f0(x)+∑i=1 λi∇fi(x) = 0.

Take λ
(t)
i =− 1

tfi (x)
. x(t) = x∗(λ (t))! Same optimal point!

Value? f0(x)+∑i=1 λi fi(x) = f0(x)− m
t .

Central point x(t) within m
t of optimal!!!!

L(λ ,x(t))≥ f0(x)− m
t =⇒ minx L(λ ,x)+ m

t ≥ f0(x)
=⇒ OPT + m

t ≥ f0(x)



Lagrangian Dual and Central Path.

min tf0(x)−∑i=1 ln(−fi(x))

Optimality condition?

Derivative: t∇f0(x)+∑i=1
∇fi (x)
fi (x)

= 0

∇f0(x)+∑i=1
1

tfi (x)
∇fi(x) = 0

Or, ∇f0(x) =−∑i=1
∇fi (x)
tfi (x)

(Opposing force fields.)

Recall, Lagrangian: L(λ ,x) = f0(x)+∑i λi fi(x).

Fix λ , optimize for x∗ give valid lower bound on solution.
Optimality Condition.

Derivative: ∇f0(x)+∑i=1 λi∇fi(x) = 0.

Take λ
(t)
i =− 1

tfi (x)
. x(t) = x∗(λ (t))! Same optimal point!

Value? f0(x)+∑i=1 λi fi(x) = f0(x)− m
t .

Central point x(t) within m
t of optimal!!!!

L(λ ,x(t))≥ f0(x)− m
t =⇒ minx L(λ ,x)+ m

t ≥ f0(x)
=⇒ OPT + m

t ≥ f0(x)



Lagrangian Dual and Central Path.

min tf0(x)−∑i=1 ln(−fi(x))

Optimality condition?

Derivative: t∇f0(x)+∑i=1
∇fi (x)
fi (x)

= 0

∇f0(x)+∑i=1
1

tfi (x)
∇fi(x) = 0

Or, ∇f0(x) =−∑i=1
∇fi (x)
tfi (x)

(Opposing force fields.)

Recall, Lagrangian: L(λ ,x) = f0(x)+∑i λi fi(x).

Fix λ , optimize for x∗ give valid lower bound on solution.
Optimality Condition.

Derivative: ∇f0(x)+∑i=1 λi∇fi(x) = 0.

Take λ
(t)
i =− 1

tfi (x)
. x(t) = x∗(λ (t))! Same optimal point!

Value? f0(x)+∑i=1 λi fi(x) = f0(x)− m
t .

Central point x(t) within m
t of optimal!!!!

L(λ ,x(t))≥ f0(x)− m
t

=⇒ minx L(λ ,x)+ m
t ≥ f0(x)

=⇒ OPT + m
t ≥ f0(x)



Lagrangian Dual and Central Path.

min tf0(x)−∑i=1 ln(−fi(x))

Optimality condition?

Derivative: t∇f0(x)+∑i=1
∇fi (x)
fi (x)

= 0

∇f0(x)+∑i=1
1

tfi (x)
∇fi(x) = 0

Or, ∇f0(x) =−∑i=1
∇fi (x)
tfi (x)

(Opposing force fields.)

Recall, Lagrangian: L(λ ,x) = f0(x)+∑i λi fi(x).

Fix λ , optimize for x∗ give valid lower bound on solution.
Optimality Condition.

Derivative: ∇f0(x)+∑i=1 λi∇fi(x) = 0.

Take λ
(t)
i =− 1

tfi (x)
. x(t) = x∗(λ (t))! Same optimal point!

Value? f0(x)+∑i=1 λi fi(x) = f0(x)− m
t .

Central point x(t) within m
t of optimal!!!!

L(λ ,x(t))≥ f0(x)− m
t =⇒ minx L(λ ,x)+ m

t ≥ f0(x)

=⇒ OPT + m
t ≥ f0(x)



Lagrangian Dual and Central Path.

min tf0(x)−∑i=1 ln(−fi(x))

Optimality condition?

Derivative: t∇f0(x)+∑i=1
∇fi (x)
fi (x)

= 0

∇f0(x)+∑i=1
1

tfi (x)
∇fi(x) = 0

Or, ∇f0(x) =−∑i=1
∇fi (x)
tfi (x)

(Opposing force fields.)

Recall, Lagrangian: L(λ ,x) = f0(x)+∑i λi fi(x).

Fix λ , optimize for x∗ give valid lower bound on solution.
Optimality Condition.

Derivative: ∇f0(x)+∑i=1 λi∇fi(x) = 0.

Take λ
(t)
i =− 1

tfi (x)
. x(t) = x∗(λ (t))! Same optimal point!

Value? f0(x)+∑i=1 λi fi(x) = f0(x)− m
t .

Central point x(t) within m
t of optimal!!!!

L(λ ,x(t))≥ f0(x)− m
t =⇒ minx L(λ ,x)+ m

t ≥ f0(x)
=⇒ OPT + m

t ≥ f0(x)



Central path.

minx f0(x), fi(x)≤ 0.

minx tf0(x)−∑i>0 ln(−fi(x))

Optimal: x(t) is feasible.

f0(x(t))≥ OPT − m
t

Algorithm: take t → ∞.

Finding x(t)?

Next.



Central path.

minx f0(x), fi(x)≤ 0.

minx tf0(x)−∑i>0 ln(−fi(x))

Optimal: x(t) is feasible.

f0(x(t))≥ OPT − m
t

Algorithm: take t → ∞.

Finding x(t)?

Next.



Central path.

minx f0(x), fi(x)≤ 0.

minx tf0(x)−∑i>0 ln(−fi(x))

Optimal: x(t) is feasible.

f0(x(t))≥ OPT − m
t

Algorithm: take t → ∞.

Finding x(t)?

Next.



Central path.

minx f0(x), fi(x)≤ 0.

minx tf0(x)−∑i>0 ln(−fi(x))

Optimal: x(t) is feasible.

f0(x(t))≥ OPT − m
t

Algorithm: take t → ∞.

Finding x(t)?

Next.



Central path.

minx f0(x), fi(x)≤ 0.

minx tf0(x)−∑i>0 ln(−fi(x))

Optimal: x(t) is feasible.

f0(x(t))≥ OPT − m
t

Algorithm: take t → ∞.

Finding x(t)?

Next.



Central path.

minx f0(x), fi(x)≤ 0.

minx tf0(x)−∑i>0 ln(−fi(x))

Optimal: x(t) is feasible.

f0(x(t))≥ OPT − m
t

Algorithm: take t → ∞.

Finding x(t)?

Next.



Central path.

minx f0(x), fi(x)≤ 0.

minx tf0(x)−∑i>0 ln(−fi(x))

Optimal: x(t) is feasible.

f0(x(t))≥ OPT − m
t

Algorithm: take t → ∞.

Finding x(t)?

Next.


